PARALLEL SEARCH OF GAME TREES

T. A. MARSLAND
M. S. CAMPBELL
and

A. L. RIVERA

Technical Report TR80-7
November 1980
Department of Computing Science
The University of Alberta
EDMONTON, Canada, T6G 2H1

PARALLEL SEARCH OF GAME TREES

T A. MARSLAND
M. S. CAMPBELL
and

A. L. RIVERA

Technical Report TR80-7
November 1980
Department of Computing Science
The University of Alberta

EDMONTON, Canada, T6G 2H1

ABSTRACT

With the increasing availability and computing power of
contemporary microprocessors there is a growing trend towards
the construction of unique computer architectures for
specialized applications. This is especially true for comp'ite-
bound tasks requiring minimal amounts of expensive storag=2,
particularly if the problem may be partitioned into autonomous
functions for paralle)l execution. For some problems, such as
the tree structured decision-making process, this partitioning

is easily done.

A classical tree probliem is the minimax evaluation of
zero-sum games. Although the choices may appear
straightforward, there ars many important design decisions
relating not only to the use of efficiency refinements such as
the alpha-beta algorithm, transposition tables and iterative
deepening, but also to fundamental interprocessor communication
problems involving the use of shared memory for message
passing, and choice of hardware configuration. This report
therefore serves as a working design dozument for the
construction of multiprocessor systems for performing fast
alpha-bata searches, especially as related to the computer

chess problem.

1. INTRODUCTION

The alpha-beta algorithm is a well known procadure for
computing the minimax value of tree structures whose leaf
(terminal node) values are expressed by simple numeric
quantities. Because of its efficiency, the algorithm is
commonly employed to search lookahead trees for such games as
chess and checkers. The application of parallel processing to
the alpha-basta algorithm is also receiving attention. In this
paper an examination is made of various alternatives in
hardware, interprocessor communications, and searching methods,
as part of a proposad design for the implementation of parallel

search.

The paper is essentially in two parts. It opens with a
prief summary of the alpha-beta algorithm, and a discussion of
the possible overheads involved in a parallel implementation of
the algorithm. A numbaer of searching methods suitable for a
parallel system are reviewed, and some suggestions for
variations and potential enhancements ares made. In the second
part, the characteristics of two contempcrary microprocessors
are examined to detarmine their suitability for the given
application. In particular, interprocessor communication
schemes from both the hardware and organizational points of
view are studied. Finally, based on our assessment, the
preferred system architecture is described and our conclusions,

with directions for future research, are presented.

2. THE ALPHA-BETA ALGORITHM

A complete description of the minimax alpha-beta tree
searching algorithm can be found elsewhere {Knuth75]. Rather
than duplicate that work we will simply clarify some relevant

facts and terminology used in our paper.

In two-person zefo-sum games a tree of all possible
sequences of moves can be envisioned, from either the initial
or any intermadiate position. Nodes in this so-called game tree
correspond to game positions, while branches correspond to
moves. All leaf nodes are terminal positions in the game (i.e.

wins, draws or losses). All other nodes correspond to non-

terminal (intermediate) positions.

Generally it is impractical to examina the entire tree to
the termina} nodes, and so some arbitrary criteria are used to
abbreviate the search. The simplest approach is to truncate the
game tree at a fixed depth, and assign a rnumeric measure to
estimate the relative goodness of the nodes at this depth. [t
is assumed that increasing the maximum depth improves the
quality of the search result. Thus alpha-beta pruning is a
useful optimization of the minimax algorithm, since it can
allow smaller trees to be searched while still locating the
"best" path to the terminal nodes. In a uniform game tree with
fixed depth d and branching factor B, the minimax aigorithm
examines b ** d terminal nodes, while in the best case of

alpha-beta, only
b *x [dlz] + b = ld/2J -1

terminal nodes are examined. Though a great improvement over

3
straight minimaxing (reducing search to about the square root),
even the best case of alpha-beta is still exponential with tree

depth.

alphabeta(p, alpha, beta)
position p;

int alpha, beta;

{

int n, v, i, s:
/* determine successoi positions */

n = generate(p): /* p.1 p.n and return number ¥/
/* of moves as function value */

if (n == 0) return (f(p));

v = alpha;

for i = 1 until n

{

s = -alphabeta(p.i., -beta, -v);

if (s > v) v = s;
if (v >= beta) goto done; /* cutoff */

done: return(v);

Y .

Figure 1: Basic alpha-beta algorithm

fhe basic structure of tne alpha-bata algorithm is very
simple, as jllustrated by the pseudo-C ¥arn78] representation
in the negamax [(Knuth75] framework, Figuro 1. The algorithm
maintains two bounds, traditionally called alpha and beta, as
it carries out a search. Alpha represents the score for the
best alternative found so far for the first player, while beta
is the best alternative value for the opponent. The interval
enclosed by (alpha,beta) is referred to as the alpha-beta
window. Since the evaluated score of the root position must be
petween alpha and beta, the window is often set to

(-infinity,+infinity) to be sure of enclosing this (unknown)

score.

Generally speaking, however, the narrower the initial
window, the better the algorithm’s performance. Hence there is
some incentive for choosing an initial window which spans a
suitable range about an expected value for the position. If the
best score returned is less than alpha or greater than beta,
then the search has failed low or failed high [Fish80]
respectively. Thus the window must be expanded and the search
repeated until the returned score falls within the window. For
exampla, If the initial search fails high, then with a window
of (beta,+infinity) the true score can be found in one more
itaration (provided all the opponent’s relevant continuations

have been examined in the first pass).

3. PARALLEL SEARCH OVERHEADS

There are two major forms of overhead in a parallel alpha-
beta search - interprocessor communication and search overhead.
As will be seen, these two overheads tend to be inversely
related, and a suitable balance between them must be found for

practical systems.

3.1 Search overheads

Without alpha-beta pruning a concurrent implementation of
a tree search would be a relatively trivial matter. Sub-trees
could be explored independently with no loss of efficiency.
However the power of the sequential alpha-beta algorithm is

based on the fact that, at any given point in the search, all

previously acquired information is used to minimize the tree
size (i.e. to generate the narrowest possible guaranteed alpha-
beta window). When different subtrees are explored
concurrently, the best information is not necessarily available
to every sub-tree search, with consequent reduction in the
efficiency of the algorithm. Thus, one requirement for a 2 good
parallel alpha-bata implementation is that it minimize the
acdverse effects of having tree 1nformatioﬁ distributed over a

number of processors.

3.2 Communications overheads

Another type of overhesad in the parallel alpha-beta
algorithm rasults from the necessity for interprocessor
communication, in order to update alpha-beta windows across ail
procassors. Whether this is carriad out via a shared data
structure (i.e. common memory), or message passing (with
consequent sending and receiving costs), a delay is
unavoidable. This deiay would ccme from the execution of
procedures which would either sat semaphores, execute critical
arsas of monitor procedures or perform confirmation and
checking for protocol procedures. There is also a tendency, if
communications are minimized, to reducs the sharing of global
tree information {(using wider alpha-beta windows), pernaps

lowering the efficiency of each processor.

4. BASIC METHODS OF PARALLEL ALPHA-BETA SEARCH

A number of schemes for introducing parallelism to the
alpha-beta algorithm can be conceived. Our review of these
methods will make the choices more clear, and will provide some

suggestions for further research.

4.1 Naive method

One possible parallel implementation of the alpha-beta
algorithm uses a static decomposition of the game-tree. This
involves splitting the tr2e into sub-trees and assigning these
sub-trees to different processors. The depth at which the
division takes place will be referred to as the common depth.

There are some serious drawbacks to such a scheme.

(1) A static decomposition of the tree with tasks of varying
sizes is poorly suited to execution on a multiprocessor
system. Once all the sub-trees at any common depth have
been assigned to processors, then any processor returning

from the search becomes idle until the last one compleates.

For example, consider a i0-processor system and a
19-processor system, both exploring a tree with 20
subtrees. Though the 19 processors have almost double the
computing power of the 10, both systems will take
approximately the same time to complete the search. This
is because in the 19 processor case the twentieth subtree
can be explored by only one processor, leaving the others

idle.

(2) The tradeoff between search and communications cverheads
is particularly unfavorable. In the naive method,
interprocessor communication is axponential with common
depth, which encourages minimization of the depth in order
the keep the communicat:ion at a manageable level. However
search overhead becomes excessive at low common depths,
especially with a large number of processors. A striking
examplie of this can be sesen in the exploration of a
typical chess game tree. A round number estimate of the
branching factor is about 40, with alpha-beta pruning
reducing the effective tree size to one with a branching
factor of about 7. Thus, if 40 processors are used to
conduct a2 search with common depth 1, the resul tant
speedup will be about 7 (equivalent to the effect of
removing ona ply from tha tree) {Gil172]. The serious
problems invelved are illustrated oy the fact that a
40-fold increase in computing power provides only a 7-fold

spaedup.

4.2 Baudet method

A second approach to parallel alpha-veta has been
developed [Baud78], one which does not insolve decomposition of
the game-tree. Instead, the initial aipha-beta w-ndow is
divided into subintervals, and each proceszor searches for a
solution over a different subinterval. Since considerably
smaller windows can be used, the individual searches usually
proceed more quickly. Processors whose windows do not contain
the actual score of the position either fail high or low. The

processor whose window does enclose the position value is able

to find the correct move and score.

The maximum speedup of the method is believed to be only 5
or 6, regardless of the number processors available. This is

because the cost of a partial search, i.e. a search over a

restricted alpha-beta window, has a certain fixed overhead
regardless of the width of the window (provided, of course,

that alpha < beta) [Baud78].

An important result, however, is that when the degree of
parallelism (i.e. the number of processors) is small (k=2 or
3), the sp=2adup obtainable is greater than k. It is this fact,
and the upper limit on the speedup, that leads Baudet to
suggest combining his method with a tree decomposition scheme,

particularly when a large number of processors are available.

4.3 Akl method

Akl et al. describe a strategy for tree decomposition
which attempts to take advantage of certain regularitias in the
behaviour of the sequential alpha-beta algorithm [Ak180]. The
assential idea is that, even in the best case, there are
certain subtrees that alpha-beta must explore. Therefore these
subtreas can be examined independently and concurrently as the
first stage of a parallel algorithm. The subsequent stages of
the algorithm can make use of the alpha-beta windows (set up by
the first stage) to search the remaining subtrees

independentiy, with minimal search overhead.

To describe the algorithm further, some additional

terminoiogy is useful [Ak180]. The first son of a node 1s

called the left son, and is contain: in = left subtres. All

other sons of a node are right sons, and are contained in right

subtrees.

The initial stage of the algorithm fully searches the left
subtree of the root node, but only the left subtrees of the
right sons of the root node. When this phase is complete, the
ieft sorn will have a final value, while all the rignt sons will
have temporary values (i.e. the values of their left sos). In
Figure 2, those subtrees explorad in the first phase are marked
by the solid lines. 1f these temporary values are insufficient
to cause a cutoff, as in Figure 2, then successive second sons
of each remaining right node is searched, Figure 3, until

either all right sons have been cutoff or fully explored!.

The algorithm was implemented through simulation of
physical parallelism. in the simulation, processes are
generated to carry out subtree searches, and processors
assigned to them from a pool according to a priority scheme. It
is not clear whether this method is suitable for an actual
realization on a multiprocessor. However, the importance of the
point that certain subtrees must always be examined should be
kept in mind. The algorithm’s effectiveness was demonstrated on
game-trees with randomly assigned terminal node v lues, and

branching factors of five and less [Ak1BO]T.

' Actually the above description is an oversimplification,
ignoring the fact that the algorithm is recursively applied at
deeper levels in the tree. The ideas presented are essentially
correct, however.

e

10

4.4 Tree-splitting algorithm

Fishburn and Finkel describe a parallel alpha-beta
algorithm which they cal! the tree-splitting algorithm
[Fish80]. It involves a relatively simple game-tree
decomposition, and the use of a tree of processors. The
algorithm has been implemented on the Arachne distributed
operating system, and a theoretical madel has been developed
for certain simplified cases.

The tree of processors takes the form of an N-ary tree, in

which nodes represent indspendent processors, and branches the
communication 1ines between them. Parent nodes are called
masters and children are called slaves. Thus the root of the
tree is a master, all terminal nodes are slaves, and all
intermediate nodes are either masters or slaves depending on
the context. One important condition on the tree of processors

is that it be shallower than the game-tree to be searched.

There are two separate algorithms run on the processors,
dependent on whether they are a terminal node or not. Terminal

nodes run the slave algorithm. These processors are passed a

position and an alpha-beta window, and search the subtree
(sequentially) down to the maximum depth. The calculated value

is returned to the master.

A1l non-terminal nodes run the master algorithm. They are

also given a position and a window from their master (or from
the input, in case of the root processor). The successors of
the position are generated and assigned to the slaves one by

one. When the subtree search is done (i.e. all successors have

L)

a9 =D 0 om0 ae TS a W =0

Y

P

FIGURE 2: FIRST PHASE GF SEARRCH

FIGURE 3: SECOND PHRSE OF SEARCH

been scored by slaves, or the search has been cut off}, the

calculated value is returnsed to its master.

An important feature of this method is the provision for
dynamic updating of alpha-beta windows. 1f a master gets a
return value from a slave which narrows the window, a method
has been described whereby the new window can be transmitted to
slaves whose search is in progress. Our pseudo-code version,
adapted from [Fish80], to carry out dynamic updates for the
negamax variant of alpha-beta is given in Figure 4. It is
assumed that the alpha and beta values ar=2 maintained in a
global array, rather than on the stack, and that procedure

update is called asynchronously by means of an interrupt.

int alpha[MAXDEPTH], beta[MAXDEPTH];

update(newalpha, newbeta)
int newalpha, newbeta;
{
int k, tmp;
for k = O unti) (MAXDEPTH - 1)
({
alphalk] = max(alphalk], newalpha);
beta(k] = min(betal[k], newbeta):
tmp = newalpha;
newalpha = -newbeta;
newbeta = -tmp;

Figure 4: Interrupt invoked update of aipha-beta window

There are a number of optimizations possible for this
searching scheme.
(1) Since most of a master’s time is spent waiting for

messages, the deepest masters can join in the search by

12
running the slave algorithm, in addition to their master
function.

(2) 1t is possible to group several higher level masters (the
least active processors) onto a single processor.

(3) Masters can assign successor’s successors to slaves. This
is equivalent to increasing the common depth in the naive
method. The results are that the processors have less idle
time, and less search overhead, at the cost of increased

communication.

A problem inherent in the tree-splitting algorithm arises
as a result of the restriction that the processor tree be
shallower than the game-tree. In chess, for example, adding 1
ply to the game-tree increasas it’'s size by a factor of 6
(approximately). However, several layers of, say, a binary
processor tree would be needed to allow a 6-fold speedup. In
other words, the processor tree will quickly catch up in depth
with the game-tree as more processors are available. One way
around the problem is to increase the branching factor of the
processor tree. This is not entirely satisfactory, as

efficiency 1s reduced due to increased search overhead.

4.5 Enhancements and Hybrid Systems

Some unexplored possibilities of potential use in the
parallel search of game trees will be considered now. These
include variations on the already presented methods, a minimax
algorithm which does not use alpha-beta, and other téchniques
not directly related to the particular searching strategy

chosen.

13

4.5.1 Transposition Table The use of a transposition table to

aid tree search has been successfully demonstrated [Green67],
and in improved forms is now used by all except the small-
computer chess programs. A transposition table is basically a
large hash table containing positions and their values.
whenever a position is generated during a search, a check is
made to see if it appears in the table and has already been
fully evaluated. 1f a useable valu2 exists, it is taken and the
search is cut off. Otherwise the position is scored in the
normal way, and the value is entered into the table. Thus
identical positions in different parts of the tree need not be

searched twice,

The advantages of a transposition table in a
multiprocessor chess-playing program are twofold: (1) 1t
provides the search reduction available to a sequential
program, and (2) it can be handled independently and
concurrently. The potential problem involved with a
transposition table is that it will become the object of
contention between processors. There are various ways to reduce
the contention. The table can be divided into N sections,
reducing the table queue length by a factor of M. Also,
processors cain be assigned as table controllers. The processors
carrying out a search can send their requests to the
appropriate controller, and continue their «nparch. The

controller can interrupt the search if a useful value is found.

4.5.2 lterative Deepening Another technique employed with

great success in current chess programs is iterative deepening,
which uses a search to depth N-1 or N-2 to obtain improved
move-ordering for a depth N search. Iterative deepening is
particularly effective when used in conjunction with a
transposition table, and can be expected to provide an

equivalent speedup in either sequential or parallel programs.

4.5.3 Hybrid Systems Since the parallel aspiration search
provides a greater than k-fold speedup for k processors, whera
k is small (2 or 3) [Baud78], it seems logical to combine this
technique with tree decomposition methods. Tha tree-splitting
algorithm is particularly suited for the amalgamation, since it
suffers from the restriction that the processor tree must be
shallower than the game-tree. Therefore, Baudet’s method
provides a limited alternative to increasing the branching

factor of the tree of processors when a large number of

processors are available.

A parallel aspiration search is of somewhat less use than
might be expected in the search of chess game-trees. This is
because a fairly narrow window is usually available at the
start of the search with a good probability of being correct.
The method of choosing a window varies, but if it is correct
sufficiently often, parallel aspiration searches can be
somewhat wasteful. It is reasonable, however, to have a
'backup’ search being conducted in parallel with the regular
search, in case the estimated window was incorrect. The backup
search would use a (-infinity,+infinity) window to ensure

success.

4.5.4 SSS* : S$S5S* is a minimax algorithm which is more

efficient than alpha-beta in terms of number of terminal nodes
explored [Stock79]. The algorithm seems applicable to parallel
search, since it maintains alternate search paths
simultaneously throughout the tree. However to do this requires
the maintenance of a large data structure (of order

(b ** (d/2)), where d=depth, b=branching factor). In a paralial
system, the synchronization overheads involved with such a
shared data structure can eliminate the gains made duz to
concurrency. We are working on ways to combine S$S5S* with alpha-
beta, in order to reduce this problem.

4.5.5 Parallel Evaluation Since most current chess-playing

programs spend roughly half their time evailuating terminal

nodes, paralielism could be usefully introduced by employing a

number of processors to evaluate concurrently different terms

In the scoring function. This technique has numerous

advantages:

(1) evaluation time would be reduced;

(2) small, cheap processors could be used to evaluate single
positional features;

(3) there is no obvious 1imit to the concurrency possible
[Scher80];

(4) the scoring function can become more sophisticated without
slowing the program. It has been noted that more complex
evaluation functions can simulate the effect of deeper
searches [Slate77], and this is also the basic premise of
the knowledge based, selective search, programs with their

complex capture analyzers [Mars74].

5. HARDWARE CHOICES: ZILOG Z8000 AND THE MOTOROLA MC88000

In order to bring out the desirable properties of the
hardware necessary for this application, the general
architectural features of two 16-bit microprocessors will be
summarized. Emphasis will be placed on features directly

relevant to multiprocessing and chess game-playing.

The Z8000 and MC68000 are both high-throughput systems
designed to solve a wide range of applicatjons. Both have
abundant resources which include numerous registers, support
for many data element types, a large instruction set and a
large address space. A common characteristic of the 28000 and
the MC68000 is regularity in the design of the instructions,
address ing modes and data types. This greatly simplifies the
work of the programmer and significantly reduces the program

length.

The designers of both systems have tailored their machines
to support compiler and operating system code efficiently by
providing several mechanisms for handling interrupts and traps.
Multi-processing is also supported by both designs. The
architectural features of the two systems, to be presented, are

summarized in Tables {1 and 2.

5.1 CPU Resources

The Z8000 has sixteen 16-bit general-purpose registers
which can be used as index registers and as accumulators. These
registers may also be reconfigured as 8-bit (byte) registers,

as 32-bit registers and even as 64-bit registers. The Z8000

17
supports seven main data types: bits, BCD digits, bytes, words
(16-bit), long words (32-bit), byte strings and word strings.
Additionally, memory addresses, [/0 addresses. segment table

entries and program status words are also provided.

There are five main addressing modes: Register, Indirect
Register, Direct Address, Indexed and Immediate. For certain
instructions, there are other addressing modes: Base Address,
Base Indexed, Relative Address., Autoincrement and
Autodecrement. With very few exceptions, almost all of the 110

instructions can work on byte, word and long-word quantities.

In addition to the 32-bit program counter and 16-bit
status registers, the MC68000 has seventeen 32-bit registers.
Half of which (the first eight registers DO-D7) can be used as
8-bit, 16-bit and 32-bit data registers. The other half
(registers AO-A6) and the dual system stack pointer (user and
supervisor) can be used as software stack pointers and base
address registers. All of the seventeen registers may be used
as index registers. The MC68000 supports bits, BCD digits,
bytes (8-bits), 16-bit words and 32-bit long words. In addition

it can work with memory addresses and status word data.

There are six basic addressing types: Register, Indirect
Register, Absolute, Immediate, Program Counter Relative and
Implied. Together with the register indirec: addressing modes
is the capability to do postincrementing and predecrementing,
offsetting and indexing. With very few exceptions, each of the
fifty-six different instruction types can work with all six

basic addressing types.

5.2 Address Space and Memory Management

Both the Z8000 and the MC68000 have large address spaces
compared to 8-bit microprocessors and even to minicomputers
currently in use. For example, the Z8000 has six separate data
spaces: code, data and stack for both the system mode and
normal (user) mode. Each of these can have up to 8 megabytes of
storage. For small applications which do not reqguire the full
use of the address space, a short offset form is available
wherein the high order B8 bits are set to zero, and so point to
the first segment. With a separate memory management unit,
relocation and segment protection can be provided. The
segmented addressing feature alleviates the need for tong
instruction formats and the demand for register pairs. On the
segmented version of the Z8000, the user can designate up to
128 segments that reference areas of memory varying in size
from 256 bytes (minimum) to 64 kilobytes (maximum) in 256-byte
increments. The Memory Management Unit of the Z8000 comes in a

separate LSI package.

The MC68000 on the other hand, has a 24-pit address bus
which provides an address range of more than sixteen megabytes.
With the use of the numerous addressing modes and a flexible
instruction set, the large address space is easily accessed and
managed. Basic memory protection is provided by instructions
which allow checking of address values against preset bounds.
The memory management operations are transparent to the
programmer when he is in the user mode, and can only be changed

or updated when the processor is in supervisor mode.

5.3 Code Density and Speed

The speed of a processor is dependent upon the number of
instruction words executed. The number of words needed to
axecute the most freqguent instructions has been minimized in
poth the Z8000 and the MC68000. The short offset mechanism of
the 28000 allows the address to be reduced to a single word.
The increased regularity and consistency of the two machines

contribute greatly to this end.

Of greatest importance in this aspect are the instructions
which are most frequently used in programs. For example, only
one word is used on the Z8000 to implement the commands JUMP
RELATIVE and CALL RELATIVE. Similarly the TRAP, move multiple
registers (MOVEM), 1ink stack (LINK), unlink stack (UNLK) and
check 1imit instructions on the MC68000 significantly raduce
the code requirements for subroutines, operating system calls
and stack operations. In both machines arithmetic and data

manipulation instructions have been implemented efficiently.

The MC68000 has the advantage of speed over the Z8000. The
reasons stem from the use of a faster clock (8MHz versus 4MHz
on the 2Z8000), the use of a more uniform instruction set, the
separation of address and data lines, and larger internal

registers (32-bit versus 16-bit for the Z8000).

20

5.4 Operating System and Multiprocessing Support

Numerous interrupts and task-switching features (traps)
are present in both machines, including non-maskable and
vectored interrupts. On the Z8000, vectored interrupts cause a
i6-bit value to be read from the data bus. This ’‘vector’ value
is used to select a particular interrupt procedure located in
the Program Status Area in a reserved area of memory. Similarly
there are 255 vector locations available on the MC&68000 fcr
interrupts, hardware traps and software traps. On both
machines, instructions are available to load groups of
registers and to examine and set Status Registers on both
machines. Also TEST-and-SET instructions provide a mechanism

for the synchronization of cooperating processes.

In addition to the large address space, these two machines
provide unique built-in features which simplify their use in
multi-processing applications. The Z8000 CPU can exclude all
other asynchronous CPU’s from any critical shared resource by
using Micro-In input and Micro-Out output, in conjunction with
the REQUEST, RELEASE, TEST ul, SET uO, and RESET u0
instructions. The MC68000, on the other hand, contains bus
arbitration logic for a shared bus and shared memory
environment (shared with other MC68000 CPU’s, DMA devices,
etc.), which is the counterpart of the special multiprocessor

instructions found on the Z8000.

Table 1. General Features

28000 MC68000
Manufacturer Zilog Motorola
Clock Frequency 4 MHz 8 MHz
Bus Cycle Time 750 nsec 500 nsec (read)

Vectored Priority Interrupt

Virtual Memory and Memory
Protection

Maximum Address Space per
Process

Maximum Amount of Physical
Memory

Interlock Instructions for
Multiprocessor Operations

vectored interrupt-
no on-chip priority
arbitration

yes - with separate
28010 memory management
unit(s)

with memory management
128*64 kilobyte code,
128*64 kilobyte data, and
128*64 kilobyte stack
without memory management
8 megabyte code,

8 megabyte data,

8 megabyte stack

with memory management
16 megabyte per Z8010

yes

750 nsec (write)
yes - 7 levels

yes - with separate
memory management unit

with memory management
unknown

without memory management
16 megabyte code,
16 megabyte data

with memory management unit
unknown

yes

Table 2. High-level

language support

Z8000

MC68000

Data Types

Registers

Address Modes

Procedure Call Support

Other Stack (besides
procedure call stack)

bits

2-digit BCD numbers

8- and 16-bit logicals
8-, 16-, and 32-bit
signed integers

32-bit addresses (23 bits
used)

byte strings

word strings

15 general-purpose

1 procedure-call stack
pointer

1 status

immediate

reg direct

reg indirect

reg indirect indexed
reg indirect with offset
reg indirect with post-
in/decrement

absolute

absolute indexed
relative

procedure call stack;
save/restore registers,
call, return, and load

effective address operations

push and pop operations

yes - 7 register pairs can be

used as stack pointers

bits

2-digit BCD numbers

8-, 16- and 32-bit logicals
8-, 16- and 32-bit
signed/unsigned integers
2-bit addresses (24 bits
used)

data (32-bits)
address (32-bits)
procedure-call stack
status

immaediate

reg direct

reg indirect

reg indirect indexed

reg indirect with offset

reg indirect indexed with offset
reg indirect with pre-decrement
reg indirect with post-increment
absolute

procedure call stack;
save/restore registers
1ink/unlink stack

call, return, load effective
address and push effective
address operations;

move instructions in combination
with auto-increment/decrement
instructions

yes - any of the 7 address
registers can be used as
stack pointers

23

8. ARCHITECTURAL CHOICES FOR MULTIPRICESSING

Architectures which can be used in a multiprocessing
environment have their advantages and disadvantages depending
upon the application, the characteristics of the processor
used, the peripheral devices attached to the system and the
software installed on the system (the operating system and the

‘user’ programs).

Since the emphasis of the proje=t is to use 16-bit
microprocessors to explore the computer-chess problem, only
implementations which can be applied to microprocessors and
existing memory capabilities will be discussed in detail. Our
presentation in this section owes much to the recent book by
Weitzman [Weitz80)], which is also the principal source of our
diagrams. Only passing mention will be made of architectures
designed for large general-purpose computers. The basis for
comparison will be the speed with which small amounts of
information, such as alpha-beta windows and trarisposition table

values, can be shared between the processors.

6.1 Shared Memory Schemes

One primary means of interaction between processors can be
provided by common memory. In this case the manne. in which
memory is shared must be clear. In the pas* multiprocessor
systems, like the Univac 1110 and the IBM 370/168 MP, had tight
coupling, 1.e. memory and 1/0 peripherals were shared through a
common operating system. In more recent systems, processors
have their own private memory and executive software. Shared

memory is used mainly for passing data to be processed and to

24
inform other processes of the status of program execution (not
for the program to be executed itself). This type of
configuration would be most suitable for dedicated
applications. Some ways in which memory can be accessed easily
by all processors in the system include: shared bus, matrix

switch, virtual memory and mailbox schemes.

Common memory is a simple, inexpensive and flexible means of
interconnecting several processors. Serious problems with this
scheme include contention of the different processors for the
main bus and the inherent limitation imposed by the bandwidth
of the bus on the overall speed of the system. Bus arbitration
logic is a way of streamlining the data traffic. The amount of
data being transferred can also be reduced by propiding each
process with a small private memory for local intermediate
results. Figure 5 illustrates a basic shared memory

configuration.

Memory Memory Memory
unit unit unit

<

Memory
Processor Processor bus
unit unit

Figure 5: Basic shared memory configuration

25
In cases where processors need to share not only each

other’'s memory but also all available i/0 units, provision of
Separate buses and control logic to interconnect the devices
constitutes a matrix switch configuration, Figure 6. While this
scheme can support a large volume of simultaneous data
transfers, it is quite costly to implement and the number of
buses grows exponentially with the number of devices connected.
This might be suitable for a system with ten devices
(processors and peripherals) or less, if the volume of shared

data warrants its use. An example of this would be C.mmp

[Weitz80].
L]
M1 M2 M3
P1
1/01
P2
1/02
P3
1 1/03
P = Processor element
M = Memory element
1/0 = Input/output controller

Figure 6: Matrix switch configuration

26

Similar to the matrix switch, the multiport memory

arrangement places arbitration logic in the individual devices
themselves. This configuration shares the high volume (of data
transfer) Capacity with the matrix switch, but suffers from
inflexibility. Additional processors would entail more ports in

the memory .

Processors in a system can share memory by allowing their

virtual addresses to map into the same location in physica?l

memory. This gives the advantage of protection provided by the
address translation mechanism. As typified by Cm*, a special
(Kmap) microprogrammed processor performs the memory allocation
and handles all communication between different modules

[Swan77].

In order to reduce contention problems, use of common
memory may be restricted to the exchange of messages. Virtual
address translation is no longer needed because each processor
would be assigned a segment in memory to be used as its

mailbox. Control of shared memory and the frequency with which

it can be shared are paramount considerations in this scheme.
Controlled access can be accomplished through the use of locks,
priority levels and interrupts. Synchronization software can be
implemented with the use of TEST-and-SET instructions, and
interlocks can be ensured if the memory is capable of read-

modify-write cycles before permitting further accesses.

The most promising choices from this group seem to be the
common memory, the virtual memory and the mailbox memory
schemes. Both microprocessors can accommodate any of them,

since the instruction sets and the peripheral devices can

27

handle the requirements of these ccnfigurations.

P P2 P3

1/0 1

1/0 2

M1 M2 M3

P - Processor M - Memory 1/0 - Input/Output Device

Figure 7: Time-shared common bus system

6.2 Shared Bus

This technique employs a common 1/0 channel to connect
each processor. Control of the bus may be centralized into one
global switch which can poll the requests and allocate the use
of the bus in a predetermined allocation strategy. Already
there are some logic devices available which can nerform bus
arbitration for a muitiprocessing environment using 16-bit
microprocessors. Contro] can be decentralized by assigning
finite time periods or ‘slots’, during which different
processors can control the access of the bus, Figure 7. In
other cases, a multiple access bus may be shared using

collision control software algorithms. The bus can be of the

28
polled, interrupt-driven, time-multiplexed or multiple-access

type.

Computer Line Computer
Printer
> 1 > I > I
I < 1 < 1 <
File Computer Computer
System

I - Ring Interface

Figure 8: Loop-organized system

6.3 Broadcast Architecture

A1 though conceptually very similar to the shared bus
scheme, a loop muiticomputer system, Figure 8, typically
consists of a high-speed uni-directional digital communication
channel which is arranged as a closed loop. Nodes such as
micro- or mini-computers can be attached through the use of a
loop interface. A message between nodes is placed on the loop
and is transferred from node to node until it reaches its
destination. Either the sender or the receiver may be the one

responsible for removing the message from the loop. The main

29
advantages of this technique are: +. 2limination of message
routing problems; the simplificatinn of the interconnect
Structure; and the usz of a passive kroadcast medium for
reliability. However, the cost of creating a loop interface for
each processor may be quite high. Additional software is needed
to drive these interfaces. Furthermore, this organization is

characterized by long access times, making it more sutable for

long message transfers.

6.4 Star Architecture

In this type of interconnection, a central processor acts
as a communication device between al] the other processors in
the system. These processors either ask to send messages or
acknowledge their receipt. The centralized switch, with queuing
of communication requests, gives this system better response-
time characteristics than the more general loop systems.
However, no partia) operation is possible since 100%

reliability of the central switch is needed.

6.5 Tree Architecture

Similar to other hierarchical structures, well-defined
specialized tasks are performed at the bas:, wher ras the top of
the organization has a more general-purpose capability. The
processors at the base have faw peripherals and may perform
repetitive and tedious functions of the algorithm. 1/0
processing, program execution control and report generation are
performed at the top. Typically, shared data bases are also

stored at the top, rather than being distributed throughout the

30
system. The main advantage of this scheme lies in its
applicability to problems using trees as data structures and

the orderly control within the system.

For example, two-man game-playing applications employ
trees to represent all the possible moves that each side can
make. These trees can be searched Systematically in parailel by
assigning the search of different branches to distinct
processors and then having the results of all the searches
collated by a single ’‘master’ processor which occupies the top
of the hierarchical structure. See for example the three-level

structure shown in Figure 9.

This section has dealt with interconnect structures
suitable for multi-microprocessor systems. The final system
configuration for this project may be a combination of some of
the schemes which were discussed, rather than any specific

organization.

7. MULTIPROCESSOR COMMUNICATION SOFTWARE

A multiprocessor system must provide not only all the
services needed by a uniprocessor, but also a level of control
beyond the management of local resources. The extent of this
control depends upon the system architecture. In a centrally-
controlled system, using bus, star or hierarchical structures,
the processors are usually organized in a master-slave
configuration. Control flows from upper levels of the structure
down to the subordinate levels. On the other hand, broadcast

and point-to-point configurations create a master-to-master

LEVEL 1

LEVEL 2

LEVEL O

LEVEL O

LEVEL 1

LEVEL O

LEVEL ©O

FIGURE 8: THREE-LEVEL HIERARCHICAL SYSTEM

31

relationship among the processors within the system.

In any of the above cases, the control of processors and
resources must always ensure that there will be an efficient
and consistent allocation method, and that race and deadlock
conditions are eliminated. To be more specific, the control
function must answer the questions of task handling and
partitioning, diagnostics and failure recovery procedures, and
provision of coherent communication between system components.
On top of these would be a capability for down-line loading of
programs, progran development support, and overall system

security.

However, as with the case of microcomputer applications
used for dedicated tasks, one need not bother to have all the
features necessary for robust operation. Game-playing
applications perform a limited variety of éasks and so the
support software can be simpler. In any case, with the use of
numerous processors and specialized logic modules, the
implementation of a general-purpose operating system may not be

practical at ail.

Fundamental to multi-micrccomputer applications is the
need for interprocessor communication. Two basic schemes are
possible: either use shared memory or employ a message-passing

protocol.

32

7.1 Shared Memory

This scheme makes controlled use of a common memory. All
the processors which require sharing of data, communicate by
accessing the same memory region. Usually no acknowledgement is
necessary, since techniques such as semaphores and monitors
(with and without mutual exclusion) may be used to ensure the
integrity of the data in memory. No acknowledgement of the
receipt of a message is necessary and since only write accesses
need be monitored, this method may be quite practical for a
system with modest message-passing requirements. To achieve
speed and accuracy, the processors should be within close
proximity of one another, as would be the case in the computer

chess application.

7.2 Message passing protocols

The use of message-passing protocols is more common in
distributed systems. This'scheme will work well for systems
ranging in size from large network-type architectures to small
twin-processor micros communicating through a high-bandwidth
pbus 1ink. Normally such protocols are arranged hierarchically.
Communications are normally carried out between adjacent layers
only. Above the physical layer, there are still three possible
protocol levels: the communications 1ink (logical connection),
the network control (interprocess communication), and the user-

layer [Zimm80O].

The communications 1ink protocol layer contains rules by
which data can be reliably transferred from one system

component to another. Its main functions include: data transfer

33 34

control: error checking and recovery; information coding and In addition to the hardware, the software must also be present
transparency; optimization of line utilization:; maintenance of to recognize and interpret the signals that the hardware has
line synchronization; communications facility transparency; and peen designed to pass around. The software must also be able to
bootstrapping. Information transparency in this case means recognize the commands that a programmer running code in the
being able to correctly interpret incoming signals as data or system issues.

as code for the protocol program. Communications facility

A system with several independent processors will require
transparency means being able to make use of different types of

the physical interconnection between all of them. Software in
communication paths without having to change the protocol

this system must handle 'packaging’, routing and recognition of
format or procedure.

messages within the system. Lastly, these functions must be

Interprocess-communication layer protocols are concerned performed efficiently and without the risk of deadlock. For our
with the bookkeeping required to allow several processors, each application the packaging and routing problems are minimal, and
with a valid logical end-to-end conncection, to share a single each processor is responsible for accepting and updating
physical 1ink. This may very well be called the logical information provided by the others.

communications 1ink control layer. A major component of this

layer would include message-routing procedures, and flow

control. 8. DESCRIPTION OF POSSIBLE SYSTEM

User-layer protocols are actually high-ievel functions In order to implement a paraliel alpha-beta search for a
which are packaged together to perform tasks specifically game-playing program, certain goals must be kept in mind in the
requested by the user. A particular example would be protocols system design.
which allow movement and alteration of files residing within (1) The system should be small enough to build easily. yet
the different parts of the system. This involves exchange of provide a reasonabie improvement in performance over a
information: particularly commands, data and even state uniprocessor.
variables needed for synchronizing the system. User-layer (2) The system should be extendable, in that additional
protocols are usually built on top of interprocess processors can be added to it in a regular manner without
communication protocols. the introduction of excessive search overhead.

(3) The system should employ a transposition table because of
For a specific application, all of these layers must be
its known benefits and to obtain empirical data on the
provided by the user. The hardware linking all the processors
effectiveness of this technique in a chess/multiprocessor
and their associated memory must be provided by the designer.

environment.

(4) For the sake of both cost and convenience, the system
should employ 16-bit microprocessors for tree searching,
move generation and transposition table operations, but
could use groups of very cheap processors to compute the

evaluation function in parallel.

8.1 Choice of Search Algorithm

Of the different parallel search algorithms discussed, it
appears that the tree-splitting algorithm of Fishburn and
Finkel is most useful for our application. Baudet’s method is
not particularly effective for chess program#. pecause a small
window can be estimated rather easily before the search takes
place. The tree-splitting algorithm searches in a very regular
and consistent manner, making implementation easier than, say,
Akl’s method. The problems of the naive method are also
circumvented to a large extent: search overhead is small when
the processor tree has fanout of 2 and uses dynamic updating of

alpha-beta windows.

The searching algorithm will be augmented by a
transposition table, known to be useful in sequential chess
programs. The effectiveness of this enhancement in a parallel
system will have to be studied, but should be efficient since

it is easily partitioned .into an autonomous parallel function.

36

8.2 System Organization

The system described here will be a simple one. A
functiona)l description will be given as well as the proposed
hardware implementation. A schematic of a triple processor
prototype is given in Figure 10. One processon is designated
the master, and the others are its slaves. The master provides
the user interface, assigns subtree searches to it’s slaves,
and controls access to the transposition table. The slaves
search their assigned subtrees, accessing the transposition

table indirectly through the master.

Certain information must be passed between the master and
it’s slaves. Initially the master sends a position and an
associated alpha-beta window to the slave. Subsequently updates
of the alpha-beta window, and data obtained from the
transposition table are sent. The slaves must return the score
of a position that has been searched. The slaves must also send
the master their requests for access to the transposition
table, either for score information or to update the table when

a position is scored.

Basically the master assigns subtree searches to the
slaves. The slaves, while carrying out their search, send
requests for transposition table lookups, but proceed
concurrently with their search. Only if the master finds
something useful in the table will it interrupt the slave with
the new information to terminate the search. The dynamic update
of the alpha-beta window is also handled via interrupts.
Updates of the transposition table are simpler, reguiring no

communication back to the slave.

TRANSPOSITION TABLE

USER MASTER

5 3 5, 5 | MEMORY
D { m m | D

— _0 nU— —

SLAVES

FIGURE 103 SYSTEHM ORGANIZARTION

37

8.3 Hardware Package

Inasmuch as the transposition table needed by the chess
program can be accommodated by any of the two machines under
consideration, the hardware package design depends mainly on
the availability of appropriate instructions suited to the
chess problem, and the speed at which the most common

instructions are executed.

As noted in Section 5, the MC&8000 has a distinct
advantage in terms of speed of execution of instructions needed
to implement subroutine calls. The MC68000 aiso has the
advantage when it comes to jogical operations and manipulation
of data in registers and in memory. Hence the MC68000 seems to
be the logical choice at the moment to perform the function of
the master and the slave. It can handle the communication

problem through the use of shared memory.

In future expansions, if the system demand exceeds the 16M
address space of the MC68000, the ZB0O0Q can be used. This may
be in the form of a (transposition) table-master. The 28000
along with some memory management chips can handle the address

mapping and allocation of a larger memory.

1t should be noted that the software vor the system is
being written in the C-language [Kern78] and is being compiled
with the use of software support we have developed for a UNIX
system [Bel1178]. At the moment, the C-compiler for the MC68000
produces more 'efficient’ code than that for the 28000. This
may be attributed to the fact that a code optimizer has not

been installed in the Z8000 compiler, and that the architecture

38
of the MC68000 has a greater similarity to the POP 11’s (for
which the portable C-compiler was designed), than does the

28000.

8.4 Communication Scheme

The communication requirements of the proposed system can
be conveniently handled through the use of common memory. Slave
processors will share at least 4 Kilobytes of memory, with the
balance available for storing intermediate calculations. The
master will allocate its memory to system code (command
handlers, interrupt handlers, slave-schedulers, memory

management) and for the transposition table itself.

This scheme éan be implemented by reserving areas of
slave-processor memory for communication. The master processor
can send interrupts to the siaves and must be able to lock the
memory for writing. The same locking capability 1is available to
the slave processors. All 1/0 interfacing will be done with the
master processor. Slave processors will not be accessible from

the user end.

8.5 System Extensibility

The use of the tree-splitting algorithm [Fish80] allows
the tree of processors to be extended in depth arbitrarily, as
long as it remains shallower than the game tree to be searched.
Also there is the possibility of increasing the branching
factor of the processor tree, although this technique has
limited effectiveness. In both cases however, a problem arises

in the use of the transposition table. With increasing numbers

39
of processors searching concurrently, the contention for this
table becomes very high. Even with a processor controlling the
table, and queueing requests and updates, the system will reach
a point where information cannot be accessed fast enough to be

useful .

There are various solutfons to this problem. Table hash
indices can be calculated by the slave processors. This reduces
the amount of information to be transferred, and lessens the
work necessary for the table controller, thereby shortening the
queue. Furthermore, it is quite 1ikely that the slave will be
able to use the calculated hash index in a variety of ways.
Also, the table can be split into sections with a controller
for each section. Unfortunately this implies that all slaves
must be able to communicate with all controllers. It is
possible to have, say, a master controller through which
requests are routed. This reduces the processor interconnection
requirements considerably. 1f the master controller’s task is

made simple enough, it need not bacome a bottleneck.

9. SUMMARY

In this paper we have presented various alternatives for
the design of a multi-microprocessor chess playing system. The
choices made for each system component can be summar ized as

follows:

Processor: Given constraints previously discussed, the
78000 and M68000 were the alternative processors possible. The

M68000 was chosen on the basis of its greater speed and more

40
flexible instruction set, with its somewhat smaller address

space not a serious factor.

Communications: Though not entirely independent of the

searching algorithm (different search methods have different
interprocessor communication requirements), our system is based
on the use of shared memory. It’s advantages include its speed,

and the suitability of the M&68000 processor for such a scheme.

Searching Algorithm: From the four pasic searching methods

previously presented, the two most useful for our purposes were
[Ak180] and [Fish80]. The naive method’s disadvantages have
already been discussed, and a parallel aspiration search
[Baud78] is not particularly advantageous in a chess
environment, nor extensible enough when more processors are
added to the system. The tree-splitting algorithm of Fishburn
and Finkel was the choice finally made, pased on a simpler and
more uniform control structure than that of Akl’s. This desire
for simplicity overshadowed the greater extensibility, and

possibly greater searching efficiency of the latter method.

The reasons for the addition of a transposition table to
the system include the excellent results in sequential chess
programs, a desire to increase the amount of interprocessor
communication to reduce search overhead, and the fact that it

can be naturally partitioned into an asynchronous function.

a1

REFERENCES

[Ak180]
S. Akl, D. Barnard, and R. Doran, "Design, Analysis, and
Implementation of a Parallel Alpha-Beta Algorithm",
Technical Report No. 80-98, Department of Computing and
Information Science, Queen’s University, Canada (13880)

[Baud78]
G. Baudet, "The Design and Analysis of Algorithms for
Asynchronous Multiprocessors", Ph.D. thesis, Department of
Computer Science, Carnegie-Mellon University (1978)

[Be1178]
The Bell System Technical Journal, July-August 1978, Vol.
57, No. 6, PART 2

[Fish80] ’

J. Fishburn, and R. Finkel, "Parallel Alpha-Beta Search on
Arachne", Technical Report No. 394, Computer Sciences
Department, University of Wisconsin-Madison (1980)

[GiT172]
J. Gillogly, "The Technology Chess Program", Artificial
Intelligence 3, pp. 145-163 (1872)

[Green67]
R.D. Greenblatt, D.E. Eastlake and S.D. Crocker, "The
Greenblatt Chess Program", Fall Joint C. C. 1967, Vol 31,
pp. 801-810

[Heerso]
J. Heering, "The Intel 8086, the Zilog Z8000, and the
Motorola MC68000 Microprocessors", Euromicro Journal, No.
6, pp. 135-143 (1980)

[Hoj79]
K. Soe Hojberg, "Queue Handling Arbiter Solves Shared
Resource Conflicts", Computer Design. pp. 129-131
(November 19789)

[Jones78]
M. Jones, "Parallel Search of Chess Game Trees", M.Sc.
thesis, School of Computer Science, McGill University
(1978)

[Kern78]

B. Kernighan and D. Ritchie, "The C Programming Language",
Prentice-Hall (1978)

[Knuth75]
D. Knuth and R. Moore, "An Analysis of Alpha-Beta
Pruning", Artificial Intelligence 6, pp. 293-326 (1975)

42

[Mars74]
T.A. Marsland, "A users guide to WITA, a chess program",
TR74-2, Computing Science Dept., Univ. of Alberta,
Edmonton (1974)

[Motorso]
MC68000 16-bit Microprocessor User’s Manual - Second
Edition, Motorola Semiconductor Products (1980)

[Nadir80]
J. Nadir, and B. McCormick, "Bus Arbiter Streamlines
Multiprocessor Design", Computer Design, pp. 103-109 (June
1980)

[Scher80]
T. Scherzer, Private conversations about the BEBE chess
program, (Sept/Oct 12980)

[S1ate77]
D. Slate, and L. Atkin, "Chess 4.5 - The Northwestern
University chess program", Chess Skill in Man and Machine,
pp. 82-118, Springer-Verlag (1977)

[Stev79]
D. Stevenson, "An Introduction to the Z8010 MMU Memory
Management Unit:Tutorial Information”, Zilog Corporation,
(August 1979)

[Stock75]
G. Stockman, "A Minimax Algorithm Better than Alpha-
Beta?". Artificial Intelligence 12, pp. 179-196 (1879)

[swan77]
R. Swan, "Cm* - A modular, multi-microprocessor"”, Proc.
AFIPS, pp. 637-644 (1977)

[Weitz80]
C. Weitzman, "Distributed Micro-Minicomputer Systems",
Prentice-Hall (1980)

[Zilog78]
AMZ8000 Advanced Specifications Manual, Zilog Corporation
(1978)

[Zimm80]
H. Zimmermann, "0SI Reference Model - The ISO Model of
Architecture for open systems intercommunication", IEEE
Transactions on Communications, Vol. COM-28, #4, pp. 425-
432 (1980)

