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Abstract

Depth-first iterative-deepening mimics a breadth-first search with a series of depth-

first searches that operate with successively extended search horizons. It has been

proposed as a simple way to reduce the space complexity of best-first searches like

A*, thereby making the space complexity linear instead of exponential.

But there is more to iterative-deepening than just a reduction of storage space.

As we show, the search overhead can be greatly reduced by exploiting node in-

formation gained in previous iterations. The information management techniques

considered here owe much to their counterparts from the domain of two-player

games.

1 Introduction

Of the brute-force searches, depth-first iterative-deepening (DFID) is the most

practical, because it combines breadth-first optimality with the low space com-

plexity of depth-first search. Its basic idea is as simple as conducting a series of

independent depth-first searches, each with the look-ahead horizon extended by

an additional tree level. With the iterative approach, DFID is guaranteed to find

the shortest solution path, just as a breadth-first search would. But in contrast to

the latter, DFID needs negligible memory space. Its space complexity grows only

linearly with the search depth.

The origins of iterative-deepening search trace back to the late 1960s

[Scott 1969], when chess programmers sought for a reliable mechanism to con-

trol the time consumption of the newly emerging tournament chess programs.

Rather than blindly committing to one direct depth-d search of unpredictable du-

ration, the total search task was subdivided into separate depth-first searches with

successively deepened search horizons 1, 2, . . . , n. This allowed the search process

to halt with a best available answer as soon as the time limit is exceeded.

Even more important are the various memory functions that also build upon

the iterative-deepening approach. They use node information from previous it-

erations to increase the cutoffs in the current iteration. Among the data that

can be reused, move ordering and node scoring information is of special impor-

tance. Various memory functions have been invented to store this and other

information: refutation or killer tables [Akl & Newborn 1977], transposition ta-

bles [Zobrist 1970, Slate & Atkin 1977] and history tables [Schaeffer 1989]. Taken

together, the memory functions not only pay for themselves by yielding better

frontier node evaluations, but also produce searches that are faster than a direct
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depth-d search [Marsland 1987].

In the mid 1980s, iterative-deepening was rediscovered for heuristic single-

agent searches like A* and AO*. Here, the successive iterations do not correspond

to increased search depth, but to increased cost bounds of the currently investi-

gated path. But again, iterative-deepening reduces the space complexity to linear

while preserving optimality. As a consequence, Korf’s Iterative-Deepening A*

(IDA*) [Korf 1985] can be applied in all domains where excessive space require-

ments cause A* to fail. One such application domain is the 15-puzzle.

The space efficiency is paid for by an increased search overhead. Because IDA*

does not retain path information, the shallow parts of the tree are re-examined

several times. Following the same lines as above, IDA* (like any iterative search)

should be improved by using node information of previous iterations.

In this paper, we show how to adapt the most commonly used mem-

ory functions from the domain of two-player games to single-agent heuristic

search. The techniques include node pre-sorting, the use of principal varia-

tions, transposition and refutation tables and the history heuristic [Marsland 1987,

Reinefeld et al. 1985a]. With the best combination of these techniques optimal so-

lution paths for the 15-puzzle can be found, while visiting less than half the nodes

seen by pure IDA*. This is better than can be achieved with a perfectly informed

(and hence non-deterministic) IDA* algorithm, one that finds the solution node

at the start of the last iteration.

In practice, speed of computation is more important than the number of node

expansions. Since memory tables are accessed in unit time, the running time

of the proposed algorithms is almost proportional to the node count. Maximal

speedups are achieved in applications with time-consuming heuristic estimation

functions. One such example is the traveling salesman problem. Here a node

count reduction of 73% (as compared to IDA*) speeds up the total runtime by

72%, giving an almost linear improvement. This is a remarkable result, considering

that unsuccessful table accesses must be compensated by even greater savings.

2 Applications

Heuristic single-agent search techniques can be found in applications where a deci-

sion tree/graph is built to determine the best of several alternatives by searching.

Typical applications include perception problems, theorem proving, robot con-

trol, pattern recognition, expert systems and some combinatorial optimization

problems of Operations Research. For our experiments we selected two problem

3



domains that build large search graphs and are easy to implement: the 15-puzzle

and the traveling salesman problem.

2.1 The Fifteen-Puzzle

The 15-puzzle is simple, but has combinatorially large problem space of 16!/2 ≈

1013 states. It consists of fifteen square tiles 1, 2, . . . , 15, located in a square tray

of size 4× 4. One square, the blank square, is kept empty so that an orthogonally

adjacent tile can slide into its position – thus leaving a blank square at its former

origin. The problem is to re-arrange some given initial configuration into a goal

configuration without lifting one tile over another.

Although it would seem easy to find any solution to this problem, it is much

harder to determine a mapping of the given initial configuration to the goal con-

figuration with the fewest moves. Using IDA*, it takes an average of 363 million

node expansions to solve a randomly generated problem instance, even when using

the best-known heuristic estimate function, the Manhattan or city-block distance.

This estimate is a sum of the displacement of each tile from its goal position. As

can be proved by induction, the Manhattan distance is admissible: It never over-

estimates the distance to the goal configuration. This is an important requirement

for any heuristic search algorithm to find an optimal (=shortest) path to a goal

state.

2.2 The Traveling Salesman Problem

The traveling salesman problem (TSP) refers to the task of finding a shortest (or

least cost) tour that returns to the starting point after visiting all cities in the

n-city network only once. The TSP is known to be NP-hard, and exact solutions

can only be obtained for tours involving only a few (some hundreds) cities.

While the well known branch-and-bound algorithm of Little et al.

[Little et al. 1963] would be the preferred solution technique for the TSP in

practice1, we have chosen the method described in Pearl’s book [Pearl 1984,

p. 10ff], because it builds a graph rather than a tree. In our implementation,

we used a complete, symmetric euclidean cost matrix C, that has been computed

by randomly generating x and y coordinates for the cities and storing the distance

in the component cxy.

1As pointed out by Sen and Bagchi [Sen & Bagchi 1989], the depth-first node expansion strat-

egy of Little’s method can be adapted to best-first or depth-first iterative-deepening. But since

the node expansion time is appreciable, there is no point in using IDA* or one of its memory

variants.
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As is customary, we used the cost of the minimum spanning tree covering the

cities not yet visited to estimate the completion cost of the current partial tour.

More precisely, a 1-tree [Held & Karp 1979] is computed, which is connected via

two edges (the first and the last) to the cities of the partial tour. Using Prim’s

algorithm, a 1-tree of n cities is computed in O(n2) operations. Hence, the node

expansion time is substantial, making the TSP an ideal supplement to the 15-

puzzle for a test suite.

3 Iterative-Deepening A*

Iterative-Deepening A*, IDA* for short, performs a series of cost-bounded

depth-first searches with successively increased cost-thresholds. The total cost

f(n) of a node n is made up of the cost already spent in reaching that node g(n),

plus the estimated cost of the path to the goal h(n). At each iteration, IDA* does

the search, cutting off all nodes that exceed a fixed cost bound. At the beginning,

the cost bound is set to the heuristic estimate of the initial state, h(root). Then,

for each iteration, the bound is increased to the minimum path value that exceeded

the previous bound.

Figure 1 gives a sketch of IDA*. The algorithm consists of a main routine

iterative deepening, that sets up the cost bounds for the single iterations, and

a function depth first search, that actually does the search. The maximum

search depth is controlled by the parameter bound. When the estimated solution

cost c(n, n.i) + h(n.i) of a path going from node n via successor n.i to a (yet

unknown) goal node does not exceed the current bound, the search is deepened by

recursively calling depth first search. Otherwise, subtree n.i is cut off and the

node expansion continues with the next successor n.i+ 1.

Of all path values that exceed the current bound, the minimum is taken for

the cost bound for the next iteration. It is computed by recursively backing up

the cost values of all subtrees originating in the current node and storing the

minimum value in the variable new bound. Note, that these backed-up values are

revised cost bounds, which are usually higher – and thus more valuable – than a

direct heuristic estimate. In the simple IDA* algorithm shown in Figure 1, the

revised cost bounds are only used to determine the cost threshold for the next

iteration. In conjunction with a transposition table (see Fig. 5 in the Appendix),

however, they also serve to increase the cut offs.

When a goal node has been found, the global variable solved is set true and

the nodes lying on the optimal solution path are stored in the array path, during
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PROGRAM iterative_deepening;

VAR solved: BOOLEAN, { global termination flag }

path: ARRAY [1..MAX_DEPTH] of NODE; { global solution path }

bound: INTEGER; { local cost bound for single iterations }

BEGIN

solved := FALSE; bound := h (root); { bound is initial estimate }

REPEAT

bound := depth_first_search (root, 1, bound);

UNTIL solved;

OUTPUT "path" as optimal solution path with cost "bound";

END;

FUNCTION depth_first_search (n: NODE; depth, bound: INTEGER): INTEGER;

{ returns cost bound for next iteration }

VAR b, new_bound: INTEGER;

BEGIN

IF h(n) = 0 THEN BEGIN

solved := true; RETURN (0); { return solution cost }

END;

new_bound := INF;

FOR each successor n.i of n DO BEGIN

IF c(n,n.i) + h(n.i) <= bound THEN BEGIN { search deeper }

b := c(n,n.i)

+ depth_first_search (n.i, depth + 1, bound - c(n,n.i));

IF solved THEN BEGIN

path[depth] := n.i; RETURN (b); END;

END ELSE

b := c(n,n.i) + h(n.i); { cutoff }

IF b < new_bound THEN

new_bound := b; { determine bound for next iteration }

END;

RETURN (new_bound); { return next iteration’s bound }

END;

Figure 1: Iterative-Deepening A*

the recursive backing up the final solution cost to the root node.

With an admissible heuristic estimate function (i.e. one that never overesti-

mates), IDA* is guaranteed to find the shortest solution path. Moreover, it has

been proved [Korf 1985], that IDA* obeys the same asymptotic branching factor

as A*, if the number of nodes grows exponentially with the solution depth. IDA*

requires on the average only w
w−1

times as many operations as A* in a tree of width

w [Stickel & Tyson 1985]. The search overhead diminishes with increasing width.

Even so, in practice IDA* wastes an intolerable amount of effort in re-examining

the shallow tree parts (all iterations before the last). Depending on the average
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branching factor of the given application, the overhead may account for as much

as 54% (as in the 15-puzzle) or even 73% (in the TSP).

4 Related Algorithms

Two algorithms have been proposed to fill the gap between the memory-intensive

A* on one hand and the faster, but node-intensive, IDA* on the other.

One scheme, MREC [Sen & Bagchi 1989], is a recursive best-first search algo-

rithm that might best be described as an amalgamation of IDA* and A*. Like

IDA*, MREC examines all nodes by iterative-deepening until a goal is found. Like

A*, MREC grows an explicit search graph, that contains all nodes of the first few

levels, until the available memory is exhausted.

This approach has two disadvantages. First, the construction and mainte-

nance of an explicit search graph takes more CPU time, and its implementation

is more error prone than the simpler memory functions proposed in this paper.

Second – and more important – MREC starts all iterations at the root node,

irrespective of the size of the explicit search graph that has already been built

[Sen & Bagchi 1989, p. 298]. It turns out, that the repeated traversal of the ex-

plicit graph is the price paid for the missing OPEN-list2. As a result, MREC saves

only 1% of the node expansions in the 15-puzzle, even when as many as 600,000

positions are stored in the explicit search graph [Sen & Bagchi 1989, p. 299].

More efficient – at least in terms of node expansions – is a proposal of

Chakrabarti et al., named MA* [Chakrabarti et al. 1989]. In essence, MA* is

an iterative-deepening variant of Ibaraki’s Depth-m Search [Ibaraki 1978]. Similar

to MREC, MA* also grows an explicit search graph until the available memory

space is filled. When the storage space is exhausted, MA* is (unlike MREC) not

confined to a pre-determined node expansion sequence, but it starts a best-first

search on the tip nodes of the explicit graph. The node selection is based on the

backed-up cost values of the pruned nodes. Combined with the cost-revision idea,

the best-first approach saves node expansions, even when only a little memory

space is available. For the 15-puzzle, it is claimed that MA* examines only 57%

of the nodes that are searched by IDA* [Chakrabarti et al. 1989, p. 205].

On the negative side, however, are the increased node selection costs. In

each step, MA* selects a node n in OPEN with the smallest f(n)-value. Since

2The repeated traversal of the explicit graph can be avoided by connecting the frontier nodes

in a linked list, similar to A*’s OPEN-list. But even then the savings would be negligible, because

the list must be sorted before each new iteration. Only the backing up of the revised estimate

values in the shallow part of explicit graph can be saved.
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the OPEN list is usually very long, the node selection time dominates the run-

ning time of the algorithm. From experiments with Stockman’s SSS*-algorithm

[Stockman 1979], it is known that the reduced node count seldomly pays for the

increased memory management costs [Reinefeld et al. 1985b].

In addition, MA* maintains a CLOSED list that holds all expanded nodes

with some other information. When memory is in short supply, the CLOSED

entries are removed after only a couple of new expansions. It follows that MA*

cannot compete with other algorithms on a CPU time basis. (Unfortunately, no

CPU time results are given by Chakrabarti et al. [Chakrabarti et al. 1989].)

Both algorithms operate on the same data structure: an explicit search graph.

Its construction, maintenance and traversal is a time-consuming task. Our hashing

techniques, in contrast, are easier to implement and they operate in unit time while

retaining a similar performance.

5 Improved Information Management

The enhancements that exploit the information acquired in the process of iterative-

deepening follow two different schemes: node ordering and the avoidance of re-

expansions.

5.1 Strategies for Trees: Node Ordering Heuristics

Node ordering refers to the dynamic re-ordering of node successors. It speeds up

the last iteration (where the goal is found) by investigating the most plausible

successors first. No savings are achieved in the shallower iterations.

Sort: The simplest type of node ordering requires neither information from

previous iterations nor extra storage space. It is based on re-arranging the suc-

cessors ni of interior nodes n in increasing order of their heuristic estimates h(ni).

Successors with low estimates are visited first, with the intention of reducing the

distance to the goal. Like the well-known hill climbing technique, Sort adds a

local best-first component to the otherwise random heuristic search. In the 15-

puzzle, Sort works much like a human player, who initially tries to shift tiles as

near as possible to their destination positions.

While this scheme helps humans in their search for non-optimal solutions, the

savings achieved in (optimal) IDA* search rarely compensate for the additional

overhead [Powley et al. 1990, p. 54]. This is because of the limited information

horizon that the successor pre-sorting is based on. More sophisticated variants of

Sort work with revised cost values of deeper tree levels (see Trans+Move), or
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re-arrange the nodes of a whole search frontier [Powley et al. 1990].

PV: When searching adversary game trees like chess or checkers, each iteration

yields w (=width) best paths starting at the root node. One of them, the principal

variation, is the move sequence actually chosen if the players follow the minimax

principle. The other w− 1 paths are called refutation lines [Marsland 1987]; they

serve to prove the inferiority of their particular root move. Current principal

variation and refutation lines are re-expanded first during each new iteration.

In single-agent search problems, the refutation line idea is not directly ap-

plicable, because there are no opponent moves that could be refuted. Only the

principal variation line (PV) can be employed to investigate the most promising

path first. We extend the PV heuristic by saving a whole subtree of paths from

the root, instead of only the best available continuation. The leaf nodes of this

subtree all lie at the same maximum distance from the start configuration. Be-

cause the search is cost-bounded, these leaves lie closest to the goal, that is, they

have the largest g- and consequently lowest h-values.

History: The history heuristic [Schaeffer 1989] also proved useful in the do-

main of two player games. It achieves its performance by maintaining a “score”

table, called the history table, for every move seen in the search tree. Note, that

History is the only heuristic that is based on sorting moves (operators) rather

than nodes (states). All moves that are applicable in a given position are exam-

ined in order of their previous success. Compared to Sort, the history heuristic

is less sensitive to the current context, but it provides more reliable information

on the success of the operators. In addition, History does not depend on domain

specific knowledge (like heuristic estimate functions). It simply learns from the

success in previously expanded subtrees.

For the 15-puzzle, one needs a three dimensional array that holds a measure of

the goodness of a move for each possible tile, each source position and each move

direction. This gives 16 (tiles) × 16 (positions) × 4 (max. move directions) =

1024 move scores. In the traveling salesman problem, a two dimensional history

table of size n × n is needed, where n is the number of cities on the tour. As a

measure for the goodness of a move, we counted the number of occurrences the

specific move led to the deepest subtree (i.e. the subtree that came closest to the

goal).

5.2 Advances Techniques in Graphs: Avoiding Re-Expansions

Most applications spawn a decision graph (with multiple paths ending in the same

position) rather than a tree. Here, memory functions can be employed to avoid
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Figure 2: Closed move cycle and transpositions

the re-expansion of previously visited nodes. They usually yield higher profits

than the node ordering techniques, because savings are achieved in all iterations.

In the following, we distinguish between cycles and transpositions.

A move cycle is a sequence of operators, which, after going through some in-

termediate nodes, finally returns to the starting node. Move cycles are eliminated

with a stack of size g that holds all nodes on the path from the root to the current

node. In the 15-puzzle, cycle elimination yields modest savings, because closed

move cycles occur seldomly, after the trivial 2-move cycle is removed by the move

generator. The obvious cycle, shown in Fig. 2a, consists of 12 moves, and the

next longer cycle with six tiles has a path length of g = 30. Since every cycle

contains inferior nodes with high goal distances h, the total expansion cost g + h

usually exceeds the cost threshold before completing a cycle. Note that in the

traveling salesman problem, all move cycles are automatically eliminated by the

move generator.

Trans: Move transpositions are more common. They arise when different

paths end in the same position, see Fig. 2b. In the 15-puzzle, transpositions

occur in search depths d ≥ 6. They can be traced with a transposition table

[Zobrist 1970] that (ideally) holds a representation of every visited position, plus

the cost bound to which the position has been searched. When the current position

is found in the table, it can be pruned if the remaining cost bound is less or equal

to the corresponding bound given in the table, i.e. when bound ≤ boundTrans.
3

Pseudo code in the Appendix illustrates use of a transposition table in iterative-

deepening search. Note that revised cost values (back-up values of deeper tree

levels) are stored in the transposition table. This allows cut offs, even when the

3In domains with reversible operators and low branching factors (like the 15-puzzle) subtrees

may sometimes be pruned even if bound > boundTrans. Research is under way to investigate

cases where such “back cutoffs” are possible.
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remaining search depth is deeper than that given in the table.

Because of its minimal access time, a hashing technique is customarily used

for implementing large transposition tables. The initial hash access index is a

function of the board configuration with all redundant information removed. In

the 15-puzzle, it includes the positions of all tiles on the board, whereas in the

traveling salesman problem the index is a function of the subset of the remaining

cities plus the last visited city. Note, that this scheme allows pruning by dominance

[Ibaraki 1977], that is, other partial tours covering the same cities in a different

order (but with the same last city) are cut off.

As the table gets filled, collisions occur. But old information is only overwritten

if the current position has been searched more deeply. Transposition tables should

be allocated as much space as possible. (We used 256k entries in both the 15-puzzle

and TSP applications.)

Trans+Move: When the current position is found in the transposition table,

but has been searched to an insufficient depth, the formerly best move (the one

yielding the longest path) is retrieved from the table and tried first. Apart from

selecting promising moves first, this approach has the additional advantage that

the next position will probably also be contained in the transposition table. Thus,

complete sub-variations are descended with minimal effort.

In the traveling salesman problem, move pre-sorting is based on the successor

values stored in the table, because a table access is faster than the computation

of the minimum spanning tree (our heuristic estimate function).

6 Experimental Results

The performance of the algorithms has been empirically evaluated using the 15-

puzzle and the traveling salesman problem.

6.1 The Fifteen-Puzzle

For the 15-puzzle, we used Korf’s selection of one hundred randomly generated

problem instances as a test suite [Korf 1985, p. 106]. To ensure that the hard

problems with high node counts do not dominate the results, we computed the

mean of the percentage difference relative to Korf’s published solutions4.

4Our replication of Korf’s experiment identified two cases of differing node counts: In problem

#88 our IDA* algorithm examined 6,320,047,980 nodes (vs. 6,009,130,748 in [Korf 1985, p. 107])

and in problem #89 we saved 76 node expansions.
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Nodes examined [%] CPU-time

Search algorithm 50 easy 50 hard all 100 50 easy

problems problems problems problems

mean std

IDA* 100.00 100.00 100.00 100

Sort 106.17 92.63 99.40 42.22 114

PV 84.22 87.76 85.99 51.81 85

PV+Sort 86.65 85.09 85.87 58.94 98

History 93.50 94.11 93.81 47.99 107

Trans 55.51 50.46 52.98 5.75 82

Trans+History 53.49 48.40 50.95 24.64 87

Trans+Move 45.97 45.31 45.64 27.80 64

Trans+Move+History 46.60 45.04 45.82 31.96 72

IDA*, iter. 1, . . . , n− 1 52.68 54.82 53.75 26.01 –

Table 1: Empirical results on the 15-puzzle

In all ten different combinations of enhancements were tried, the results from

nine of them are presented in Table 1. Thus a total of 1000 computations of

Korf’s problems were compared, making this the most comprehensive study of

the 15-puzzle to date. The results in Table 1 are grouped into a set of fifty easy

and fifty hard problem instances. A problem is deemed “harder” if IDA* makes

more than 50 million node expansions during its search. In addition, data on the

mean performance and the standard deviation on the whole problem set is given.

The last column of the table shows the relative CPU time consumption of our

implementation.

As expected, the node ordering heuristics (Sort, PV and History) are of

limited use, because they only reduce the search effort of the final iteration. As

the table shows, the pre-sorting of successor nodes according to increasing esti-

mate values (Sort) did not pay off – neither in terms of node expansions, nor in

terms of CPU time. A mathematical investigation reveals that Sort favors board

configurations with the blank square being either in an edge or border position

(Fig. 3), because these configurations enjoy (statistically) lower h-values. As an

example, chances are 24/40 = 60% that the blank will first be moved to a bor-

der position {b1, . . . , b8} when it previously was in a center position {c1, . . . , c4}.

Likewise, when the blank is located in a border position, chances are 50% that it

will be moved to the adjacent edge and only 33% and 17% that it will be moved
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b1, . . . , b8: border position

c1, . . . , c4: center position

Figure 3: Tile positions in the 15-puzzle

to the next boarder or center positions. (These probabilities have been derived

by computing, for all possible sliding tiles, the average increase in the Manhattan

distance function.)

On one hand, configurations with a blank tile in an outer position have lower

mobility and are thus less desirable. But on the other hand, fewer moves are

possible in such configurations, which reduces the size of the subtree to be searched.

It seems that the positive and negative effects of Sort just compensate for each

other, leaving no net gain [Powley et al. 1990, p. 54].

This is no surprise when considering the limited information horizon, the node

ordering is based on. We therefore implemented an extended sorting scheme that

works on a deeper (two level) lookahead. But it gave only marginal additional

improvements while requiring more CPU-time. Best results are achieved when

the pre-sorting is based on previously acquired node values of deeper tree levels,

see Trans+Move.

The PV heuristic is more effective than Sort: On the average, 14% of the node

expansions are saved by searching the longest paths first, but this scheme exhibits

high variability. In some instances, the principal variation subtrees lead directly

to the goal, whereas in other cases the PV-variant examines more nodes than

the original IDA*. Note, that the PV heuristic does not involve time consuming

operations. It comes as a by-product of the search for an optimal path. Thus, any

savings in the number of node expansions directly speed up the execution time.

In most of the individual problem instances one of either PV or Sort has a

low node count. This led us to the assumption, that these two heuristics might

be ideal supplements to each other. As can be seen in Table 1, however, the

combined version PV+Sort is dominated by the performance of PV, which is

executed first. If the principal variation proves to be a bad choice, too many node

expansions have already been wasted, so that it is too late for the pre-sorting
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heuristic to improve the overall performance.

The History heuristic saves only a meager 6% of the node expansions, irre-

spective of the problem size. Considering its remarkable success in the domain

of chess [Schaeffer 1989], one would have expected a much better result. But the

two domains differ in several respects. First, in chess, only a small fraction of the

total game tree is searched, so that the examined positions obey similar properties.

Hence, a chess move that once caused a cut-off, will probably be effective when-

ever it can be applied in the future. This is not the case in the 15-puzzle, where

board configurations are widely different, because the search depths (average of

53 moves) are greater.

Second, the 15-puzzle lacks clear criteria for measuring the merit of a move,

thus taking the path lengths seems to be an obvious choice. But in our experi-

ments, it turned out that many paths end at the same length, and hence a finer

grained secondary measure – like a chess evaluation function – is needed. For

example, a function that retains some secondary good values, even though this

might reduce the effectiveness of IDA*.

With a transposition table (Trans), IDA* consistently examines fewer nodes

in every single problem instance. Comparing the fifty easy problems to the hard

problems, no signs of table overloading were spotted. On the contrary: The

performance of the transposition table seems to increase with growing problem

size. This is because, on one hand, there are more transpositions and cycles in

deeper search trees, and on the other hand, many more nodes are eliminated by

each single cut-off. In practice, the low standard deviation is another favorable

aspect of Trans, because one can expect an almost constant efficiency gain of

nearly 50% for every problem.

An additional 7% can be saved by first expanding the best move stored in the

transposition table (Trans+Move). Generally, the best move is a good choice.

In six problem instances, however, the best move failed so miserably, that in

total slightly more nodes were searched than with the original IDA*. The erratic

behavior of these few cases results in a high standard deviation, and is a typical

property of tree pruning systems.

Adding the history heuristic to Trans+Move does not yield further benefit.

In practice, one would avoid the history heuristic, with its additional program

complexity and minor storage overhead, but retain a simple transposition table

which holds the previously best move, and the value of the position.

The last line of the table gives the average number of node expansions in all

iterations excluding the last. This number corresponds to the best performance,
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Figure 4: Relative performance of IDA* enhancements

that could be achieved with a perfectly informed node ordering mechanism, one

that finds the goal node right at the beginning of the last iteration. Viewed in

this light, the combinations involving Trans look even more favorable since they

search fewer nodes than even this optimally informed IDA*.

These results are telling enough, but Fig. 4 presents the data in a graphical

form and shows more clearly how the use of a transposition table is the one mech-

anism that is consistently effective. In Fig. 4, various enhancements to IDA* are

considered, based on an examination of their average performance on increasingly

difficult groups of problems. Here difficulty is proportional to the number of it-

erations required to find a solution5. That is, the optimal solution length minus

initial Manhattan distance (g − h). All the methods that involve a transposition

table are effective, with the combination of cycle detection (Trans) and prior op-

5Interestingly, none of Korf’s 100 random problems were solvable in 24 iterations.
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erator choice (Move) being especially good across all problems. Even in the worst

average cases a reduction to 70% of IDA* is achieved, with best average reduction

being 45%. Not all the available data is plotted here. In particular, on the g − h

basis, there is insignificant difference between PV and PV+Sort performance,

and also between Trans+Move and Trans+Move+History, and so only one

plot of each is shown.

6.2 The Traveling Salesman Problem

On first sight, the TSP seems to be better suited for iterative-deepening search,

because more successor-cities must be considered in the interior nodes of the TSP

search graph than there are move choices in the 15-puzzle. From this, one should

expect the node count to grow faster between iterations, which in turn should

reduce the overhead incurred by re-expanding the shallow tree parts. But, as it

turns out, the opposite is true.

While the brute-force branching factor [Korf 1988], which is defined as the

average ratio of the number of nodes at a given depth to the number of nodes at

the next shallower depth, is indeed higher in the TSP, the total node count does

not increase as fast when entering a new iteration. In other words, the TSP obeys

a lower heuristic branching factor than the 15-puzzle.

The explanation for this phenomenon is, that in the 15-puzzle, an increase of

the cost bound by 2 (which is the only possible increase between iterations) allows

all nodes of a search frontier to be expanded by at least one extra level – and

sometimes by much more. In the TSP, on the other hand, the smallest of the cost

values, that exceed the current threshold may affect only few frontier nodes to be

further extended in the next iteration. All other nodes are cut off at the same

depth as before.

The exact magnitude of the new node expansions depends on the domain of

the inter-city distances. In the extreme case, that is with real valued inter-city

distances, only one frontier node gets expanded in every new iteration. Clearly,

iterative-deepening is then of no use in this case. The problem might be overcome

by increasing the cost bound by more than the minimum value that exceeded the

previous bound [Korf 1988, p. 240]. But this approach could result in sub-optimal

solution paths and will therefore not be discussed here.

Table 2 shows the relative performance of the algorithms on fifty randomly

generated 20-city problems with inter-city domains of 50, 75 and 100 different

integer values. As expected, neither of the node ordering heuristics (Sort, PV or

History) yields substantial performance improvements. This is not surprising,

16



Search algorithm 50 diff. values 75 diff. values 100 diff. values

nodes time nodes time nodes time

IDA* 100.00 100 100.00 100 100.00 100

Sort 95.55 96 97.11 97 99.14 99

PV 96.03 96 96.54 97 98.84 99

PV+Sort 94.93 95 96.29 96 98.32 99

History 95.22 95 96.77 97 99.37 99

Trans 35.72 38 32.17 34 26.81 28

Trans+Move 36.04 37 32.28 33 26.96 28

IDA*, it. 1, . . . , n− 1 92.08 – 94.35 – 96.53 –

Table 2: Empirical results on the TSP (20 cities)

since only 8, 6 and 4% (resp.) of the total nodes are examined in the last iteration,

which gives an upper bound on the maximal improvement that can be achieved

(see last line in the table).

The History results are based on a two dimensional history table that holds

for every city pair the frequency it contributed to the longest tour. Experiments

with chains of three cities gave only marginal additional improvements while oc-

cupying more resources (a 3-dimensional array).

As in the 15-puzzle, the best results are achieved with a transposition table.

Here the table entries have been used to pre-sort all successors before expanding

further. We found this the best usage of the table, since a table access is faster

than the computation of the minimum spanning tree (which is used as an estimate

for the remaining path cost).

In total, Trans examines only 36, 32 and 27% of the nodes that are visited

by IDA*. This is more than expected, because the single table entries are less

valuable in the TSP than in the 15-puzzle. While in the 15-puzzle, cut offs occur

as soon as the retrieved cost bound exceeds the current bound, in the TSP, care

must be taken not to prune subtrees containing a new cost bound for the next

iteration. Here, a subtree can only be pruned when the remaining cost bound is

higher than the current new bound. (The problem does not occur in the 15-puzzle,

because the cost bound is always incremented by 2.)

Despite this disadvantage, the transposition table is more useful in the TSP

than in the 15-puzzle. Not only does it reduce the node count by almost three

quarters, but it also speeds up the execution time by the same amount. This is

because a hash table access is much faster than the computation of the minimum
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spanning tree, so that losses during unsuccessful retrievals are easily paid off.

7 Conclusions

In this paper, we adapted techniques known from the domain of adversary game

tree searching to single-agent iterative-deepening search. We found that avoiding

transpositions and cycles is more lucrative than any kind of operator pre-sorting.

The best combination of the proposed techniques, namely a transposition table

with successor ordering information, reduces the size of the search graph by one

half (in the 15-puzzle) or even by about three quarters (in the TSP). This is

possible because the saved information can be used to detect duplicate states.

The savings are greater than is possible with a perfectly informed (and hence non-

deterministic) IDA* algorithm, which finds the solution node at the first node

expansion of the last iteration.

From a CPU-time performance standpoint, the 15-puzzle has proved to be an

especially difficult application to improve, because of cheap operator costs and low

branching factors. Although the simple successor ordering of Sort did not pay off,

the other heuristics, namely PV, Trans and Trans+Move, reduce the search

time by 15, 18 and 36%, respectively. This compares favorably to the results given

in [Sen & Bagchi 1989, table 2].

In practice, one would first include the PV-heuristic, because it needs no extra

resources in terms of space or time. It simply uses standard information on the

best subtree that is needed to determine the solution path. If memory space is

available, one would then include a transposition table that holds all states seen

during the search. Since a table access runs in unit time, it does not affect the

time complexity of the program.

This is especially true for applications with non-neglectable operator costs, like

the traveling salesman problem. Depending on the range of inter-city distance

values, a transposition table of 256k entries reduces the search time by as much

as 72%. The CPU time saving corresponds to a node reduction of 73%, which

justifies our assumption that unsuccessful table accesses are easily compensated

by the fast successful retrievals.

Another favorable aspect of the hashing technique is that it can be efficiently

applied in parallel environments. While with tree structured data types, a whole

path must be sent to identify a single node, hashing techniques need only one

hash key (that usually consists of one word only) to be transferred. Thus, hashing

techniques make it possible to profit from the computations of the other processes.
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Ease of implementation and maintenance is also a key issue. In our experience

[Reinefeld et al. 1985a], hashing tables are much easier to implement and debug

than the tree-structured data types of A* [Hart et al. 1968] and other IDA* vari-

ants [Chakrabarti et al. 1989, Sen & Bagchi 1989]. In some way the transposition

table plays a role similar to A*’s OPEN and CLOSED lists, with greater flexibil-

ity and speed, but with some risk of omission. When space restrictions are tight,

table overloading might become a problem. It is then customary to overwrite the

older information from deeper tree levels. The rationale is to give preference to

the precious information on nodes near the root, where more CPU-time has been

spent to search the emanating subtree.

This is especially true for trees with some irreversible operators (like chess).

If all the operators are reversible (like in the 15-puzzle), some of the branches can

be pruned even when the remaining search depth is greater than the depth of the

retrieved node information. Research is under way to investigate possible further

gains through operator reversal.
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Appendix

FUNCTION depth_first_search (n: NODE; depth, bound: INTEGER): INTEGER;

{ returns cost bound for next iteration }

VAR new_bound, tt_bound, next, i, t: INTEGER;

succ: ARRAY [1..MAX_WIDTH] OF NODE; { successor nodes }

b: ARRAY [1..MAX_WIDTH] OF INTEGER; { cost bounds of succ }

BEGIN

IF h(n) = 0 THEN BEGIN

solved := true; RETURN (0); { return solution cost }

END;

new_bound := INF;

FOR each successor n.i of n DO BEGIN

succ[i] := n.i;

IF retrieve_tt (n.i, tt_bound) THEN { if n.i in trans-table }

b[i] := c(n,n.i) + tt_bound; {...then use revised cost value }

ELSE

b[i] := c(n,n.i) + h(n.i); {...else use heuristic estimate }

END;

sort (succ[], b[]); { sort succ[] according increasing bounds b[] }

FOR i := 1 TO number of successors DO BEGIN { recurse }

next := succ[i];

IF b[next] <= bound THEN

t := c(n,next)

+ depth_first_search (next, depth + 1, bound - c(n,next));

ELSE

t := c(n,next) + h(next); { cutoff }

IF solved THEN BEGIN

path[depth] := next; RETURN (t); END; { done }

IF t < new_bound THEN

new_bound := t; { determine bound for next iteration }

END;

save_tt (n, new_bound); { save lowest bound in transposition table }

RETURN (new_bound); { return next iteration’s cost bound }

END;

Figure 5: IDA* with a transposition table and cost revision.
The function depth first search is called by the iterative deepening routine, see
Fig. 1.
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