Learning Extension Parameters in Game-Tree
Search

Yngvi Bjornsson and T. A. Marsland

Department of Computing Science
University of Alberta
Edmonton, Alberta
CANADA T6G 2E8

Abstract

The strength of a program for playing an adversary game like chess or checkers is
greatly influenced by how selectively it explores the various branches of the game
tree. Typically, some branch paths are discontinued early while others are explored
more deeply. Finding the best set of parameters to control these extensions is a
difficult, time-consuming, and tedious task. In this paper we describe a method for
automatically tuning search-extension parameters in adversary search. Based on
the new method, two learning variants are introduced: one for offline learning and
the other for online learning. The two approaches are compared and experimental
results provided in the domain of chess.

1 Introduction

In the planning and scheduling domain, learning methods are applied suc-
cessfully to improve search efficiency [18]. These methods work primarily by
deriving and refining control rules. Unfortunately, such a rule-based approach
is not feasible for learning how to control the search in two-person games such
as chess, checkers and Othello. First of all, experience gained over the decades
shows the difficulty of producing rules that generalize well from one game
position to the next. Secondly, efficiency is of paramount importance and the
overhead of manipulating complex search-control rules can easily outweigh the
possible benefits.

Even though various researchers have acknowledged that automatic learning
of search control in two-person games is an important avenue for research,
machine learning in games has not focused so much on search control but
on other aspects of the game. For example, many different schemes exist for

learning evaluation function parameters [4,7,2] and, more recently, work is
being done on dynamic adjustment of opening books [8,13]. On the other
hand, attempts so far at automatically learning search control have not proved
particularly successful. For example, explanation-based learning [20] and case-
based reasoning [15] approaches, although interesting, have yet to demonstrate
improved search efficiency in competitive play. Likewise, an attempt to use an
evolving neural network to focus the search of an Othello program has been
at best only moderately successful [21]. The authors acknowledge that the
method is not applicable to more complex games like chess in a straightforward
way. In games like Go, where search is of a lesser importance, some success
has been achieved recently by learning search-control rules [9].

Fiirnkranz provides a recent survey of learning in games. In that overview the
disappointing results in learning search-control parameters led to the following
conclusions:

... the tuning of various parameters that control search extension techniques
would be a worth-while goal ... It may turn out that this is harder than
evaluation function tuning because it is hard to separate these parameters
from the search algorithm that is controlled by them. [10]

In this paper we introduce a novel method for learning search-extension pa-
rameters. In the next section we give a brief overview of search control in
adversary games, focusing on search extensions. After that we formalize the
problem of learning search extensions and then describe the learning method.
Two variants of the learning method are given. The first learns by analyzing
labeled training examples offline, whereas the latter uses an online method
that learns during game play. Finally, we demonstrate the usefulness of the
new learning method by using it to improve the playing strength of a high-
performance world-class chess-playing program.

2 Search Control in Two-Person Games

The af-algorithm [14] is the search strategy of choice for such board games
as chess, checkers and Othello. The search efficiency of the algorithm can be
improved in a couple of ways: either by better move ordering or by selecting
dynamically how deeply to explore each line. This raises the question: how
should one use the available time to find a good move?

2.1 Improving Search Efficiency

The better the move ordering, the fewer nodes the af-algorithm expands.
Recently there have been attempts to improve existing move-ordering schemes
for several games using specifically trained neural networks [11,16]. However,
existing hand-crafted move-ordering techniques are already very successful,
not leaving much scope for further improvement.

On the other hand, there is still much performance improvement to be gained
from selective expansion of game trees. Whereas the basic a8 formulation ex-
plores every continuation the same number of plies, it has long been evident
that this is not the best search strategy. Instead, interesting continuations are
explored more deeply while less promising alternatives are terminated prema-
turely. In chess, for example, it is common to resolve forced situations, such as
checks and re-captures, by searching them more deeply. Several studies have
been conducted to quantify the relative importance of the various extension
schemes [1,24,3], showing that the move-decision quality is greatly influenced
by the depth-selection strategy. Therefore, the design of a search-extension
scheme is fundamental to any game-playing program using an «/f-like algo-
rithm. Unfortunately, the more elaborate the search-extension scheme, the
more difficult it is to parameterize to achieve its full efficiency. In this paper
we focus on learning the search-extension parameters.

2.2 Generalized Search-Extension Scheme

Although based on similar underlying principles, search-extension schemes
differ from one game-playing program to the next. Thus, to make our learn-
ing method as widely applicable as possible, we introduce a general search-
extension framework that attempts to encapsulate the various schemes used in
practice. Our learning method can be used to parameterize different extension
schemes as long as they fall within the generalized framework.

Here we are only concerned with depth-first expansion of game trees. Further-
more, we assume that the search-extension strategy used for controlling the
expansion may be expressed in a form of a function that can be applied at
every node in the tree.!

! When implementing a high-performance game-playing program, one typically
does not have an explicit function for calculating the depth of the move path at
each frontier node — instead the depth is updated incrementally. However, this
does not pose a problem as long as there exists a conceptually equivalent formula-
tion in the form of a depth function.

S={m, mp, ms, my, mg}

D(p,Sx,W) > d?

Fig. 1. Generalized search-extension/reduction model.

The generalized search-extension/reduction scheme is shown in Figure 1. For
any node z in a tree, let S, stand for the move path leading from the current
game position at the root of the tree, p, to node x. The depth-calculation
function takes the current game position and a move path as arguments and
returns the depth of the path. That is, the current move path is explored until:

D(p, Sy, W) > d.

where d is the depth of the current search iteration. The third argument, 0,
is a vector of search-control parameters that influence the depth calculations.
These are the parameters we are interested in learning.

Note that in our notation a depth of the path is not necessarily the same as
its length. The length is simply the number of moves on the path, whereas
the depth can be determined by whatever criteria we like. When a path’s
depth is less than its length, the path will be extended beyond the nominal
search horizon. Search reductions occur when the opposite is true. The only
restriction we put on the depth function is that it be monotonically non-
decreasing, that is, the depth of a move path will never decrease by adding
moves to the end of the path.

3 Formulating the Learning Problem

The main advantage of the generalized framework above is that learning of
search extensions can now be viewed as a function-approximation task, namely
approximating the D(p, S, %) function. In other words, the task of the learn-
ing system is to find the most appropriate weight vector . Unfortunately,

even though we were given training data in the form of game positions and
their solution paths, we have no information about the “correct” depth for
the path, and so cannot use supervised learning methods. In the absence of
labeled training data, reinforcement learning methods have in recent years of-
ten been used with success. The basic idea is that the learning algorithm will
(eventually) receive feedback from its environment indicating the goodness of
the actions taken. For example, in games the final outcome is often a strong
indicator of the merit of previous game states. Temporal-difference learning,
a reinforcement based algorithm, has been used successfully to learn evalua-
tion functions for games like backgammon, chess, and checkers [23,2,22]. The
basic underlying property that makes reinforcement learning successful in this
setting is that the game history can be viewed as an episodic task, where eval-
uation of later game states tends to be more accurate than the earlier ones. In
our case, unlike evaluation function learning, it is quite unclear how learning
of search extensions can be formalized as an episodic task over a set of game
states, thus it is not clear how to apply reinforcement-learning techniques.
Instead, we must go about the search-extension learning indirectly.

3.1 Minimization Problem

One way of reformulating the problem is to ask, for a given position, which
weight vector results in the search expanding the fewest nodes, while finding
the given solution path? More generally, given a set of training samples, T',
we want to find the parameter vector w that minimizes the total number of
nodes it takes to “solve” all the samples. Specifically, we want to minimize the
cost function:
F(U_j) = Z C(pta St: 117),
(pt,St)eT

where the C(p, S;, W) function is a cost model providing the number of nodes
visited by the game-playing program before discovering the solution S;, when
it searches position p; using parameter vector .

Given that such a cost model exists we can use standard techniques to mini-
mize this function. For now, let us assume that this is the case; in later sections
we see how to derive such a model (the offline and the online learning variants
use different cost models).

3.2 Learning Algorithm

Well-known hill-climbing methods, such as gradient-descent, can be used to
minimize F'(). Although the gradient-descent method only guarantees find-
ing a global minimum for concave functions, nonetheless, in practice it is

a highly effective heuristic approach to optimization and forms the basis of
various learning systems (e.g. the back-propagation rule in artificial neural
networks). The method starts with some initial setting for the weight vector
w and then repeatedly iterates over all the training samples, updating the
weight vector after each iteration. The gradient of F'(w) specifies the direction
of weight changes that produces the steepest increase in the value of F ().
Therefore, by adjusting the weights in the opposite direction, one expects the
value of the function to decrease. This process continues until some termina-
tion condition is met: such as doing a fixed number of iterations, or because
negligible progress is being made.

The gradient-descent method as adapted to our task is outlined as Algorithm
1. First the search-control parameters (w;) are initialized to 1.0 (lines 2-4).
Alternatively, random values could be assigned. Next the algorithm repeatedly
iterates over the test suite data 7'. Before starting each iteration it initializes
the variables that record the total node-count information (lines 7-10). The
variable nodes stores the total number of nodes that our cost model predicts it
will take to solve all the problems in the test suite, whereas each Anodes; stores
how much this node count would change if we were to alter the corresponding
search control parameters, w;. The node-count information accumulates as we
go through the test suite sample by sample (lines 11-16). The gradient (line
14) is used to tell how much the node count will change if a weight were to be
altered. After looking at all the game positions the search control parameters
are updated proportionally to how much a change in them will affect the total
node count (lines 17-19). The Awp,, constant is used for controlling the step
size. Basically, a parameter change that causes 100% increase in the node
count would result in a weight change of exactly Aw,,q, (given a learning rate
of 1 =1.0). Larger or smaller node count changes are adjusted proportionally.
Finally, before starting the next iteration, the learning rate may be decreased.

3.3 Cost Model

The problem with the aforementioned approach is that we do not know the
cost model C(p;, Sy, W) and hence cannot compute its gradient! Furthermore,
it is impossible to analytically model such a function. Not only does it depend
on the weight vector, but also on various game-dependent features. A key
observation here is that it is not necessary to formally model the function over
the entire search space to be able to minimize it. When using a hill-climbing-
like method, it is sufficient to be able to approximate it for any individual point
in the search space. Fortunately, we have a way of doing that by performing
actual searches. Our offline and online learning systems use somewhat different
methods for approximating the cost model and its gradient.

Algorithm 1 The Learning Algorithm

R DR DR DD DN DN DD B B B B s s s

LW W
N =

33:

w
D@

/ / Parameter description.

w: A vector of the parameters to be learned (w;).

N: The number of parameters.

T': The training data, a set positions and their solutions.
w: The learning rate.

// Initialize the value of the parameter vector .

for i=1,N do

end for
// Tterate until a sufficiently good is found.
: while not terminate do

// Reset node count to zero.
nodes < 0
for i=1,N do

Anodes; < 0
end for
// Now loop over all the positions in the training set, accumulating the
// total number of nodes that need to be searched (according to the
// cost model) when solving these positions. Also, using the partial
// derivatives of the cost model, keep track of how many more/less
// nodes would be searched if each of the parameters were to be changed.
for all (p;,S;) € T do

nodes = nodes + C(p, Sy, W)

for i1 =1,N do

Anodes; < Anodes; + 0C(py, Sy, W)/ 0w;

end for
end for
// Adjust the parameters values based on the cumulative node counts.
for :=1,N do

Wi — W; — b AWpar (Anodes;/nodes)
end for
// Gradually decrease the learning rate in between iterations.
w — Decrease(p)

34: end while

4 Offline learning

Figure 2 shows the basic architecture of the offline learning system. One of
the main design objectives behind this architecture is to isolate the learning
module from the game-playing program, thus minimizing the changes needed
to the game-playing program itself. The learning system consists of three main
parts: the learning module, the game-playing engine (a separate process) and,
finally, a pre-generated database of training examples (where each example

consists of a game position and information about the corresponding best
move).

setboard r3k///2R//IK

Learning setparam 0.1 0.2
module gountil e6 500000

13K/II2RIIK €6 nodes 1 252301

Game-playing
program

Fig. 2. The architecture of the offline learning system.

The learning module, which is also the main driver, reads in the game positions
from the database and then repeatedly calls the game-playing engine, asking
it to solve each of the positions using different search-control parameters. In
the following subsections we describe each of the components in more detail.

4.1 Learning Module

The offline learning system uses the gradient-descent algorithm introduced
earlier. Whenever the C(py, Sy, @) function is called, the game-playing program
is used to provide the necessary information. The interaction with the game-
playing program is abstracted away in the cost-model function. From the
learning module point of view, the function is simply a cost model predicting
the number of nodes the game-playing program expands, when solving game
position p; using the supplied parameter vector.

As for the gradient, recall that it is used to tell by how much the value of the
cost function changes if a parameter value is adjusted slightly. Instead we use
a “pseudo-gradient” by substituting line 14 in Algorithm 1 with the following
call to the cost model:

Anodes; < C(py, Sy, W;) — nodes;

where the vector ; is the same as w except that the ¢ — th parameter has

been adjusted slightly by a small positive constant ¢.

Note also that most existing test suites provide only the best move in each
position as a solution (as opposed to the whole solution path). This does not
pose a problem here, we can simply think of the best move as a complete
solution path; that is, a problem is considered to be solved when the game-
playing program proposes a move that matches the one in the database.

4.2 Game-Playing Program

The only changes required to the game-playing program is augmentation of
its interface to support the following three commands:

e setboard position
Set the current game state to be position. The learning module is indif-
ferent to the representation of a game state or position (it simply relays
this information from the database), but the game-playing program needs
to understand the format. This command also resets the state of the game
engine such that a new search can be performed independently of previous
searches (e.g. the transposition table and other history information must be
cleared). No return value is expected.

e setparam w; ws ... Wy
Specify the values of the search-control parameters. The arguments wy, ..., w,
are real numbers and represent the values that the search-control param-
eters take. The game-playing program can scale these parameters or map
them to integers (if the program’s internal representation requires so). No
return value is expected.

e gountil move maxnodes
This command instructs the game-playing program to search the current
game position until the program agrees that move is the best continuation
in the given position, or an imposed search limit of maznodes is reached (it
is important to have such an upper limit on the number of nodes searched,
otherwise a single extremely difficult test positions can dominate the total
node count for the entire test suite). The gountil command returns the
number of nodes searched and also a flag indicating whether the suggested
move was found by the search. The return string has the following format:

nodes flag count

where flag is set to 1 if the problem was solved, otherwise 0. The count
tells how many nodes were expanded by the search (for an unsolved position
count is the node-count limit maxnodes).

The cost-model function C(py, Sy, W) sends the three commands described
above (setboard, setparam, and gountil) to the game-playing program and then
waits until it receives the expected return string (“nodes ...”). Many game-
playing programs already have commands built-in with similar capabilities,
e.g. a command to set up a game position, a command for specifying the
value of a (search) parameter, and a command to perform a search. Thus,
implementing the above three commands is typically as simple as mapping
them onto already supported interface functions.

5 Online Learning

Implementing an online learning system is a much more challenging task. First
of all, the game-playing program needs to understand where is goes wrong and
adapt its search behavior accordingly. Secondly, it is essential that an online
method be computationally efficient, so as not to inflict excessive overhead on
the game-playing program. For example, using additional searches to estimate
the gradient, as we did in the offline learning scheme, would be impractical in
an online learning system. In here we give an overview of how we overcame
these hurdles. A more thorough discussion appears elsewhere [6,5].

5.1 Training Samples

When learning during online play we do not have test data pre-labeled with
information about what the right move decision is. Instead the game-playing
program must learn from its mistakes. For that to be possible the program
must recognize when it makes a mistake. For human players this is generally
not that difficult a task, whereas for a computer player this is challenging. 2
However, there are situations where mistakes can be identified with a high
degree of certainty.

Figure 3 shows a search tree for a game in progress: the moves connected by the
solid lines have already been played, and currently the program is searching
game position C. Based on the search the program determines the principal
continuation to be my,...,m,, (shown as dotted lines), and assesses the position
as having a value ve. Now, assume that when it was the program’s turn to

2 Similar problems are encountered during opening-book learning [13]. One differ-
ence though is that in our setting it is important to pin-point an exact move as
being a mistake, whereas opening-book learners often get away with not doing that.
Instead, without necessarily understanding where a mistake was made, they can
simply discourage playing particular opening lines that often result in a loss.

10

Fig. 3. Identifying mistakes.

move at position A the assessment was significantly higher, or
Ve < VaA—T

where 7 is a positive constant representing the significance margin. The pro-
gram now evaluates its chances as being poorer than just one move before;
clearly something must have gone wrong! But what caused this undesirable
change of fortune? One of two things could be responsible. It might be that
position A was already bad but that the program just didn’t realize it. Alter-
natively, it could be that position A was fine and the move m4 was a mistake
— and only now does the program see the bad consequences of that move.
However, in either case, position A was assessed incorrectly. Thus, A is referred
to as a critical position, and the move sequence m4, mg, mq, ...,m, is known
as the solution path of the position. The basic assumption that we make here is
that if the search is to correctly assess position A, its solution path (Sa) must
be fully explored.® This implies that the game tree for position A needs to be
explored to the depth of its solution path. Critical positions and their solution
paths form the training input for our learning system. Many existing problem
test suites consist of a collection of game positions and their corresponding
solution paths, meaning that they can also serve as a training input for our
learning method.

It is interesting to note that it is not instructive to learn from cases where

3 Note, this is not a sufficient condition for correctly assessing the position, because
other lines in the game tree might also need to be explored more deeply. We are
only assuming this to be a necessary condition.

11

the positional estimate increases from position A to C. The reason is that the
in-between move made by the opponent, that is move mpg, might simply be
a blunder. The search might have explored that move at position A deeply
enough to correctly discard it as a bad move, in which case there is no need
to change the search parameters.

5.2 Learning Module

Again the underlying learning algorithm is gradient-descent. Whereas Algo-
rithm 1 shown earlier operates on a test suite of training samples, it can also
be adapted to learn from online game play. Then, instead of updating the
weight vector after each iteration, it is updated after each training sample (or
a subset of samples). This is a more convenient approach when learning dur-
ing online game play, since we want to update the weights either immediately
after encountering a critical position (see above) or, alternatively, in-between
games. This approach is sometimes referred to as incremental gradient-descent
[19]. With the incremental version of the algorithm it is important to use a
slower learning rate (a smaller 1) to make sure the weights are not changed
drastically based only on a single learning sample.

In the offline learning we could replace the cost model with a call to the
game-playing program. However, when encountering a critical position during
a game, we cannot afford additional search to find how many nodes it would
take to explore the position to the depth of its solution path. Instead we use
the following estimator of the cost:

C(p, S, @) = B(p, @) ®57). (1)

The B(p,w) function measures the growth rate of the search. For example,
B(p,w) = 4 means that it takes 4 times as many nodes to search position
p to depth d 4+ 1 than to depth d. Even though the game trees themselves
are highly irregular, the model above can be used as long as the growth rate
is almost constant with respect to the search depth. It is important to un-
derstand in this model how altering the search-control parameters w affects
the node-count estimate. Modifying any weight has two fundamental effects:
the exponential growth rate B(p, @) changes, and the solution path depth
D(p, S,w) is affected. Typically, these two are counter-acting, for example,
a change that reduces the depth of the solution path also tends to inflate
the growth rate of the search. Intuitively, one would expect that altering the
weights such that the required search depth is reduced would result in the
smallest node count. However, it is quite possible that the modified weights
will affect the exponential growth of the search in such a way that the esti-
mated node count for the reduced search depth will indeed be higher than the
one before. The right balance must be found. This is what the gradient of the

12

cost model, as given by Equation (2), provides:

oC (p, S, @) _
o D(p, S, @) 9B(p, ©) oD(p, S, @) P
O,) (P2 D OBy, i) 2222

The derivation of the gradient is shown in Appendix A.1. The only unknown
quantities in Equations (1) and (2) are the B(p, @) function and its partial
derivatives. Appendix A.2 shows how to estimate that function and compute
its derivatives. In our cost model the growth-rate function is constant with
respect to the search depth. Therefore, for any given search, by knowing the
node count for only a single search depth we can determine the growth rate.
In turn, once we have determined the growth rate for that particular search
we can use our cost model to predict how many nodes the search expands
when exploring any given solution path.

The partial derivatives are more problematic. When performing a search we
simultaneously estimate for each of the altered weight vectors w, ... , wy
how many nodes would be expanded if they were used instead (recall that
weight vector wj; is identical to w except that the i-th weight has been slightly
adjusted). In addition to the normal depth, separate depths and node counts
are recorded for each of the modified weight vectors w;. The node-count in-
formation gathered this way allows us to estimate each of the B(p, ;) in the
same way as for the unmodified weight vector. An example of this procedure
is shown in Appendix A.2.

6 Experimental Results

To obtain practical experience with our new method we used it to learn search-
control parameters for the chess program CRAFTY [12].* This program uses
a so-called fractional-ply extension scheme. Instead of every move counting a
full ply toward the search depth, some move types are worth only a fraction of
a ply. For example, if a move class is worth half a ply, two such moves can be
expanded on the same path during a one ply search. The smaller the fraction,

4 CRAFTY is one of the strongest, if not the strongest, of the chess programs whose
source code is publicly available. On the online chess servers it consistently ranks
among the highest rated players, outperforming both some of the commercial chess
programs and strong chess masters. The source code is publicly available via ftp
at ftp.cis.uab.edu/pub/hyatt. Our learning scheme was originally implemented in
version 16.4 and later re-implemented in version 16.17. The results reported here
are based on that latter version.

13

the more aggressive are the extensions. The depth function can be expressed

as:
length(S)

D(p, S, W) = Z w; |+ = Class(mj)
j=1

where m; is the j-th move on the path, the vector @ contains the weights
for each of the N move classes (the element w; is the weight of class number
i). These weights are the search-control parameters we want to tune. The
Class(m;) function categorizes each move as belonging to one of the move
classes 1,..., N. The chess program uses six different move categories: checks,
re-captures, forced-replies to checks (i.e. only one legal reply), advanced passed
pawn-pushes, null-move threats, and other moves. The weight of the last move
class is fixed to one, and serves as a baseline. Unfortunately, the null-move
threats move-class does not fit directly into the framework we introduced
earlier. The reason is that a move can only be classified into this category by
actually performing a null-move search. Thus, to keep things simple, we chose
to disable it in our experiments. This leaves four search-control parameters to
be tuned.

We ran two independent sets of experiments. In the first, we compare the
offline and online methods as they learn parameter values from data in a test
suite of chess problems. In the second experiment a program augmented with
the online scheme learns the weights during the playing of actual games.

6.1 Test Suite

We observed the performance improvement of the program as it learned using
the extensive ECM test suite [17]. This suite consists of 879 (mostly tactical)
middlegame chess positions. Initially the weights of the move categories were
set to 1.0, and allowed to vary within the range [0.1,1.9] (1.040.9). If the right
move is not found after examining half a million nodes the search is stopped
for that problem. The learning rate p was determined by trial-and-run. For
the online learning p is initially 0.75 and decreases gradually, whereas for the
offline learning p is fixed to 1.0. The step size ¢ is 0.15 in both cases.

The learning algorithms try to minimize the number of nodes required to solve
the problems, whereas the increase in the number of problems solved follows
indirectly, because of the improved efficiency. The result of the experiment is
shown in Figure 4. The two lower graphs show the offline learning algorithm,
whereas the two upper graphs show the corresponding results using the online
learner.

In the beginning the program solves only 39% of the problems, expanding in
total 309 million nodes. The left-hand graphs show how the search efficiency

14

100

T
nodes ——
problems solved ------- recapture —-—-—
90 11 forcad reply =+
checl

80

% solved and % nodes
move-class weight

L L L L L L L L L L
1 12 13 14 15 1 2 3 1 12 13 14 15

s s 7 6 9. 10 s o 1 8 9. 10
iteration number iteration number

T
nodes ——
problems solved ------- recapture -

% solved and % nodes
move-class weight

s s 7 8 o 10 1 12 13 1 1 F— s o 1 8 o 10 1 12 1 14 15
iteration number iteration number

Fig. 4. Comparison of online (upper) vs. offline (lower) learner using ECM suite.

improves with each learning iteration (relative to the first iteration), both
in terms of number of nodes searched and the number of problems solved
(represented by a solid and a dotted line, respectively). Both the offline and
online learners converge after only a few iterations, in the end solving the
same fraction of the problems (57%) while searching approximately the same
number of nodes (229M). In contrast, the default hand-set weights (see Table
1) solve only 56% of the problems while searching 233 million nodes.

The right-hand graphs, on the other hand, demonstrate how the move-class
weights evolve. In the online case, the four move-class parameters check, forced-
replies, re-captures and passed-pawn pushes converge to fractional-ply values
of 0.10, 0.64, 0.79 and 0.95, respectively. For the offline learner, the values are
0.10, 0.77, 0.90 and 0.96, respectively. The weight vectors learned by the two
methods differ slightly. However, the difference doesn’t affect the performance:
both weight vectors perform equally well as we noted above. Also, the relative
ranking of each move category is the same in both cases, checks and forced-
reply extensions seem to be the most critical to extend on, while the two
remaining move classes, re-captures and passed-pawn pushes are of a lesser
importance.

Beforehand we had hypothesized that given the same training data the offline

learning method might outperform the online learner. The reason is that the
offline learner works with accurate node-count information, whereas our on-

15

line learner uses estimates. What is important about this result is that both
learning methods perform equally well. This is reassuring and adds credibility
to the claim that the approximate information used by the online learner is
sufficiently good for use in practice.

Many test suites, including the one we used, provide only the best-move for
each position instead of the complete solution sequence. Because our online
learning method requires that the full solution path be known, we had to make
some adjustments. If the best move returned by the program agrees with the
move suggested by the test suite, we assume that the principal variation given
by the program represents the correct solution path. However, if the move
returned does not agree with the test suite and there is no stored solution
path for that particular problem (i.e. from solving it in a previous iteration),
we simply ignore the problem. As a consequence, in each iteration we are
minimizing the total number of nodes needed to solve only a subset of the
problems in the test suite, that is, those problems for which we have been
able to derive a solution path. However, this subset gradually expands with
each iteration and hopefully converges to a significant portion of the total test
suite. In our case 57% of the problems were solved.

6.2 Game Playing

In the second set of experiments we incorporated our online learning method
directly into the program, and used it to learn in real-time while playing games.
A version of the program using the learning scheme played 100 games against
an unmodified version of the chess program (with a 5 minute time limit for
each side for completion of an entire game). As before, the move class weights
of the learner are initialized to 1.0. The program learns from critical positions
encountered during the game. The threshold for a position to be considered
critical is an evaluation drop of 1/3 of a pawn. Once the game position of
the learner is considered to be lost (the position evaluation is more than 3
pawns down) the learning is disabled for the rest of the game. The reason is
that once the position is already significantly worse, it is almost inevitable
that one will lose more material and eventually the game. To learn from such
losing examples may not be instructive.

The chess program used in the experiments distinguishes between three dif-
ferent game phases: the opening, middle-game, and end-game. The program
evaluates game positions differently depending on game phase, but search ex-
tensions are done the same way in all phases. However, by automating the
tuning-process of the weights we can easily learn a different sets of weights for
each game phase. Thus, our learning program is set up to use three different
sets of weights, one for each game phase. In our experiments, we did not receive

16

Table 1. Learned weights.

Move class Hand-set || Learned test suite Learned game play
Offline | Online || Middle game | End game
Checks 0.00 0.10 0.10 0.30 0.10
Forced reply 0.25 0.77 0.65 0.47 0.25
Re-captures 0.25 0.90 0.80 0.10 0.10
Passed pawn 0.25 0.96 0.95 0.10 0.15

any learning samples in the opening phase. This is not surprising because not
only is the opening phase rather short, but also the game-positions balance
equally for both sides (thus not triggering any learning experience).

Table 1 shows the weights learned from playing games and compares them
to some of the weight vectors discussed earlier. The left-most weight col-
umn shows the hand-set weights (tuned by the author of CRAFTY, a leading
computer-chess expert), followed by the weights learned from the ECM test,
both from using the offline and the online learner. Finally, the two right-most
columns show the weights learned from playing games (separate weight vec-
tors for middle-game and end-game play). The first point of interest is that
the learned weights for middle-game and end-game play differ. In particular,
we note that checks and forced-reply moves are extended more aggressively
in the end game, as one might hypothesize. Next we note that the weights
learned from game play differ substantially from the weights learned using the
ECM test suite. In particular, re-captures and passed-pawn pushes are judged
important extensions according to the game-play data but not the test-suite
data. Most readily available test suites, including FC M, tend to focus almost
entirely on tactical (mating) problems. In such positions checking moves are
generally the key moves, whereas passed-pawn pushes and re-captures rarely
are. By contrast, passed-pawn pushes play a critical role quite frequently in
actual games, even more so than forced mating attacks. This may explain the
discrepancy between the weights learned from playing games versus using a
test suite.

6.3 Matches

We are also interested in knowing how well the different weight vectors perform
in actual game play; in particular comparing the vector learned from playing
games to both the hand tuned one and the one learned using the ECM test
suite as training input.

To evaluate the quality of the weights in actual game play, we matched six

17

different versions of the program against each other. The only difference be-
tween the versions was the value of the search-control parameters. Each match
consisted of 100 games played at time controls of five minutes per game.® To
prevent the programs from repeating move sequences in the opening, each
game was started from a different well-established opening position. The pro-
grams played each starting position once as White and once as Black.

The first program version, Cygmes, uses the weights learned from game play.
For the opening phase the same weights are used as for the middle-game. The
CEcyr version uses the weights learned by the online scheme using the ECM
test suite as training input, whereas the Cj,,q version uses the hand tuned
weights. The three remaining programs treat all the move-extension classes
the same. In the Cgp version all the weights are set to 1.00, which is the
same as not using search extensions. The Cy;y version extends aggressively on
all move classes (all weights set to 0.10), whereas the Cps version uses more
conservative extensions (all weights set to 0.50). The result of the matches
is shown in Table 2. The program using the parameters learned from game
play performs the best overall, scoring 282.5 points out of the 500 games.
The program using the parameters learned from the test suite does not do as
well. This is not too surprising. Most test suites focus on the tactical abili-
ties of programs. Although tactics are important, the test suites sometimes
overemphasize their importance compared to actual game play. As expected,
the program using no extensions (Cigo) performs by far the worst. On the
other hand, it is interesting to see how close the other programs’ performance
is, even though they are using quite different weight vectors. The Chana, Coto,
Coso all end up with a similar score. It is a little surprising to see how well the
Coso version does, intuitively we would have thought it would rank lower. The
fact that this version outranks the Cy;y and the Cgcoyps versions shows that in
actual game play it is not necessarily good to extend too aggressively, since
it results in many irrelevant lines being searched too deeply. Although this
might improve the tactical ability of the program, it may hurt the positional
play and hence the overall performance.

Unfortunately, we have no way of telling what the optimal weight vector is,
and thus we cannot really say how close to optimal the learned weights are.
However, based on the above results, we can state with over 90% confidence
that the program using the weights learned from game playing performs better
than the program using the hand-set weights. ¢

® The matches were played on Intel PIT/400 and PIII/450 computers. Each match
was played on a single computer. In the chess-program, all the default parameter
settings were used, except that pondering (thinking on opponent’s time) was turned
off. This is necessary so that the programs do not compete for CPU time.

6 Student’s t-test was used to compare the mean of the score distributions of the
two programs.

18

Table 2. Match results.

\C Cgames Coso Chand Co1o Ceom C100 Points
Cgames - 54.5-45.5 51-49 54-46 59.5-40.5 | 63.5-36.5 282.5
Coso 45.5-54.5 - 53.5-46.5 | 49.5-50.5 53-47 66-34 267.5
Chand 49-51 46.5-53.5 - 50-50 50.5-49.5 | 64.5-35.5 260.5
Coio 46-54 50.5-49.5 50-50 - 48.5-51.5 | 64.5-35.5 259.5
CegcMm 40.5-59.5 47-53 49.5-50.5 | 51.5-48.5 - 58-42 246.5
C100 36.5-63.5 34-66 35.5-64.5 | 35.5-64.5 42-58 - 183.5

The extension scheme employed by our test program is a relatively simple
one, using only a few parameters. These parameters have been hand tuned
to reasonable values, and thus the opportunity for substantial improvement
is small. On the other hand, the benefits of automatic tuning becomes in-
creasingly relevant for more sophisticated extension schemes that require the
tuning of many more parameters.

7 Pros and Cons

Which of the two methods for learning search-control parameters is more
appropriate depends on the situation. In here we contrast the offline and the
online approach, and show that the two methods, in a way, complement each
other.

One of the main appeals of the offline approach is that it offers an easy way
to tune search-control parameters in almost any search-based game-playing
program. Moreover, only minimal modifications are required to the game-
playing program itself. The changes are as simple as augmenting the game-
playing program’s interface with the three high-level commands introduced
earlier, and the program can then be “plugged” into the learning module.
On the other hand, this ease of use comes with a price. First, it requires
annotated training data; that is, the correct move in each test position must
be known. Secondly, it is computationally expensive. " These drawbacks make
it impossible for it to be used to learn in real-time while playing games. The
online learning method, on the other hand, is well suited to learn from either
existing test suites or from game-play. This is definitely a big bonus. On the
negative side, the method is quite intrusive and elaborate code modifications
are necessary to the game-playing program.

We saw that existing tactical test suites, even though extensive, are not neces-
sarily representative of the features that are important for actual game-play.

" However, if sufficient computer resources are available, the method is trivial to
parallelize. All searches within one learning iteration can be executed in parallel —
the only synchronizing point is at the end of the iteration.

19

This somewhat undermines the offline learning. One way of overcoming this
drawback is to combine the generation of training samples from the online
method with the ease of use of the offline method. That is, during a game
critical positions are logged to a database. A human or computer analysis
would then be performed to label the positions with the best move choice.
The resulting test suite could be used as a training input for the offline learn-
ing system. Although this would require some manual labor, it might be well
worthwhile.

Finally, it is worth mentioning that whereas the online method is designed
to learn only search-extension parameters, the offline method can be used to
learn any type of parameters that influence the search process, for example,
move-ordering parameters.

8 Conclusions

The automation of the tuning of search-control parameters opens up many new
opportunities for improved search-control schemes in game-playing programs.
Traditionally, the effort it takes to hand-tune complex extension schemes im-
poses restrictions on how elaborate the schemes can be. However, by automat-
ing the tedious tuning process, it becomes possible to experiment with more
sophisticated schemes using far more parameter values.

The work presented here is one of only a few successful approaches for learning
search-control in competitive game-playing programs. However, this is only a
first step and there is still much work to be done. For example, in this work
we assumed that the search-extension features are given, and the task of the
learner is simply to decide their relative importance by tuning various param-
eters. Research into methods for automatically discovering and constructing
new search-control features for use in two-person games is a difficult, but pos-
sibly rewarding, avenue for future research.

References

[1] T.S. Anantharaman, M. S. Campbell, and F. Hsu. Singular extensions: Adding
selectivity to brute-force searching. Artificial Intelligence, 43(1):99-109, 1990.

[2] J. Baxter, A. Tridgell, and L. Weaver. Learning to play chess using temporal
differences. Machine Learning, 40(3):243-263, 2000.

[3] D.F. Beal and M. C. Smith. Quantification of search extension benefits. ICCA
Journal, 18(4):205-218, 1995.

20

[4] D.F. Beal and M. C. Smith. Learning piece values using temporal differences.
ICCA Journal, 20(3):147-151, 1997.

[5] Y. Bjornsson. Selective Depth-First Game-Tree Search. PhD thesis, Department
of Computing Science, University of Alberta, Edmonton, Alberta, April 2002.

[6] Y. Bjornsson and T. A. Marsland. Learning search control in adversary games.
In H.J. van den Herik and B. Monien, editors, Advances in Computer Games
9, pages 157-174. University of Maastricht/University of Paderborn, 2001.

[7] M. Buro. Experiments with multi-probcut and a new high-quality evaluation
function for Othello. In H.J. van den Herik and H. Iida, editors, Games in
AT Research, pages 77-96, Maastricht, The Netherlands, 2000. Universiteit
Maastricht.

[8] M. Buro. Towards opening book learning. In H.J. van den Herik and H. lida,
editors, Games in AI Research, pages 47-54, Maastricht, The Netherlands, 2000.
Universiteit Maastricht.

[9] T. Cazenave. Generation of patterns with external conditions for the game
of Go. In H.J. van den Herik and B. Monien, editors, Advances in Computer
Games 9, pages 275-293. University of Maastricht/University of Paderborn,
2001.

[10] J. Firnkranz. Machine learning in games: A survey. In J. Firnkranz
and M. Kubat, editors, Machines That Learn To Play Games, pages 11-59,
Huntington, New York, 2001. Nova Science Publishers, Inc.

[11] K. Greer. Computer chess move-ordering schemes using move influence.
Artificial Intelligence, 120:235-250, 2000.

[12] R. M. Hyatt. Crafty - chess program. FTP Site, 1996.
ftp.cis.uab.edu/pub/hyatt.

[13] R. M. Hyatt. Book learning a methodology to tune an opening book
automatically. ICCA Journal, 22(1):3-12, 1999.

[14] D. E. Knuth and R. W. Moore. An analysis of alpha-beta pruning. Artificial
Intelligence, 6(4):293-326, 1975.

[15] J. Kolodner. Case-Based Reasoning. Morgan Kaufmann Publishers, San Mateo,
CA, 1993.

[16] V. Koscis and J. Uiterwijk. Learning move ordering in chess. In Proceedings of
the CMG Sixzth Computer Olympiad Computer Games Workshop, July 2001.

[17] N. Krogius, A. Livsic, B. Parma, and M. Taimanov. Encyclopedia of Chess
Middlegames. Publisher, 1980.

[18] S. Minton. Learning Search Control Knowledge: An Ezplanation-based
Approach. Kluwer Academic Publishers, Boston, MA, 1988.

[19] T. M. Mitchell. Machine Learning, pages 92-94. WCB McGraw-Hill, 1997.

21

[20] T. M. Mitchell, R. Keller, and S. Kedar-Cabelli. = Explanation-based
generalization: A unifying view. Machine Learning, 1(1):47-80, 1986.

[21] D. E. Moriarty and R. Miikkulainen. Evolving neural networks to focus
minimax search. In Proceedings of the Twelfth National Conference on Artificial
Intelligence (AAAI-94), Seattle, WA, 1994.

[22] J. Schaeffer, M. Hlynka, and V. Jussila. Temporal difference learning applied to
a high-performance game-playing program. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI-01), pages 529-534, Seattle,
Washington, August 2001.

[23] G. J. Tesauro. TD-gammon, a self-teaching backgammon program, achieves
master-level play. Neural Computation, 6:215-219, 1994.

[24] C. Ye and T. A. Marsland. Experiments in forward pruning with limited
extensions. ICCA Journal, 15(2):55-66, 1992.

A Appendix

A.1 Gradient of Cost Model

Below we show how we derived the partial derivatives of the cost model used
by the online learner:

8wi
_ O(B(p, w)"®57)
G
awi
8(6D(p,,5',111‘) In B(p,u’)‘))
— o D(p,5,0)1n B(p;) (D (p, S, W) In B(p, w))
ow;
B d(D(p, S,w)In B(p, w))
C(pa S,) awz
D S
aw,- ow;
1 9B(p,w) 0(D(p,S,w)) -
In B
C(p, S, w (D(p oD aw T ow n B(p, W)
D(p S W) 0B(p,w) =~ 0(D(p, S, w)) =
In B

22

A.2 Estimating B(p,w) - Ezample

In Section 5 the introduced a method for learning search control during actual
game play. One of the challenges using this method is to estimate efficiently
in real-time the effects changing each of the search control parameters has on
the growth rate of the search. Here we illustrate the technique used to do the
estimation.

Figure A.1 shows a search tree expanded using a depth threshold of 2.0. In this
example there are only two move-classes; the first has fractional-ply weight of
0.4 (pictured using dotted lines) and the second a weight of 1.0 (pictured using
solid lines). We use the vector @ = {0.4,1.0} to represent these weights. The

1.0)\) (1.0)
(2.4) . 2.0) /Qr,(m)
1.9 24 as() [@eE
(2.2\O (2.8) (28) (2:8)

Fig. A.1. Depth of nodes in a game tree.

number besides each node shows the depth of the node. As soon as the depth
equals (or exceeds) the depth threshold the node is evaluated and the search
backtracks. A count of the total number of nodes expanded is also kept. In
this example 17 nodes are expanded, thus the growth rate of the search is

B(p,w)** =17 = B(p,w) = 4.123

The problem we face is that we also need to simultaneously approximate the
growth rate of the search, as if the parameter vectors w; = {0.4 + §,1.0} and
wy = {0.4,1.0+0} were instead used to expand the tree (needed for calculating
the gradient). This is done by recording for each parameter vector a separate
depth and count of number of nodes expanded. Figure A.2 demonstrates this
process using 6 = 0.1.

Instead of only one depth, each node has now three depths associated with
it. Each of the depths is recorded by a different weight vector, that is, @ =
{0.4,1.0}, @ = {0.5,1.0} and @y = {0.4, 1.1}, respectively. In the figure, the

23

(1.0,1.0,1.1) ¢) (1.0,1.0,1.1)

(1.4,1.5,1.5) | 4 O (1.4,1.5,1.5)
' (2.0,2.0,2.2) (2.0,2.0,2.2) N

(1.8,20,1.9) (l 182019 () (1.8,2.0,1.9)
(2.4,2.5,2.6)
@)

(2.2, --.2.3) (2.8.—-.3.0) (2.8.—-.3.0) (2.8.—-.3.0)

Fig. A.2. Multiple depths of nodes in a game tree.

leftmost depth of a triplet is the same as used in Figure A.1. As before it
determines when to stop expanding the branches in the search tree. The two
other auxiliary depths are used only for deciding whether or not to include
a node in the total node count for the alternative weight vectors. That is,
as soon as one of the depths reaches the threshold limit, the nodes in that
subtree are not counted as being explored by the corresponding weight vector.
For example, in the figure the shaded nodes are not included in the total
node count for vector ;, because the w; depth has already reached 2.0. The
rationale is that if we were using that weight vector to expand the tree, this
branch would not be explored this deeply. On the other hand, in this example
the W, weights expand exactly the same tree as . Thus,

B(p,w,)** =11 = B(p,w,) = 3.317

B(p,w)*° =17 = B(p,) = 4.123

This approach is, of course, only an approximation of the size of the actual
trees explored if the alternative weight vectors were used instead. The reason
is that different evaluations would be backed up the tree, possibly causing
different branches of the tree to be explored. However, this technique can be
used with little overhead during the search, and works well in practice.

Finally, recall that the partial derivatives simply state how much the value of
the growth-rate function is expected to change if each weight is increased by
a small amount. They can be approximated as:

0B(p,w) _ (B(p, w:;) — B(p, w))

where ¢ is the small constant by which each w; is perturbed.

24

