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Abstract

The widespread adoption of distributed computing has accentuated the
need for an effective set of support tools. In providing such support, one
fundamental problem is that of constructing a global snapshot or global
state of a distributed computation. This paper examines global snapshot
algorithms from a distributed debugging perspective, and proposes an ab-
stract framework based on global snapshots, which is defined to form a
consistent state of the entire system. It is shown that by using a property
preserving algorithm this framework can be superimposed on the underly-
ing computation, but not interfere with it.
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1 Introduction

Interest in distributed computing has grown dramatically in recent years, because it has opened a
cost-effective way to construct large systems from a collection of computers connected via networks.
Such distributed systems exhibit great potential for increased performance, system extensibility,
and increased availability[LPS81]. However, to bring this potential to full play, there is a growing
need for an effective way to support distributed programming.

A distributed program may be viewed as a collection of processes residing, executing and com-
municating, but at geographically dispersed nodes which consist of one or more processors, one
or more levels of memory, and several I/O devices. Because of the parallelism inherent in a dis-
tributed program, nondeterminism of the execution behavior and non-predictable communication
delays between processes, programming distributed systems is much harder than for its counter-
part — centralized systems. To meet this challenge, much research has been done from several
aspects, for example, languages and semantics as illustrated in CSP at Oxford[Hoa85], MIT’s
Argus project[LS83] and Hermes in IBM[Str90]; algorithms and correctness proofs as advocated
by Dijkstra[DS80]; and implementations of several distributed systems such as Conic in Imperial
College[KMS87] and also Argus, as well as many others. This multitude shows the importance of
obtaining effective solutions to problems which arise in distributed programming. Research has
shown that many problems in distributed systems can be cast in terms of the problem of detecting
global states. Indeed, constructing a global state or global snapshot of a distributed computation
is viewed as a fundamental problem. Many researchers have proposed various algorithms for taking
snapshots. Chandy and Lamport[CL85], in their landmark paper, proposed an elegant solution,
called distributed snapshots, for detecting stable properties of distributed systems. This solution
is general enough to be adapted to specific implementation requirements and is suitable in a broad
application domain. These uses include the detection of stable system properties such as deadlock
and termination.
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Informally, a snapshot of a distributed computation is a global state which could have been seen
by some external observer with any reference point, thus can be viewed as a point in the history
of the computation. We can imagine taking a sequence of such snapshots during a distributed
computation, initiated on command by a programmer or by the detection of a snapshot condition.
If such a trigger is a breakpoint in a computation, the snapshot could be a valuable debugging
tool — usually the system stops in a breakpoint, i.e. a snapshot state, until the debugging process
permits resumption of execution.

A contribution of this paper is a framework established for distributed debugging. However,
before we can discuss our framework in detail, we must present the system model on which snapshot
algorithms are based. We then describe the snapshot algorithms which would become a component
in our framework. The framework is presented in terms of breakpoints, local snapshots, global
snapshots, and the halting and restarting of the underlying computation.

2 The system model

A distributed system is modeled by D = {P, C}, where P is a finite set of processes composing an
underlying computation, C is a finite set of communication channels via which processes communi-
cate with each other. The processes do not share memory but communicate exclusively by sending
and receiving messages via channels. These channels are assumed to be reliable and synchronous.
No assumptions are made about relative speed of the processes.

This system model forms a high level of abstraction of a distributed system. It abstracts away
the physical organization of the system and the particular details of the underlying communication
network, it even abstracts the details of the distributed programming environment.

Our model differs from one of Chandy and Lamport [CL85] in that the interprocess commu-
nications are assumed synchronous rather than asynchronous(buffered). However, the following
definitions are derived from their work.

Definition 1. A process is defined as a 3-tuple: p = ( S, init, E ), where S is a set of process
states, tnit € S is the initial state, and E is a set of events. The process state is represented by the
program counter and all variable values in the memory.

Definition 2. An event of a process p is defined as a 5-tuple (p, s, s’, m, ¢ ). We say an event
occurs if a process transitions from state s to s’ and sends ( or receives ) message m along the
outgoing ( incoming ) channel ¢ € C, which is incident upon p; m and c¢ are null symbols if no
message is involved in the event.

For a process, three types of events are possible: intraprocess events, sending a message and
receiving a message between processes.

Definition 3. A global state is a set of all process’ states within a system. A global snapshot is
a recorded global state. A global state S is consistent if there is a predicate function y defined on
S, and y(S) is true for a global state S of distributed system D, then y is true at all later points in
that computation. Also,

e If event e can occur in global state S, then the function nez#(S, e) returns the global state
immediately after the occurrence of e in global state S.

e A global state S’ is reachable from global state S ( denoted as S — S”) if and only if there is
a computation {5;: 0 < i < n} such that 35,k:0< 7 <k <n,5=5;A5 =5



In the remainder of this paper, global state and global snapshot are used interexchangeably, and
refers to a consistent state.
Definition 4. A (distributed) computation is defined as a sequence of events:

comp=+1e;:0<1<n
p={ ¥

where e; can occur in global state S. A computation is sometimes denoted by {5;:0 < i < n} for
brevity.

3 Global snapshot algorithms

Our abstract framework of distributed debugging is based on global snapshots of the system.
A global snapshot is taken at some point within a distributed computation that has a stable
property. It is a two phase procedure: a recording phase in which all processes are required to take
their respective local snapshots; and a dissemination phase in which a global state is formed from
local snapshots. Several global snapshot algorithms have appeared in the literature with different
assumptions about the system. Among these, Chandy and Lamport algorithm[CL85] is a landmark
one that assumes asynchronous and FIFO channels. It uses a process coloring scheme to enforce
the consistency of a global snapshot. All events are defined to be WHITE if they precede the
snapshot and RED if they occur afterwards. However, this algorithm is concerned mainly with
taking local snapshots, and is highly inefficient. Spezialetti and Kearns [SK86] made a significant
improvement to the Chandy and Lamport algorithm. They combined a two phase approach into
an integrated algorithm and cleverly use a form of the Chandy and Lamport method for taking
local snapshots, and so assemble the global snapshot in an efficient way. Vankatesan proposed an
incremental snapshot algorithm [Ven89] to reduce message complexity. It uses the fact that a recent
snapshot of the system is already available, and that the change in the system between successive
snapshots is likely to be small (namely, a message may not have been sent on some channel since the
previous global snapshot). The Li, Radhakrishnan, and Venkatesh Algorithm[LRV87] gets a global
snapshot in a non-FIFO channel. Accordingly, it uses Marker_no to tag each message (including
marker messages) sent along the channel. The Lai and Yang algorithm [LY87] also works with
non-FIFO channels, and requires no control message at all in taking a snapshot. Instead, it uses
an extra bit (illustrated as a message color: white and red) in all messages that are sent after a
process records its state. Morgan provides an elegant treatment of the snapshot algorithm based on
factorization [Mor85], i.e., the snapshot algorithm can be factored into two separate parts: a logical
clock algorithm and a remaining-time—based algorithm. A detailed survey of all these methods is
given in our report [YM92].

The snapshot algorithm in our distributed debugging framework is based on the Spezialetti and
Kearns algorithm, which is summarized here to provide a basis of understanding for our work. In
contrast to monochrome coloring of the Chandy and Lamport algorithm, Spezialetti and Kearns use
a multi—color scheme for local snapshoting. Each process possesses two kinds of coloring variables:
id_color and local_color. An id_coloris a unique identifying color (not WHITE) which is its network
name and does not change over the lifetime of the system; and a local color, initially WHITE. A
process is said to be of the color of local_color. An initiator changes its color by using its identifying
color and sets local_color to its id_color, and then send out a wave of warning messages which are
colored its own id_color.



When a white process receives a colored warning, it sets local_color to the color of the received
warning and follows the Chandy and Lamport algorithm, thus incorporating the process into the
snapshot. As the warning wave travels through the system, a region of the initiator’s color is
established, and all these processes have their local_color set to the local_color of the initiator.
The Spezialetti and Kearns Algorithm thus allows for several initiators of a global snapshot, in
this case regions of various colors form. Processes at the border of the regions will have different
colors depending on the color of the first warning received on any of the incoming channels. A
snapshot is complete when all processes of the system are non-WHITE. It is assumed that there is
a spanning tree rooted at the initiator in each region that was created by the initiator when it sent
out a warning in the recording phase. Along the tree, each process sends its local snapshot to the
initiator. The differently colored warning by different initiators lets the processes at the boundary
of the regions identify the initiator in the neighbor region. This identification is also passed to the
initiator of the region.

Once the initiator of a region has received local snapshots from all the processes in its region,
it also knows the identities of all initiators in all adjacent regions. The initiator in each region
disseminates the local snapshots received to the initiators in the adjacent regions. This goes the
rounds until each initiator has received local snapshots from all non-adjacent regions as well.

The Spezialetti and Kearns Algorithm results in a more efficient global snapshot via phase-
merging, in which each earlier phase provides useful information to the later phase, so it is named
“efficient distributed snapshots”.

4 An Abstract Framework of Distributed Debugging

As we pointed out earlier, a global snapshot should be taken in such a way that in the global state S
the underlying computation possesses a stable property. An example of a stable property is “com-
putation has terminated”. This example indicates that we may partition the overall computation
into a sequence of computational phases: comp; — compy — - -+ — comp; — compy,,. So that
“ith phase has terminated” is a stable property — called a breakpoint. Thus, a global snapshot can
be used for distributed debugging. More formally, we define a distributed computation consisting
of n processes Py, Py, -+, F;,---, P,, each of which can reach a state S; after a finite time, such that
a predicate function y(.5;) holds. Also the computation reaches a global state S and possesses the
following properties, similar to those outlined by Chandy and Lamport [CL85]:

Lo AZ y(5:) — y(9)

2. Assoon as y(S) is true, the stable property holds and remains true within finite delay, so that
the computation can be halted for debugging.

3. The next computation phase can be initiated from the state S such that
(y(5i) — BPTi) AN(BPT; — y(Yi11))
where BPT is breakpoint having a boolean value.

In practice, y is an externally defined function, and is usually defined by the programmer. During
the execution of the computation, the value y(S) may be determined by a process in the system, by
applying y to global state S. BPT = true implies that the stable property holds and the breakpoint
is reached.



From the above, we derive an abstract framework of distributed debugging as follows:

Debugger 2 [ take a local snapshot;
take a global snapshot and form a global state S5
BPT :=y(S);
if BPT =true then{
halt_to_debug;
restart(S)}

Now we further elaborate this framework. The notation is a liberal extension of the Communi-
cation Sequential Processes (CSP), as defined by Tony Hoare[Hoa85]. Suppose that a distributed
computation is a CSP program:

P

[Pl 18-l P ]

where for every 1 <7 < n,

P, INIT; STATEMENTS;
We assume that each STATEMENTS, is defined as:

STATEMENTS; def «[ Oier guard; — ( sequence of statements ); |

that is, the guarded sequence of statements denote the underlying computation, where T =
ty, -+, t, is an application dependent index set; and if for some alternatives there is no guard,
then guard = true is assumed. For the purposes of debugging, we need some kind of arrangement
in the underlying computation such that the global snapshot can be taken, and debugging can be
carried out. The solution should meet some requirements, for example, it is superimposed on the
underlying computation but is independent of the specific problem that is being solved; it should
be a communication scheme to fulfill its duty but does not require additional channels; it should
also be independent of the number of processes n and should not change specific neighborhood
relationships among the F;, determined solely by the underlying computation.

A natural solution to a CSP program above is to add another alternative, guarded by the
debugging requirement, and we call this alternative the debugger:

P, o INIT;;---
«[  Oier guard; — ( sequence of statements )

O debugger;



Note that the CSP alternative debugger is the Debugger we defined in our abstract framework
above.

We assume that we have designated an arbitrary process as an initiator in the underlying
computation. It starts a global snapshot and collects the stable state information taken by all
processes. There is a predetermined spanning tree rooted at the initiating process. In the algorithm
described below, which is a combination of the Chandy and Lamport and the Spezialetti and Kearns
Algorithms, we further denote ¢;,, as a channel leading to the parent of a process P;, and ¢; jes as
a channel of a process P; to one of its k children (j = 1,--- k).

Thus, for the underlying computation,

P=[ A---[lB--- NP ],

we have three cases: P; is a root (designated as an initiator), or is an intermediate node, or is a
leaf. Using Hoare’s notation [Hoa85], these cases are described as follows:
Case 1. P; is the root.

P, o INIT;;---
«[  Oyer guardy; —red — ( sequence of statements )

O B;;—red — red := true; recording;

O;cg red; nsend[jl; ¢; ; ! marker() — send[j] := true;

O;ey red; /\ send[j]; ¢ ;? (info,done) —

jed
Done := /\ done[j]; form_global state;

jed

Ojeg Done; ¢; ;! halt() — halting;

]

where in fo def state(i) U done, and done is a boolean bit to inform a process’ parent that all local
snapshots in the subtree are complete and state information is being sent.

Whenever the root process is in a stable state, it may initiate a global snapshot by sending
out a marker message along outgoing channels to its children, while recording its own local state
(process state plus channel state), then it waits for all of them to participate in the global snapshot
and collects the information from them. When all children return a “done” message, the global
snapshot is complete, the root process may now halt the program by instructing the children to
halt.

Case 2. P; is an intermediate node. P; plays a dual role: as a root (of a subtree) and as a child.
So it must propagate the warning message to all its children, it also must collect and send the state
information of the children to its parent.

P, o INIT;;---
«[  Oyer —red; guard, — ( sequence of statements )

O;eg —received(j); ¢;,p T marker() —



recetved, := true; [red — skip
O-red — red := true; recording; |
O,eg red; msend[j]; c.; ! marker() — send[j] := true;
O;ey red; /\ send[j]; ¢q;7 (info,done) —
Done := /\ done[j]; collect_state_of _subtree;
jed
a red; Done; c;,! state_of _sublree — skip;
O red; Done; ¢;, 7 halt() — halting := true;
Ojeg halting; c.; ! halt() — halted

]

Case 3. P; is a leaf.

P, o INIT;;---
«[  Oyer —red; guard; — ( sequence of statements )
a —received; ¢;, T marker() — red := true; received := true; recording;
a red; c;p, ! state_info — done := true
] done; ¢;, 7 halt() — halted

]

When a leaf process reaches a local stable state and is instructed to take a snapshot, it records and
sends the local state to its parent, finally the leaf process halts as instructed.

In all three cases, array send(i) and receive(i) are used to ensure that marker is sent (received)
only once. Thus the overall operation of P is as follows. At a certain point in the computation
when its local state is stable, the root chooses to initiate a global snapshot by sending a marker
message, to traverse the spanning tree, and to wait for a boolean result done, which should be
true only if Vj € J y(S;) = true hold. Whoever receives this marker will spread it down the tree
and participate in a global snapshot so that y(5;) = true. Eventually, each process delivers its
state information and when done signals its parent. The whole program is now ready to halt for
debugging.

The global snapshot algorithm ensures that the snapshot state S could have occurred in the
following two senses:

e it is possible for the program to reach S from initial state So;

e it is possible to reach a later state Sy from S.

Hence, after the program halts at a breakpoint(program’s state is in S), the restart algorithm should
ensure that the program will eventually be in a state reachable from S (hence reachable from Sp).

The idea behind the restart algorithm is very simple. At the point when the program restarts,
the algorithm reestablishes the state of all the channels recorded during the global snapshot, and
puts the program into the same state as S. We omit the CSP representation of restart algorithm
which can be readily found in the literature [Mor85].



Before we complete our discussion on a global snapshot—based distributed debugging framework,
several points should be noticed:

1. The debugger always takes the system from one consistent state to another. This requires
that breakpoints must be set in such a way that they are all consistent with each other, and
with the interactions between them.

2. This framework is superimposed on the underlying computation, since it halts the compu-
tation at global state S reachable from S;_1, and then restarts it eventually from a state 5;
reachable from S, thus S;_y — S — 5;. The framework, therefore, effectively preserves
the computation upto and including state S. In this sense, the framework does not alter the
underlying computation.

3. This framework carries out the debugging function without introducing additional communi-
cation channels.

5 Conclusion

Distributed computing systems have come into widespread use only recently. Experience with
programming and debugging them is limited. This paper examines global snapshot algorithms
from a distributed debugging perspective, and proposes an abstract framework based on a global
snapshot which is defined to be a consistent state of the entire system. When a program, by means
of some finite sequence of interprocess communication, reaches global stability, where each process
is locally stable, the global stable property ( i.e., breakpoint y) holds. The system could stay in
this state for debugging, and from this state restart its execution. By using a property preserving
algorithm it is shown that this framework is superimposed on the underlying computation, but
does not interfere with it.

The presentation of our framework is inspired by CSP which provides a concise notation and
has sufficient expressive power to serve its purpose. However, it is our belief that linguistic support
(a language provision) is needed to allow for debugging of distributed programs that are supported
by high level programming languages. We are working on this issue, and hoping to report the
research result in the future.
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