
Global Snapshots for Distributed Debugging �Z. Yang and T. A. MarslandLaboratory for Distributed and Parallel ComputingComputing Science DepartmentUniversity of AlbertaEdmontonCanada T6G 2H1Email: (yang, tony)@cs.ualberta.caAbstractThe widespread adoption of distributed computing has accentuated theneed for an e�ective set of support tools. In providing such support, onefundamental problem is that of constructing a global snapshot or globalstate of a distributed computation. This paper examines global snapshotalgorithms from a distributed debugging perspective, and proposes an ab-stract framework based on global snapshots, which is de�ned to form aconsistent state of the entire system. It is shown that by using a propertypreserving algorithm this framework can be superimposed on the underly-ing computation, but not interfere with it.Keywords: Distributed computing, Distributed debugging, Global states,Snapshots.�Presented at ICCI'92, Toronto, May 28-30, 1992, and to appear in IEEE Proceedings of Fourth InternationalConference on Computing and Information (ICCI'92).

Global Snapshots for Distributed Debugging �Z. Yang and T. A. MarslandLaboratory for Distributed and Parallel ComputingComputing Science DepartmentUniversity of AlbertaEdmontonCanada T6G 2H1Email: (yang, tony)@cs.ualberta.ca1 IntroductionInterest in distributed computing has grown dramatically in recent years, because it has opened acost-e�ective way to construct large systems from a collection of computers connected via networks.Such distributed systems exhibit great potential for increased performance, system extensibility,and increased availability[LPS81]. However, to bring this potential to full play, there is a growingneed for an e�ective way to support distributed programming.A distributed program may be viewed as a collection of processes residing, executing and com-municating, but at geographically dispersed nodes which consist of one or more processors, oneor more levels of memory, and several I/O devices. Because of the parallelism inherent in a dis-tributed program, nondeterminism of the execution behavior and non-predictable communicationdelays between processes, programming distributed systems is much harder than for its counter-part | centralized systems. To meet this challenge, much research has been done from severalaspects, for example, languages and semantics as illustrated in CSP at Oxford[Hoa85], MIT'sArgus project[LS83] and Hermes in IBM[Str90]; algorithms and correctness proofs as advocatedby Dijkstra[DS80]; and implementations of several distributed systems such as Conic in ImperialCollege[KMS87] and also Argus, as well as many others. This multitude shows the importance ofobtaining e�ective solutions to problems which arise in distributed programming. Research hasshown that many problems in distributed systems can be cast in terms of the problem of detectingglobal states. Indeed, constructing a global state or global snapshot of a distributed computationis viewed as a fundamental problem. Many researchers have proposed various algorithms for takingsnapshots. Chandy and Lamport[CL85], in their landmark paper, proposed an elegant solution,called distributed snapshots, for detecting stable properties of distributed systems. This solutionis general enough to be adapted to speci�c implementation requirements and is suitable in a broadapplication domain. These uses include the detection of stable system properties such as deadlockand termination.�Presented at ICCI'92, Toronto, May 28-30, 1992, and to appear in IEEE Proceedings of Fourth InternationalConference on Computing and Information (ICCI'92). 1

Informally, a snapshot of a distributed computation is a global state which could have been seenby some external observer with any reference point, thus can be viewed as a point in the historyof the computation. We can imagine taking a sequence of such snapshots during a distributedcomputation, initiated on command by a programmer or by the detection of a snapshot condition.If such a trigger is a breakpoint in a computation, the snapshot could be a valuable debuggingtool | usually the system stops in a breakpoint, i.e. a snapshot state, until the debugging processpermits resumption of execution.A contribution of this paper is a framework established for distributed debugging. However,before we can discuss our framework in detail, we must present the system model on which snapshotalgorithms are based. We then describe the snapshot algorithms which would become a componentin our framework. The framework is presented in terms of breakpoints, local snapshots, globalsnapshots, and the halting and restarting of the underlying computation.2 The system modelA distributed system is modeled by D = fP, Cg, where P is a �nite set of processes composing anunderlying computation, C is a �nite set of communication channels via which processes communi-cate with each other. The processes do not share memory but communicate exclusively by sendingand receiving messages via channels. These channels are assumed to be reliable and synchronous.No assumptions are made about relative speed of the processes.This system model forms a high level of abstraction of a distributed system. It abstracts awaythe physical organization of the system and the particular details of the underlying communicationnetwork, it even abstracts the details of the distributed programming environment.Our model di�ers from one of Chandy and Lamport [CL85] in that the interprocess commu-nications are assumed synchronous rather than asynchronous(bu�ered). However, the followingde�nitions are derived from their work.De�nition 1. A process is de�ned as a 3-tuple: p = (S, init, E), where S is a set of processstates, init 2 S is the initial state, and E is a set of events. The process state is represented by theprogram counter and all variable values in the memory.De�nition 2. An event of a process p is de�ned as a 5-tuple (p, s, s', m, c). We say an eventoccurs if a process transitions from state s to s' and sends (or receives) message m along theoutgoing (incoming) channel c 2 C, which is incident upon p; m and c are null symbols if nomessage is involved in the event.For a process, three types of events are possible: intraprocess events, sending a message andreceiving a message between processes.De�nition 3. A global state is a set of all process' states within a system. A global snapshot isa recorded global state. A global state S is consistent if there is a predicate function y de�ned onS, and y(S) is true for a global state S of distributed system D, then y is true at all later points inthat computation. Also,� If event e can occur in global state S, then the function next(S, e) returns the global stateimmediately after the occurrence of e in global state S.� A global state S' is reachable from global state S (denoted as S ! S 0) if and only if there isa computation fSi : 0 � i � ng such that 9j; k : 0 � j � k � n; S = Sj ^ S 0 = Sk.2

In the remainder of this paper, global state and global snapshot are used interexchangeably, andrefers to a consistent state.De�nition 4. A (distributed) computation is de�ned as a sequence of events:comp = fei : 0 � i � ngwhere ei can occur in global state S. A computation is sometimes denoted by fSi : 0 � i � ng forbrevity.3 Global snapshot algorithmsOur abstract framework of distributed debugging is based on global snapshots of the system.A global snapshot is taken at some point within a distributed computation that has a stableproperty. It is a two phase procedure: a recording phase in which all processes are required to taketheir respective local snapshots; and a dissemination phase in which a global state is formed fromlocal snapshots. Several global snapshot algorithms have appeared in the literature with di�erentassumptions about the system. Among these, Chandy and Lamport algorithm[CL85] is a landmarkone that assumes asynchronous and FIFO channels. It uses a process coloring scheme to enforcethe consistency of a global snapshot. All events are de�ned to be WHITE if they precede thesnapshot and RED if they occur afterwards. However, this algorithm is concerned mainly withtaking local snapshots, and is highly ine�cient. Spezialetti and Kearns [SK86] made a signi�cantimprovement to the Chandy and Lamport algorithm. They combined a two phase approach intoan integrated algorithm and cleverly use a form of the Chandy and Lamport method for takinglocal snapshots, and so assemble the global snapshot in an e�cient way. Vankatesan proposed anincremental snapshot algorithm [Ven89] to reduce message complexity. It uses the fact that a recentsnapshot of the system is already available, and that the change in the system between successivesnapshots is likely to be small (namely, a message may not have been sent on some channel since theprevious global snapshot). The Li, Radhakrishnan, and Venkatesh Algorithm[LRV87] gets a globalsnapshot in a non-FIFO channel. Accordingly, it uses Marker no to tag each message (includingmarker messages) sent along the channel. The Lai and Yang algorithm [LY87] also works withnon-FIFO channels, and requires no control message at all in taking a snapshot. Instead, it usesan extra bit (illustrated as a message color: white and red) in all messages that are sent after aprocess records its state. Morgan provides an elegant treatment of the snapshot algorithm based onfactorization [Mor85], i.e., the snapshot algorithm can be factored into two separate parts: a logicalclock algorithm and a remaining{time{based algorithm. A detailed survey of all these methods isgiven in our report [YM92].The snapshot algorithm in our distributed debugging framework is based on the Spezialetti andKearns algorithm, which is summarized here to provide a basis of understanding for our work. Incontrast to monochrome coloring of the Chandy and Lamport algorithm, Spezialetti and Kearns usea multi{color scheme for local snapshoting. Each process possesses two kinds of coloring variables:id color and local color. An id color is a unique identifying color (not WHITE) which is its networkname and does not change over the lifetime of the system; and a local color, initially WHITE. Aprocess is said to be of the color of local color. An initiator changes its color by using its identifyingcolor and sets local color to its id color, and then send out a wave of warning messages which arecolored its own id color. 3

When a white process receives a colored warning, it sets local color to the color of the receivedwarning and follows the Chandy and Lamport algorithm, thus incorporating the process into thesnapshot. As the warning wave travels through the system, a region of the initiator's color isestablished, and all these processes have their local color set to the local color of the initiator.The Spezialetti and Kearns Algorithm thus allows for several initiators of a global snapshot, inthis case regions of various colors form. Processes at the border of the regions will have di�erentcolors depending on the color of the �rst warning received on any of the incoming channels. Asnapshot is complete when all processes of the system are non-WHITE. It is assumed that there isa spanning tree rooted at the initiator in each region that was created by the initiator when it sentout a warning in the recording phase. Along the tree, each process sends its local snapshot to theinitiator. The di�erently colored warning by di�erent initiators lets the processes at the boundaryof the regions identify the initiator in the neighbor region. This identi�cation is also passed to theinitiator of the region.Once the initiator of a region has received local snapshots from all the processes in its region,it also knows the identities of all initiators in all adjacent regions. The initiator in each regiondisseminates the local snapshots received to the initiators in the adjacent regions. This goes therounds until each initiator has received local snapshots from all non-adjacent regions as well.The Spezialetti and Kearns Algorithm results in a more e�cient global snapshot via phase-merging, in which each earlier phase provides useful information to the later phase, so it is named\e�cient distributed snapshots".4 An Abstract Framework of Distributed DebuggingAs we pointed out earlier, a global snapshot should be taken in such a way that in the global state Sthe underlying computation possesses a stable property. An example of a stable property is \com-putation has terminated". This example indicates that we may partition the overall computationinto a sequence of computational phases: comp1 �! comp2 �! � � � �! compi �! compk;. So that\ith phase has terminated" is a stable property | called a breakpoint. Thus, a global snapshot canbe used for distributed debugging. More formally, we de�ne a distributed computation consistingof n processes P1; P2; � � � ; Pi; � � � ; Pn; each of which can reach a state Si after a �nite time, such thata predicate function y(Si) holds. Also the computation reaches a global state S and possesses thefollowing properties, similar to those outlined by Chandy and Lamport [CL85]:1. Vni=1 y(Si) �! y(S)2. As soon as y(S) is true, the stable property holds and remains true within �nite delay, so thatthe computation can be halted for debugging.3. The next computation phase can be initiated from the state S such that(y(Si) �! BPTi) ^ (BPTi �! y(Si+1))where BPT is breakpoint having a boolean value.In practice, y is an externally de�ned function, and is usually de�ned by the programmer. Duringthe execution of the computation, the value y(S) may be determined by a process in the system, byapplying y to global state S. BPT = true implies that the stable property holds and the breakpointis reached. 4

From the above, we derive an abstract framework of distributed debugging as follows:Debugger :: [take a local snapshot;take a global snapshot and form a global state S;BPT := y(S);if BPT = true thenfhalt to debug;restart(S)g]Now we further elaborate this framework. The notation is a liberal extension of the Communi-cation Sequential Processes (CSP), as de�ned by Tony Hoare[Hoa85]. Suppose that a distributedcomputation is a CSP program: P = [P1k � � �kPik � � �kPn]where for every 1 � i � n; Pi :: INITi; STATEMENTSiWe assume that each STATEMENTSi is de�ned as:STATEMENTSi def= �[2t2T guardt �! (sequence of statements)t]that is, the guarded sequence of statements denote the underlying computation, where T =t1; � � � ; tm is an application dependent index set; and if for some alternatives there is no guard,then guard = true is assumed. For the purposes of debugging, we need some kind of arrangementin the underlying computation such that the global snapshot can be taken, and debugging can becarried out. The solution should meet some requirements, for example, it is superimposed on theunderlying computation but is independent of the speci�c problem that is being solved; it shouldbe a communication scheme to ful�ll its duty but does not require additional channels; it shouldalso be independent of the number of processes n and should not change speci�c neighborhoodrelationships among the Pi, determined solely by the underlying computation.A natural solution to a CSP program above is to add another alternative, guarded by thedebugging requirement, and we call this alternative the debugger:Pi :: INITi ; � � ��[2t2T guardt �! (sequence of statements)t;2 debugger;] 5

Note that the CSP alternative debugger is the Debugger we de�ned in our abstract frameworkabove.We assume that we have designated an arbitrary process as an initiator in the underlyingcomputation. It starts a global snapshot and collects the stable state information taken by allprocesses. There is a predetermined spanning tree rooted at the initiating process. In the algorithmdescribed below, which is a combination of the Chandy and Lamport and the Spezialetti and KearnsAlgorithms, we further denote ci;p as a channel leading to the parent of a process Pi, and ci;j2J asa channel of a process Pi to one of its k children (j = 1; � � � ; k).Thus, for the underlying computation,P = [P1k � � �kPik � � �kPn];we have three cases: Pi is a root (designated as an initiator), or is an intermediate node, or is aleaf. Using Hoare's notation [Hoa85], these cases are described as follows:Case 1. Pi is the root.Pi :: INITi ; � � ��[2t2T guardt;:red �! (sequence of statements)t;2 Bi;:red �! red := true; recording;2j2J red; :send[j]; ci;j !marker() �! send[j] := true;2j2J red; ĵ2J send[j]; ci;j? (info; done) �!Done := ĵ2J done[j]; form global state;2j2J Done; ci;j ! halt() �! halting;]where info def= state(i) [done, and done is a boolean bit to inform a process' parent that all localsnapshots in the subtree are complete and state information is being sent.Whenever the root process is in a stable state, it may initiate a global snapshot by sendingout a marker message along outgoing channels to its children, while recording its own local state(process state plus channel state), then it waits for all of them to participate in the global snapshotand collects the information from them. When all children return a \done" message, the globalsnapshot is complete, the root process may now halt the program by instructing the children tohalt.Case 2. Pi is an intermediate node. Pi plays a dual role: as a root (of a subtree) and as a child.So it must propagate the warning message to all its children, it also must collect and send the stateinformation of the children to its parent.Pi :: INITi ; � � ��[2t2T :red; guardt �! (sequence of statements)t;2j2J :received[j]; ci;p ? marker() �!6

receivedp := true; [red �! skip2:red �! red := true; recording;]2j2J red; :send[j]; cc;j !marker() �! send[j] := true;2j2J red; ^ send[j]; cc;j? (info; done) �!Done := ĵ2J done[j]; collect state of subtree;2 red; Done; ci;p! state of subtree �! skip;2 red; Done; ci;p ? halt() �! halting := true;2j2J halting; cc;j ! halt() �! halted]Case 3. Pi is a leaf.Pi :: INITi ; � � ��[2t2T :red; guardt �! (sequence of statements)t;2 :received; ci;p ? marker() �! red := true; received := true; recording;2 red; ci;p ! state info �! done := true2 done; ci;p ? halt() �! halted]When a leaf process reaches a local stable state and is instructed to take a snapshot, it records andsends the local state to its parent, �nally the leaf process halts as instructed.In all three cases, array send(i) and receive(i) are used to ensure that marker is sent (received)only once. Thus the overall operation of P is as follows. At a certain point in the computationwhen its local state is stable, the root chooses to initiate a global snapshot by sending a markermessage, to traverse the spanning tree, and to wait for a boolean result done, which should betrue only if 8j 2 J y(Si) = true hold. Whoever receives this marker will spread it down the treeand participate in a global snapshot so that y(Si) = true. Eventually, each process delivers itsstate information and when done signals its parent. The whole program is now ready to halt fordebugging.The global snapshot algorithm ensures that the snapshot state S could have occurred in thefollowing two senses:� it is possible for the program to reach S from initial state S0;� it is possible to reach a later state S1 from S.Hence, after the program halts at a breakpoint(program's state is in S), the restart algorithm shouldensure that the program will eventually be in a state reachable from S (hence reachable from S0).The idea behind the restart algorithm is very simple. At the point when the program restarts,the algorithm reestablishes the state of all the channels recorded during the global snapshot, andputs the program into the same state as S. We omit the CSP representation of restart algorithmwhich can be readily found in the literature [Mor85].7

Before we complete our discussion on a global snapshot{based distributed debugging framework,several points should be noticed:1. The debugger always takes the system from one consistent state to another. This requiresthat breakpoints must be set in such a way that they are all consistent with each other, andwith the interactions between them.2. This framework is superimposed on the underlying computation, since it halts the compu-tation at global state S reachable from Si�1, and then restarts it eventually from a state Sireachable from S, thus Si�1 �! S �! Si. The framework, therefore, e�ectively preservesthe computation upto and including state S. In this sense, the framework does not alter theunderlying computation.3. This framework carries out the debugging function without introducing additional communi-cation channels.5 ConclusionDistributed computing systems have come into widespread use only recently. Experience withprogramming and debugging them is limited. This paper examines global snapshot algorithmsfrom a distributed debugging perspective, and proposes an abstract framework based on a globalsnapshot which is de�ned to be a consistent state of the entire system. When a program, by meansof some �nite sequence of interprocess communication, reaches global stability, where each processis locally stable, the global stable property (i.e., breakpoint y) holds. The system could stay inthis state for debugging, and from this state restart its execution. By using a property preservingalgorithm it is shown that this framework is superimposed on the underlying computation, butdoes not interfere with it.The presentation of our framework is inspired by CSP which provides a concise notation andhas su�cient expressive power to serve its purpose. However, it is our belief that linguistic support(a language provision) is needed to allow for debugging of distributed programs that are supportedby high level programming languages. We are working on this issue, and hoping to report theresearch result in the future. AcknowledgmentThe research of �rst author is sponsored in part by an NSERC International Scienti�c Ex-change Award, and also through NSERC grant OPG7902. Access to these sources is gratefullyacknowledged.[CL85] K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining global statesof distributed systems. ACM Transaction on Computer Systems, 3(1), February 1985.[DS80] E. W. Dijkstra and C. S. Scholten. Termination Detection for Di�using Computation.Information Processing Letter, 11(8), August 1980.8

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.[KMS87] J. Kramer, J. Magee, and M. Sloman. The CONIC Toolkit for Builiding DistributedSystems. In IEE Proceedings D, pages 73{82, March 1987. Vol. 134, No. 2.[LPS81] B. W. Lampson, M. Paul, and H. J. Siegert. Distributed Systems { Architecture andImplementation: An Advanced Course. Springer-Verlag, 1981. LNCS 105.[LRV87] H. F. Li, T. Radhakrishnan, and K. Venkatesh. Global State Detection in Non-FIFONetworks. In Proceedings of 7th Conference on Distributed Computing Systems, pages364{370, 1987.[LS83] B. Liskov and R. Schei
er. Guardians and Actions: Linguistic Support for Robust,Distributed Program. ACM Transactions on Programming Languages and Systems, 5(3),1983.[LY87] Ten H. Lai and Tao H. Yang. On distributed snapshots. Information Processing Letters,25(5), May 1987.[Mor85] Carroll Morgan. Global and logical time in distributed algorithms. Information ProcessingLetters, 20(5), May 1985.[SK86] Madalene Spezialetti and Phil Kearns. E�cient distributed snapshots. In Proceedings ofSixth International Conference on Distributed Computing Systems, pages 382{388, 1986.[Str90] Robert E. Strom. Hermes: An Integrated Language and System for Distributed Program-ming. In 1990 Workshop on Experimental Distributed Systems, Huntsville, AL, October1990.[Ven89] S. Venkatesan. Message-optimal incremental snapshots. In Proceedings of nineth Inter-national Conference on Distributed Computing Systems, pages 53{60. IEEE ComputerSociety PresS, 1989.[YM92] Z. Yang and T. A. Marsland. Global Snapshots for Distributed Debugging: An Overview.Technical Report TR 92-xx, Computing Science Department, University of Alberta, (inpreparation), 1992.
9

