
PHASED STATE SPACE SEARCH

T.A. MARSLAND and N. SRIMANI

Computing Science Department, University of Alberta, Edmonton, Canada T6G 2H1.

ABSTRACT

PS*, a new sequential tree searching algorithm based on the State
Space Search (SSS*), is presented. PS*(k) divides each MAX node
of a game tree into k partitions, which are then searched in sequence.
By this means two major disadvantages of SSS*, storage demand
and maintenance overhead, are significantly reduced, and yet the
corresponding increase in nodes visited is not so great even in the
random tree case. The performance and requirements of PS* are
compared on both theoretical and experimental grounds to the well
known αβ and SSS* algorithms. The basis of the comparison is the
storage needs and the average count of the bottom positions visited.

To appear in the Procs. of the ACM/IEEE Fall Joint Computer
Conference, Dallas, Nov. 1986.

________________

* N. Srimani is now at: Computer Science Department, Southern Illinois University, Carbondale, IL 62901.



- 2 -

INTRODUCTION
Phased search is a new variation on a method for traversing

minimax game trees. Although based on SSS*1, phased search has a
range of performance which represents a continuum of algorithms
from SSS* to αβ2. The αβ algorithm was the first minimax search
method to incorporate pruning into game-playing programs, and
modified versions of it still predominate, even though more efficient
pruning methods exist. For example, SSS* never visits more termi-
nal nodes than αβ, achieving better pruning at the expense of a larger
storage requirement. Here better pruning implies fewer terminal node
(bottom position) visits, although other measures of performance,
such as execution time and storage needs, may be more important.
Even so, the number of bottom positions (NBP) visited is particu-
larly relevant, because in any game-playing program the evaluation
function spends significant time in assessing these nodes. For this
reason, SSS* has the potential to reduce the search time significantly
by the virtue of its better pruning. However, for uniform trees with a
constant width of w branches and a fixed depth of d ply, SSS* must
maintain an ordered list (called OPEN) of O (w d /2) entries. Because
of this abnormally high memory demand and the considerable time
spent in maintaining the OPEN list, SSS* is not widely used, despite
its known pruning dominance over αβ.

In its general form, the phased search algorithm, denoted here
by PS*, has lower storage requirements than SSS*, but at the same
time consistently outperforms αβ for trees of practical importance3.
The Phased Search algorithm with k phases, PS*(k), partitions the
set of all immediate successors of MAX nodes into k groups (each of
maximum size

�
w /k � ) and limits its search to one partition per

phase. It does not generate all the solution trees simultaneously as
does SSS*, generating instead only a subset of them. The algorithm
searches the partitions from left to right one at a time. Like SSS*, the
search strategy within each phase of PS* is non-directional, but with
a recursively sequential partitioning of the MAX nodes. Note that the

storage requirement of PS*(k) is O ((
k
w__ )d /2), because PS*(k) searches

only w/k successors at alternate levels of the game tree (i.e., at the
MAX nodes).

GAME TREES
To provide a formal footing the following definitions are intro-

duced. In a uniform tree, T(w,d), every interior node has exactly w
immediate successors and all terminal nodes are at the same distance
d from the root. The term random tree will be applied to those uni-
form trees whose terminal nodes are assigned random values from a
uniform distribution. Such trees are commonly used for simulation
as well as asymptotic studies of search algorithm performance,
because they are regular in structure and are simple to analyze. In
ordered trees the best branch at any node is one of the first w/R suc-
cessors. Such a tree is said to be of order R. The higher the value of
R the stronger the order. For random trees R = 1, while R = w
corresponds to a minimal tree, that is, a tree in which the first



- 3 -

successor is everywhere best. More useful are probabilistically
ordered trees with parameter (p,R). Here it is only with probability p
that the best subtree is among the first w/R successors. These
definitions are useful since game tree searching algorithms have been
compared on a basis of their effectiveness on random uniform
trees4, 5 and on probabilistically ordered trees6, 7.

After generating the list of moves (a set of successor positions),
most game playing programs use some knowledge of desirable
features to sort the moves in order of merit. Often, the knowledge is
quite accurate so the best successor will be found among the first few
considered. Thus real game trees are not random, but have been
approximated by strongly ordered trees6. These in turn are similar
to probabilistically ordered trees with p=0.7 and R=w. The experi-
mental results reported here have been obtained from searches of
both ordered and random trees, so that the effectiveness of search
algorithms can be observed under different conditions. More
detailed results are to be found in Srimani’s thesis3.

PHASED SEARCH (PS*) ALGORITHM
Let PS* with k partitions be denoted by PS*(k). For simplicity,

it is assumed that the partitions are of equal size. That is, the width w
of the uniform search tree is a multiple of the number of partitions.
This is not a restriction, since PS*(k) generalizes easily to encompass
arbitrary partition sizes.

Let P(n) be the Dewey-decimal identifier of the parent of a
node n, let PSIZE be the size of each partition and let V(n) be the
static evaluation at a terminal node, n. We will show that PS*(1) has
identical performance to SSS*, and PS*(w) is equivalent to αβ. PS*
is based on SSS*, but maintains two lists: one is like the OPEN list
in SSS*, and the other is a BACKUP list to keep track of partially
expanded MAX nodes. OPEN consists of triples (n,s,hi), where n is
the node identifier, s is the status (an element in the set {LIVE,
SOLVED}), and hi is a bound on the merit of that state (a real
number in [-∞,+∞]). As in SSS*, the OPEN list is maintained as an
ordered list of triples with non-increasing value of hi. The BACKUP
list consists of vectors of the form (n,last,low,high), where n is the
identifier of a MAX node, last is the node identifier of the last son of
n included in OPEN, and low and high are the current lower and
upper bounds on the value of node n. Whenever a MAX node in the
OPEN list is solved or pruned, the corresponding vector is deleted
from BACKUP.



- 4 -

64

0

4

3

2

1

4.1

3.1

2.1

1.1

7

1

6

9

26

20

10

41

26

41

37

42

34

44

36

Figure 1: How PS*(2) Partitions a Tree.

The operation of phased search is seen most easily by an exam-
ple. Figure 1 shows the search of a tree T(4,3) by PS*(2). Note that
the successors of MAX nodes are divided into two partitions of equal
size, as shown by broken lines in Figure 1. This partitioning is done
recursively at each MAX node in the tree, so that the successors of a
MAX node in two different partitions are never added to the OPEN



- 5 -

list in the same phase of the PS* algorithm. Note also that, as with
SSS*, at every MIN node only one successor at a time is included in
the search tree. Thus for the example in Figure 1, at any instant no
more than four terminal nodes are present in the OPEN list for
PS*(2), while in contrast SSS* would have sixteen nodes present in
OPEN simultaneously at some points in the search. Finally, note
that PS*(2) will always work well if the best successor occurs in the
first half of the subtrees at nodes which must be fully expanded (i.e.,
to use Knuth and Moore’s terminology2, at the type 1 and type 3
nodes).

Description of the Algorithm
Following the lines of Stockman’s SSS* algorithm, and using

his Γ operator terminology1, PS*(k) is formed as follows:

(1) For simplicity, assume that w is a multiple of k and set PSIZE =
w/k.

(2) Place the initial state (n=root, s=LIVE, hi=+∞) on the OPEN list.

(3) Repeatedly retrieve the next state (n,s,hi) from OPEN (this node
has the currently highest merit, hi) and invoke the Γ operator,
described in Table 1, until the termination condition is reached.

In Table 1, case 1 corresponds to the retrieval of a LIVE interior
MAX or MIN node. If a MAX node is found the first partition is
added to OPEN, otherwise (for a MIN node) only the first successor
is taken. In the case of a MAX node, an entry is also added to the
BACKUP list. For a LIVE terminal node, Γ either inserts n into
OPEN with SOLVED status, or inserts the parent of n, P(n), into
OPEN with SOLVED status. The choice is made in alternatives 2a
& 2b and depends on how V(n), the evaluation of node n, compares
to the low bound. For a SOLVED MAX node, n, Γ purges the suc-
cessors of P(n) from the BACKUP list, and either adds the next suc-
cessor of P(n) onto OPEN or prunes by pushing the solved parent
node onto the OPEN list, cases 3b & 3c respectively. Similarly for
SOLVED MIN nodes, Γ either adds another partition to OPEN or
purges the pruned successor partitions. Here case 4(b) is especially
complex, since it must deal with the situation when the parent MAX
node has another partition to process. More than any other, it is the
actions in case 4 which distinguish PS* from SSS*.

Correctness of PS*
To make it clear that the PS* algorithm always returns the

minimax value, the following theorem is provided.

Theorem.
PS*(k), with its state operator Γ, computes the minimax value of
the root for all trees.

Proof: It is necessary to show that

(1) PS* always terminates, and

(2) PS* does not terminate with an inferior solution.



- 6 -

The aim of a game tree search is to find the best solution tree.
Each solution tree is a unique subtree of the game tree and is made
up of all successors of each MIN node, but only one successor of
each MAX node it contains. The minimax value of a game tree is
the value of the best solution tree. Hence following the notation of
Stockman1, g(root) ≥ f(Troot ), where f(Troot ) is the value of a solution
tree and g(root) is the minimax value. Also, if T 0root is the best solu-
tion tree then g(root) = f(T 0root ). It follows that the algorithm always
terminates after a finite number of steps, since there are only a finite
number of solution trees, and any subtree once solved or discarded is
not searched again.

PS* manipulates its search among different solution trees, in
order to find the best one as easily as possible. Within a solution tree
it carries out a minimax search, and uses the upper bound stored in
the BACKUP list to help prune the search of redundant subtrees. For
any solution tree, Troot , f(Troot ) also represents the minimax value
returned by PS*, provided PS* has searched that solution tree com-
pletely. All that remains is to show that PS* finds the best solution
tree T 0root . By contradiction, suppose that, for some k ≥ 1, PS*(k)
terminates with a solution tree T 1 which is inferior to T 0, that is,
f(T 1root ) < f(T 0root ). This cannot happen if T 0 and T 1 occur in the
same partition, since PS* will select the best for the same reason that
SSS* does. If T 0 is in a previous partition, then T 0 would be
SOLVED before T 1 is encountered, and there would be a triple
(n,s,hi 0) for the solution tree T 0 such that, hi 0 = f(T 0root ) ≥ f(T 1root ).
The value hi 0 is held as a lower bound in the BACKUP list, and so
prevents T 1 from being fully expanded and selected. Otherwise, if
T 1 is SOLVED and T 0 occurs in one of the later partitions, the
corresponding state (n,s,hi 0) would appear at the front of OPEN
before the root node can be declared SOLVED. When T 0 appears,
the corresponding solution tree would be evaluated fully and found
to be better than T 1, since as the best solution tree, T 0, cannot be
pruned.

From the theorem it follows naturally that if the number of
phases in PS* is k, then

for k=1, PS*(k) is equivalent to SSS* and
for k=w, PS*(k) is equivalent to αβ,

as far as nodes visited is concerned, since PS*(w) reduces to a
depth-first left to right (directional) search. Also, for k > 1, the space
requirement for OPEN is less than the w d /2 needed for SSS*, since

the maximum size of OPEN for PS* with k partitions is at most

(
k
w__ )d /2 entries.

Finally the BACKUP list, for partially expanded MAX nodes,
requires

j =0
Σ

���
2

d −1_____ ���
(

k
w__ )j entries, which is about (

k
w__ )

���
2

d −1_____ ��	
entries.



- 7 -

Thus for PS*(k) the size of BACKUP is about k /w of the size of
OPEN, and the two lists together occupy significantly less space than
the single OPEN list used by SSS*. Consequently, if S(A) denotes
the space needed by an algorithm A, then S(PS*(k)) ≤ S(SSS*) for
any k > 1 and for any depth and width of the search tree.

Comparison with other Methods
Let R be the order of the tree being searched, and let PS*(k) denote
the Phased Search algorithm with k phases. Using the notation of
Roizen and Pearl4, let I(A) represent the number of bottom positions
visited by algorithm A.

(1) For minimal trees (optimally ordered game trees), I(SSS*) =
I(PS*(k)) = I(αβ), because all algorithms traverse the best branch
first and so achieve maximal cut-offs.

(2) For ordered trees, when p = 1 and R ≥ k, I(PS*(k)) ≤ I(SSS*) ≤
I(AB), since the best solution is always among the first w/R branches
at every node in the solution tree. Although there may not be many
cases where strict inequality holds, PS*(k) is at least as good as
SSS* as long as R ≥ k, because the best solution is always found in
the first partition. Figure 2 provides an example where I(PS*(2)) <
I(SSS*), for a tree of depth 5 and width 4. Only that part of the tree
which is enough to demonstrate the point has been presented.
Assume that node 2.1 is solved with value 64, so the value of node
2.2 has an upper bound of 64. Consequently, 2.2.1.1.1 and 2.2.1.1.2
are solved with values 18 and 21 respectively. Then 2.2.2.1, 2.2.2.2,
2.2.2.3 and 2.2.2.4 are included in OPEN and solved with values ≥
64, hence node 2.2.2 is solved. Note that nodes crossed in Figure 2
are visited by SSS* but not by PS*(2).



- 8 -

0

≤64

4321

7070707034302118

2.22.1

50

64

2.2.1.1

2.2.1.1.1

Figure 2: Tree T(4,5) in which PS*(2)
is better than SSS*.

(3) For ordered trees, if p = 1 and R < k, I(PS*) can be greater than
I(SSS*). Similarly, if the tree is random, then PS*(k) will occasion-
ally evaluate some extra nodes. However, our experimental results
show that even when R < k, in most of the cases (including random
trees) PS*(k) is still better than the αβ algorithm3.

(4) There are trees which are unfavorable for PS*, so that I(PS*(k))
> I(αβ). Such trees are statistically insignificant, and are uncommon
in typical applications, because they represent a worst first ordering
within every partition.

PERFORMANCE COMPARISON
The search algorithms PS*(k), SSS*, and αβ have been imple-

mented on a VAX 11/780 using the C language. Experimental



- 9 -

investigations were carried out with both ordered and random trees,
using different combinations of depth, width and tree ordering.
Some of the results on minimal, random, and ordered versions of the
uniform trees T(8,4), T(16,4), T(24,4), T(32,4) and T(8,6) are
presented. For the trees of width 8, 16 and 24, orders R = 2 and 4
were searched and for trees of width 32, order 8 was also studied.
For each combination, 100 different trees were generated using a
modified version of the scheme developed by Campbell8, and the
average NBP visited by each algorithm are presented in the tables.
The maximum amount of space needed is also given in terms of list
entries.

Based on the search of 100 different trees, the following obser-
vations about the average performance of PS*(k) are possible:

(1) Data in Tables 2 through 6 show that on random trees (R = 1),
the average NBP for PS*(2) is much less than for αβ, but more than
for SSS*. For trees of order R = 2 and higher, PS*(2) and SSS*
have the same performance, but it is clear that PS*(2) needs much
less space.

(2) SSS* is always better than αβ and is statistically better than PS*
for both random and probabilistically ordered trees, Table 4. For
perfectly ordered trees, each algorithm visits minimum bottom posi-
tions.

(3) Table 4 shows the results on both ordered and probabilistic trees
of depth=4, width=24 and of orders R=2 and 4. In the probabilistic
case, the average NBP are slightly greater, as we would expect,
because at every MAX node there is some nonzero probability that
the best branch is not found in the first partition searched by PS*.

(4) For most of the trees, I(PS*(i)) < I(PS*(j)), for 1 ≤ i < j ≤ w.
That is, PS*(k) visits terminal nodes in increasing number with
increasing k. There are some trees for which this is not true3. It is
also known that the above relation marginally fails to hold for
ordered trees (probability p=1), see for example Tables 5 and 6
where PS*(2) and PS*(4) often have statistically insignificant better
performance than SSS* (i.e., PS*(1)) on order R = 4 trees.

Table 2: Average NBP on Trees
with depth=4 and width=8.___________________________________________

Search R = 1 R = 2 R = 4 R = 8 Space
method (random) (minimal) needs___________________________________________
SSS* 439 287 190 127 64
PS*(2) 571 286 190 127 21
PS*(4) 634 375 190 127 7
αβ 689 415 248 127 4___________________________________________

























Table 3: Average NBP on Trees
with depth=4 and width=16.



- 10 -

___________________________________________
Search R = 1 R = 2 R = 4 R = 16 Space
method (random) (minimal) needs___________________________________________
SSS* 2250 1637 1146 511 256
PS*(2) 2829 1637 1146 511 73
PS*(4) 3363 2114 1146 511 21
PS*(8) 3743 2388 1496 511 7
αβ 3952 2981 1664 511 4___________________________________________

��
��
��
��

��
��
��
��

Table 4: Average NBP on Trees
with depth=4 and width=24.______________________________________________

For minimal trees of depth 4 and width 24 NBP=1151.______________________________________________
prob=1.00 prob=0.90

Search R = 1 R = 2 R = 4 R = 2 R = 4 Space
method (random) needs______________________________________________
SSS* 5805 4423 3206 4702 3513 576
PS*(2) 7345 4423 3203 4956 3690 157
PS*(4) 8650 5718 3201 6460 3940 43
PS*(6) 9207 6222 3950 7126 4649 21
PS*(8) 9753 6652 4300 7517 4938 13
αβ 10602 7437 5031 8364 5660 4______________________________________________

��
��
��
��
��
��

��
��
��
��
��
��

Table 5: Average NBP on Trees
with depth=4 and width=32.__________________________________________________

Search R = 1 R = 2 R = 4 R = 8 R = 32 Space
method (random) (minimal) needs__________________________________________________
SSS* 10816 8493 6424 4633 2047 1024
PS*(2) 13989 8478 6422 4632 2047 273
PS*(4) 16464 11089 6420 4632 2047 73
PS*(8) 18512 12782 8313 4631 2047 21
PS*(16) 20145 13966 9330 6209 2047 7
αβ 20836 14665 10046 6974 2047 4__________________________________________________













Table 6: Average NBP on Trees
with depth=6 and width=8.___________________________________________

Search R = 1 R = 2 R = 4 R = 8 Space
method (random) (minimal) needs___________________________________________
SSS* 6044 3475 1932 1023 512
PS*(2) 9984 3437 1921 1023 85
PS*(4) 11283 5213 1915 1023 15
αβ 11565 5555 2659 1023 6___________________________________________

��
��
��
�

��
��
��
�

Choice of Partition Count
From the previous discussions, it is clear that selection of the

partition count, k, is important if PS*(k) is to achieve its maximum
benefit. If from some previous knowledge we know that the tree is of
order R, we can choose k = R. Then I(PS*(k)) would be the same as
I(SSS*), but the storage requirement of PS*(k) would be about



- 11 -

1/(k d /2) of that of SSS*. Clearly, there is a trade-off between space
and bottom positions visited. If k=w, minimum space is required,
but NBP will increase to that of an αβ search. On the other hand, if
k=1 the NBP would be low but space needed would be as much as
for SSS*. Thus PS* forms a continuum of alternatives between SSS*
and αβ. PS* can be made effective by using information about the
ordering properties of game trees, since one can choose the parameter
k both on the basis of the tree ordering and on the memory space
available. Different ordering schemes must be considered, since
ordered trees often are more typical of those appearing in applica-
tions than are random trees.

Storage needs are also significant. For example, SSS* needs
1024 entries in the OPEN list to search a tree of depth=4 and
width=32, whereas PS*(4) requires 64+9 = 73, and PS*(8) needs
only 16+5 = 21 for both the OPEN and BACKUP lists. Note that
although PS* maintains two ordered lists, the total size of the two
lists is much less than that of the single list of SSS*. Also, an
ordered list of size 64 or 16 is much cheaper to maintain than a list of
1024 elements. Hence, the time spent by PS* manipulating these
overhead lists may be less than that needed by SSS*.

CONCLUSION
The new algorithm PS*(k) can be viewed as a continuum

between SSS* and αβ, as it attempts to make use of the best charac-
teristics of both. The αβ algorithm processes nodes in a game tree
much faster than SSS*, but SSS*, making more use of the
knowledge gained at earlier steps, prunes better than αβ and as a
result visits fewer bottom positions. SSS* achieves this better prun-
ing at the expense of extra bookkeeping which needs more storage
and considerable time for the update process. The phased search
algorithm PS* also does some bookkeeping and achieves much
better pruning than αβ in a statistical sense. Since PS* concentrates
only on a subset of the solution trees in each phase, it consequently
needs smaller storage and may even require less execution time than
SSS*. Thus PS*(k) can be comparable to SSS* in performance,
especially on bushy trees (i.e., trees with w > 20), and yet at the same
time has significantly lower storage overhead than SSS*. Because of
the built-in flexibility provided by phasing and the possibility for
choosing the partition size parameter (PSIZE), PS* is expected to be
useful in practice. PS* becomes most efficient if parameter selection
can be done using some a_ priori_____ knowledge of the expected location
of the solution.

Experimental results reported here are based on a game tree
model, and the algorithm remains to be tested with a typical game-
playing program. However, experience with other alternatives to αβ7

shows that performance on probabilistic uniform trees is a good indi-
cator of performance in a typical application9. In the work reported
here, the successors of a MAX node in the PS*(k) algorithm are
divided into partitions of equal sizes. This is not a restriction, but
further work is necessary to determine if unequal partition sizes offer
a performance advantage in practice. Certainly for probabilistically



- 12 -

ordered trees increasing partition sizes could be useful.

Acknowledgements

Financial support in the form of Canadian Natural Sciences and
Engineering Research Council Grant A7902 made the experimental
work possible. Discussions with Liwu Li on theoretical points and
the independent implementation of PS* by Erik Altmann helped and
were appreciated.

References

[1] G.C. Stockman, A minimax algorithm better than
alpha-beta?, Artificial Intelligence 12(2), (1979), 179-
196.

[2] D. Knuth and R. Moore, An analysis of alpha-beta
pruning, Artificial Intelligence 6(4), (1975), 293-326.

[3] N. Srimani, A new algorithm (PS*) for searching game
trees, M.Sc. thesis, Computing Science Dept.,
University of Alberta, Edmonton, July 1985.

[4] I. Roizen and J. Pearl, A minimax algorithm better than
alpha-beta? Yes and No., Artificial Intelligence 21(2),
(1983), 199-220.

[5] A. Musczycka and R. Shinghal, An empirical
comparison of pruning strategies in game trees, IEEE
Trans. on Systems, Man and Cybernetics SMC-15, 3
(1985), 389-399.

[6] T.A. Marsland and M. Campbell, Parallel search of
strongly ordered game trees, Computing Surveys 14(4),
(1982), 533-551.

[7] A. Reinefeld, J. Schaeffer and T.A. Marsland,
Information acquisition in minimal window search,
Procs. 9th Int. Joint Conf. on Art. Intell., Los Angeles,
1985, 1040-1043.

[8] M.S. Campbell and T.A. Marsland, A comparison of
minimax tree search algorithms, Artificial Intelligence
20(4), (1983), 347-367.

[9] T.A. Marsland, Relative efficiency of alpha-beta
implementations, Procs. 8th Int. Joint Conf. on Art.
Intell., (Los Altos: Kaufmann), Karlsruhe, West
Germany, Aug. 1983, 763-766.



- 13 -

Table 1: State Space Operator (Γ) for PS*(k).______________________________________________________________________________________________
k is the partition count, and PSIZE = w/k is the partition size.

Let n be the m-th successor of its parent node i, where i = P(n).
Thus, n = i.m, provided n is not a root node.______________________________________________________________________________________________

Case Condition of the Action of Γ
input state (n,s,hi)______________________________________________________________________________________________

1. s=LIVE, n is interior
1a Type(n) = MAX Push states (n.j,s,hi) for all j=1,...,PSIZE onto the OPEN stack in reverse order.

Push (n,PSIZE,low,hi) onto BACKUP, where low is the lower bound of n and hi
is the upper bound. Note that, if n = root, then low=-∞ else low = low of P(i)
stored in BACKUP.

1b Type(n) = MIN. Push (n.1,s,hi) onto the front of the OPEN list.

2. s=LIVE, n is terminal Set Score = Min(V(n),hi), where V(n) is the value returned by the evaluation
function.

2a Type(n) = MIN, or
Score > low of P(i).

Insert (n,SOLVED,Score) into OPEN in front of all states of lesser merit. Ties
are resolved in favor of nodes which are leftmost in the tree.

2b Type(n) = MAX,
Score ≤ low of P(i)

If i is the last node in the current partition at P(i),
then Score is changed to low of P(i).
Insert (i,SOLVED,Score) into OPEN, maintaining the order of the list.

3. s = SOLVED,
Type(n) = MAX.

Purge all successors of i = P(n) from BACKUP.

3a m = w, n = root Terminate: hi is the minimax value of the tree.
3b hi > low of P(i),

m < w.
Expand: push (i.m+1,LIVE,hi) onto the front of OPEN.

3c Otherwise Prune: push (i,SOLVED,hi) onto the front of OPEN.

4. s = SOLVED,
Type(n) = MIN,

Obtain values of low(i) and high(i) from BACKUP.
Set low(i) = Max(low(i),hi) and
update low for all descendants of i on BACKUP.

4a If low(i) ≥ high(i) Purge all successors of i from OPEN and BACKUP.
Push (i,SOLVED,high(i)) onto the front of OPEN.

4b If low(i) < high(i) If there are incompletely searched MAX successors (non-immediate) of node i
present in BACKUP, then add the next partition of the first such node found in
BACKUP to the front of OPEN;
Else Purge all successors of i from OPEN and BACKUP,
and either push the next partition of successors of i onto OPEN or, if there are no
more partitions,
Push (i,SOLVED,low(i)) onto the front of OPEN.______________________________________________________________________________________________

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�


