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ABSTRACT

Although both shared memory and loosely coupled parallel comput-
ing systems are now common, many still do not offer an easy way to
design, implement, and test parallel algorithms. Our system provides
software tools that make possible a variety of connection structures
between processes. These structures are said to form a ‘Network Multi-
Processor’, which is implemented on a local area network of heterogene-
ous UNIX-based timesharing computers, plus a set of processor boards
dedicated to an application so that accurate timing measurements can be
made. We explain how these tools have been used both to aid parallel
algorithm development and to explore the properties of different computer
interconnection methods.
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1. INTRODUCTION

Parallelism may be applied in several ways to increase the processing power avail-

able to the execution of a program. These approaches can be broadly categorized into

two groups: use of closely coupled or synchronized processors, and loosely coupled, dis-

tributed systems. Closely coupled systems have traditionally been more popular since

they can be used directly to speed existing algorithms and programs. For example,

powerful vector processors are now well established and most contemporary systems use

some degree of pipelining, but have the disadvantage that applications must be specially

tailored to the hardware design. Also they are only well-suited to certain classes of prob-

lems. Those systems provide what is often referred to as ‘fine-grained’ parallelism. This

paper deals primarily with ‘large-grained’ parallelism.

Until recently, progress in experimental computer science was slowed by the cost

and special purpose nature of the equipment. Specifically, in early distributed systems

researchers managed with a collection of connected processors, each with little or no I/O

capability, rudimentary operating system support and a small memory[1]. On such sys-
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tems experiment management was often difficult and the lack of flexibility restricted

experiment design. With the widespread use of local area networks, experimenters have

taken advantage of existing computing facilities, have drawn on the services of a power-

ful operating system (with such capabilities as virtual memory management) at each

node, and have designed their distributed algorithms in high-level programming

languages. Often researchers had to modify existing operating systems to accommodate

the remote processes or communication schemes, for instance the U* system runs on

NEST — a modified UNIX† kernel[2]. Debugging and monitoring the execution of a dis-

tributed program can be improved by using the services provided by the operating sys-

tem, such as its drivers for various display equipment and its file system[3, 4]. Naturally,

running under an operating system places certain restrictions on the experiment design

and forces careful interpretation of the results, but often these restrictions are not serious

and are offset by the advantages of the more powerful tool set.

A problem faced by designers of all parallel processing systems is the tradeoff

between communication speed and the complexity of the connection structure[5]. Tree-

structured[6] and hypercube[7] topologies have been proposed and constructed to reduce

the connections between processors in distributed systems. The advantage of a tree struc-

ture is that the number of links only increases linearly with the number of processors,

thus making possible the construction of systems with thousands of processors without a

prohibitively expensive interconnection network[8]. An advantage of both topologies is

that some problems map naturally into them. These include some NP-complete prob-

lems, such as combinatorial methods requiring exhaustive search[9], and tree-searching

_______________

† UNIX is a trademark of Bell Laboratories.
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algorithms[10, 11].

2. The Network Multi-Processor

Here we describe an environment designed and built to do experiments in distri-

buted processing, using standard equipment and the services of a contemporary operating

system to reduce hardware and software costs and to simplify experiment management.

We call this environment a Network Multi-Processor (NMP). It is installed on a local

area network and supports a heterogeneous collection of machines from a variety of ven-

dors such as Sun Microsystems, MIPS, Silicon Graphics and Digital Equipment. Each

machine has an operating system whose network primitives are equivalent to the

4.3BSD-based version of UNIX [12, 13].
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Figure 1. Mapping of processor tree onto selected hardware

Figure 1 shows part of our facilities. It includes some dedicated Motorola 68000’s,

with restricted operating system support, for use when critical timing measurements must

be made. Since these processors support the activities of only one application process
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they are collectively referred to as the dedicated processor machine (DPM). Most of the

standard UNIX programming environment is available in the DPM through the compile-

time library, as are networking support, timers, and the standard I/O library; but file I/O

and process management are not provided. The experimenter views the system as a col-

lection of processing elements — each with adequate memory, disks and other I/O dev-

ices, and with arbitrary communication paths to other processing elements. In reality,

NMP is a collection of procedures callable from ordinary user programs and a collection

of node-servers, one on each physical machine. These node-servers receive requests to

create the node processes of the NMP either according to the description provided by the

user, or automatically based on ‘least-busy’ computers. During the early development

the whole application might reside on one physical processor, only later being distributed

over the selected machines for production use.

The interface to the NMP is a collection of user procedures, written in the C

language[14] and callable from application programs. These procedures handle connec-

tion establishment, connection initialization, exchange of messages and interrupt han-

dling, as well as providing information on the configuration and layout of the NMP being

used.
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Figure 2. Hierarchy of network multiprocessor implementation

2.1. Implementation of a Network Multi-Processor

The programming environment is implemented using a set of standard NMP routines

that allow the creation of virtual multiprocessors with arbitrary interconnection struc-

tures, shown in Figure 2 as the ‘Basic Support Routines’. These routines are in turn

implemented with the Berkeley interprocess communication networking primitives that

allow processes to communicate with a variety of protocols and connection stra-

tegies[15]. The current implementation of the support routines uses reliable two-way

communication channels, called internet-domain stream sockets, which are similar to

UNIX pipes[12], except that the communicating processes need not reside on the same

physical machine. Pipes were used as the communication mechanism in our earlier work
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on distributed heterogeneous systems[16]. There are two main aspects of the Berkeley

networking primitives that make them a good basis for implementing a virtual processor

system. First, the socket interprocess communication model is internally consistent;

communication between processes is indistinguishable from communication between

processors. That is, communicating processes use the same mechanisms, irrespective of

whether they both reside on the same processor or not. Secondly, the client/server model

cleanly incorporates the node server so that it needs no special administrative considera-

tion over other servers on a particular machine.

The ‘Basic Support Routines’ provide a completely general interconnection struc-

ture, any node can be connected to any other. The placement of the nodes on specific

machines, and the interconnecting vertices are specified at run time in a ‘configuration

file’ (described later). Many problems are well-suited to the use of tree or cube architec-

tures. To reduce the tedium and risk of making mistakes in these more structured appli-

cations, special tree and cube support routines overlay the basic support and so provide a

more natural environment for applications that conform to those two regular struc-

tures[17].

2.2. Standard NMP Routines

The execution environment consists of a collection of virtual processors (UNIX

processes) whose stream-socket connections over an Ethernet are created during initiali-

zation. To get started, a node (process) initialization function is invoked, as follows:

neighbors = NodeInit (NodeType, ConfigFile);

There are two types of node initializations. The first, NodeType=ROOT, is used in the

node that interacts with the user. This ‘control node’ initializes itself by reading a Con-

figFile and creating other nodes (processes) as specified in that file. All other nodes,
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with NodeType=INTERNAL, receive the configuration file information from their crea-

tor; that is, the ConfigFile parameter is ignored.

The configuration file consists of two parts: an ordered set of descriptor lines, one

per node, naming the host process, execution file name and so on; followed by a connec-

tion matrix, showing how the ordered nodes are connected. A descriptor line has the

form:

HostName; Bits; FileName; Sin; Sout; Serr;

where HostName is the physical host on which the node is to run;
Bits is an integer whose bit values specify such things as the desired

level of debugging support, and whether the host is a DPM.
FileName identifies the code to execute on that node;

The three last fields contain the names of files to be opened as the node’s standard input,

standard output, and standard error streams respectively.

The second part of the initialization file is the connection specification. It is a lower

triangular matrix of 0’s and 1’s, where a 1 in row N and column M represents the desire

for bi-directional communication between nodes N and M. NodeInit creates the

remaining nodes from the interconnection description received from its creator. Since

the user defined communication paths are used by NMP to ‘bootstrap’ itself, any uncon-

nected portions of the configuration will be connected to the root automatically. Once all

communication paths have been established, control returns to the user’s application.

At each node, neighbors measures the number of adjacent (connected) nodes.

For identification and management, each node in the NMP system is assigned a unique

integer identifier, NodeId. A small set of functions provide a node with information

about itself and its neighbors. For example, GetMyId() provides the NodeId of a

node, GetNodes() returns the number of nodes configured in the current NMP, and
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IsConnected(NodeId) returns non-zero if the node given in the parameter is con-

nected to the calling node.

Once it is known that a pair of nodes is connected, they may communicate with each

other via the following functions:

len = SendNode (NodeId, Message, Length);
len = RecvNode (NodeId, Message, Length);

where NodeId identifies the source or destination, and Message is the address of a

buffer containing the bytes to be sent, or a space into which the received message will be

put. These functions return the number of bytes transmitted or received. Note that

RecvNode waits until all length bytes have arrived from the specified node, so a pol-

ling capability is also provided to identify nodes with outstanding messages.

Facilities also exist for managing abstractions of the Berkeley signal mechan-

ism[13]. These include routines to enable, disable, hold and release signals, and to

specify the signal handler, as follows: EnableInt(), DisableInt(), HoldInt(),

ReleaseInt(), and SetHandler(Handler), where Handler is the address of an

interrupt handling procedure that is invoked whenever a message arrives. Interrupts are

not generated if no handler has been set, or if SetHandler is called with a null parame-

ter.

Although interrupt driven message management can work well, they are unstruc-

tured, and there are always cases when interrupts may be lost (e.g. occur nearly simul-

taneously) leading to extended waits for responses. One way to protect against such a

problem is for a process to poll others for pending messages. For this reason, two rou-

tines are provided to check for messages from neighboring nodes (all neighbors or a par-

ticular one):
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count = PollAll (Nodes[], Block);
count = PollNode (NodeId, Block);

In the case of PollAll, the id’s of nodes that have messages outstanding are returned

in the array parameter, Nodes. These routines count the nodes with messages pending,

returning 0 if no messages are outstanding. Setting Block to TRUE instructs the rou-

tine to wait until a message arrives.

2.3. Dynamic Reconfiguration

There are cases where one would like to change the size or shape of the NMP after

the application has started. This could be useful for load-balancing, e.g., deleting a node

on an overloaded machine and recreating it on a machine with a lighter load. Similarly,

if a node fails for some reason, a new node can be created in its place thus increasing the

fault-tolerance of the system. These dynamic changes are made by using the following:

AddNode (HostName, FileName, Sin, Sout, Serr, Bits);
AddConnect (Type, NodeId);

where HostName is the name of the physical machine on which the new neighbor is to

reside, and FileName is the executable file of the new process. The Sin, Sout, and

Serr, character pointer parameters specify the files that will be opened as the new node’s

standard I/O streams. If a null string is supplied then /dev/null is opened. Bits

specifies the debug flags and socket type, and AddConnect creates a connection

between two existing nodes. A new connection must be requested by both nodes — one

side with parameter Type=ACTIVE, the other with Type=PASSIVE. Note that only one

connection may exist between two nodes and therefore AddConnect cannot be used to

provide an additional connection between nodes when one already exists.
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2.4. Tree Machines and Hypercubes

The basic support routines described above are capable of implementing any arbi-

trary interconnection, including more regular structures like trees and cubes. Initially our

distributed computing research was limited to tree structured architectures and the NMP

system was then called the Virtual Tree Machine (VTM)[18]. To support this regular

architecture several primitives — similar to the ones for the basic support — were imple-

mented. For example, since the connection structure is implicit, the TreeInit function

reads a simpler configuration file that consists of processor description lines only. Rou-

tines TreeRecvParent and TreeRecvChild serve the function of RecvNode, while

TreeSendParent and TreeSendChild are similar to SendNode.

Similarly, CubeInit, which models a symmetric hypercube processor environ-

ment[7], also manages without a connection matrix. Instead, the node descriptor lines are

preceded by an integer that specifies the dimension of the cube desired. The specialized

support includes several routines tuned for use in a hypercube environment. Modelling

of small hypercubes is straightforward, and our standard distribution contains an example

solution of the N-body body problem to illustrate use of the hypercube primitives.

3. Creating a Processor Tree

As an example, consider the creation of an NMP Tree to execute the configuration of

processes depicted in Figure 3.
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Figure 3. Process tree

First this configuration must be mapped onto the hardware. This can, and often is, done

automatically by first noting the workload of the available computers and assigning the N

least busy to the current application. There are no unusual restrictions on the number of

nodes that can exist on one processor, but for clarity here we map them, one per physical

machine as follows:

R on sunshine, N 1 on cavell, N 2 on pembina,
N 11 on sputina, N 12 on seibert, and N 22 on sundre.

Here, the root resides on a Sun processor, called sunshine, the interior nodes are on

VAX-11/780 processors (cavell and pembina) and the leaf nodes are on other Sun works-

tations, as Figure 1 shows. The mapping between the virtual machine and the physical

hardware is specified in the simplified ‘tree’ form of the configuration file, shown in Fig-

ure 4.

sunshine; 2; 0
cavell; 2; 0; branch -p1; ; out1; err1;

seibert; 0; 0; leaf -p11; ; out11; err11;
sputina; 0; 0; leaf -p12; ; out12; err12;

pembina; 1; 0; branch -p2; ; out2; err2;
sundre; 0; 0; leaf -p22; ; out22; err22;

Figure 4. Sample NMP-tree configuration file

Each line in the tree machine configuration represents a node and contains seven

fields separated by semicolons. These fields are identical to the six fields of a ‘Standard
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Configuration File’, described in section 2.2, except that there is an extra field—the

second field—specifying the number of descendants of the node. Here we assume the

general case in which incompatible processors have different home directories for the

user. In a network filesystem with identical home directories on incompatible processors

(for example, a Sun workstation and a VAX), the named files must still hold the correct

type of executable for the corresponding processor in the configuration. Note that the

default (/dev/null) is used for the omitted standard input.

When the root process is invoked by the user on sunshine, it calls TreeInit to

read the contents of Figure 4 and translate it to the standard configuration file format,

which in turn is written to a temporary file. That file is read by NodeInit (which is an

embedded call in TreeInit) on sunshine, which then creates the specified virtual

machine and sends a service request to the node server on cavell. When cavell receives

the request it executes the file branch (the third field in the configuration entry for the

node on cavell), with the execution parameters specified (here -p1), and returns to listen

for additional service requests. The branch process on cavell receives the configuration

from sunshine and notes that it has two children. It therefore transmits two requests, one

to the server on seibert and another to the server on sputina. Both nodes deduce that they

have no children and so respond that they successfully started their leaf process. The

interior node on cavell then tells the root that all went well, and so the root knows that the

left branch is complete. Meanwhile, the right branch has been started in parallel by the

root transmitting a request to the node-server on pembina. Finally, TreeInit returns

and the application is ready to start work, since all communication paths have now been

established. Note that for many applications the branch and leaf processes will be

identical. They are given different names here not only for clarity, but to point out that a
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unique program can be executed at each node, if desired. The NMP connections created

by Figure 4 are shown in Figure 1. Examples showing how to develop other applications

are given in our local report[17].

3.1. Interprocess Communication

In a typical distributed computing system of UNIX-based computers on a local area

network, several different NMP experiments can be performed at the same time. Here the

Ethernet serves as a shared communication path, and processes from different applica-

tions may share the same processor.

To illustrate the communication and connection establishment features provided in

the NMP environment, a skeletal C-code segment from an arbitrary interior node is

presented in Figure 5. The process containing the code segment is invoked by the node-

server on its host machine. After invocation, TreeInit waits for the parent to send the

configuration of its subtree, and transmits requests to start its children (if any). When

TreeInit returns, communication has been established with the parent (from which the

node receives its work via TreeRecvParent) and its children (to which it sends some

units of work via TreeSendChild). When the interior node has finished its work, it

receives the results from its descendants (via TreeRecvChild) and finally transmits its

results to the parent (via TreeSendParent).
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# include <nmp/nmpdefs.h>
int i, n, fanout, length, len;
char *buf;
.
.

fanout = TreeInit (INTERNAL); /* receive ConFig from parent */
/* connections to ‘fanout’ children established */

len = TreeRecvParent (buf, n); /* receive from parent */

for(i=1; i<=fanout; i++) {
TreeSendChild (i, buf, length); /* send to children */

}
.
.

for(i=1; i<=fanout; i++) {
TreeRecvChild (i, buf, length); /* receive from children */

}
TreeSendParent (buf, length); /* reply to parent */

.

.

Figure 5. Sample communications code

The code excerpt of Figure 5 is identical on all nodes in the NMP (except the root

where communication with the parent would be replaced with user interaction). Thus, in

general, every call to TreeRecvParent has a corresponding TreeSendChild call in

its parent node, and every call to TreeSendParent corresponds to a TreeRecvChild

call in its parent.

4. Communication Aspects

One disadvantage of loosely coupled message-passing systems of this type is that

communication may be slow and adversely affect the overall processing speed. For truly

CPU bound applications that interact infrequently this would not be the case, and NMP

accommodates that type of ‘large grained’ parallelism especially well. Fox[19] found

that many problems fall into this class and can be mapped onto a system with modest
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routing overheads. NMP is usually layered over the TCP protocol, although the Bits

field in the configuration can specify that UDP be used.1 The UDP properties fit well

with some communication requirements like status monitors where packet loss and order-

ing are not critical. Alternatively one could add a layer of software to make the

datagrams reliable as was done in PVM[21].

Figure 6 shows the effective communication times using the NMP primitives for the

reliable, robust, TCP protocol. These results were obtained by measuring the average

transit times for messages of varying lengths, up to 2 Kbytes. By way of interpretation,

DPM/DPM represents two different processor boards (in the DPM) exchanging messages.

Sun Local means two processes on the same Sun-3 workstation exchanging messages

(i.e., the messages do not leave the machine but do go through the software layers down

to the network interface and then loop back through the software layers to the other pro-

cess). VAX/VAX represents communication between two independent VAX machines.

Finally, Sun/MIPS represents Sun-3 and M/1000 communication, and so on. These

results were averaged over several trials to factor out any transient conditions on the net-

work.

As expected, longer messages yield near linear results (as the log scale of Figure 6

shows), up to the system buffer size or the underlying packet size of 1500 bytes. Beyond

that the degradation of performance is of no surprise. The timing results from PVM[21]

follow a similar pattern, although UDP was used there.

From Figure 6 one can see that only a fraction of the underlying 1.2 Mbytes/sec

bandwidth of the Ethernet can be used, given the current software/hardware. This means
_______________

1 TCP is a reliable, connection-oriented, stream protocol in the Internet Protocol suite, while
UDP is a connectionless, unreliable, datagram protocol[20].
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that the likelihood of saturating the network is low, even when many nodes communicate

at the same time. For a typical message size of 32 bytes say, NMP could accommodate

many pairs of communicating nodes. Since each pair uses less than one percent of the

Ethernet bandwidth about 100 such pairs could use the network simultaneously without

saturation. In non-vital statistics-logging applications a higher communication rate is

possible simply by requesting the cheaper UDP protocol. This reduces the software
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overhead and brings the effective speed closer to the bandwidth of the physical network.

For short messages (less than 256 bytes) the fastest communications occur between two

processes local to the same Sun workstation. Our experience over the years has been that

steadily improving communication protocols and faster processors have led to dramatic

improvements in performance, as illustrated by the poor results for the older technology

in the DPM/DPM, and the superior performance shown by the MIPS machines. Thus, the

dominant cost of the communications is the CPU time spent in the protocol support. This

also explains the poor VAX communications, where both a slower CPU and contention

from other timesharing users hurt the communication rates. Figure 6 also shows how the

transmission rate is affected by the different sizes of the message buffers. On the Suns,

the message buffers are allocated in increments of the page size (2K bytes), but for the

VAX computers the buffers are 1K bytes. On the DPM boards the message buffers are

only 256 bytes, because their total memory is smaller. Even in the worst case with the

smallest messages of 4 bytes, the transmission time is comparable to the capacity of a

dedicated 9600 bit/sec channel.

5. Program Development

Asynchronous[19] parallel programs in a distributed environment are more difficult

to debug than sequential programs running on a conventional machine[22]. More struc-

tured applications (Fox calls them loosely synchronous or embarrassingly parallel [19])

don’t exhibit this problem, because they are temporally better behaved. The primary

source of this added difficulty is the asynchronous sharing of information in the distri-

buted environment. This sharing (in our case via message passing) between processors

with different clocks introduces a time-dependence into the distributed program. The
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execution characteristics of the program are no longer solely decided by its inputs, but

are influenced unpredictably by interactions between autonomous processors, the physi-

cal characteristics of the communication medium and by the behavior of other programs

sharing these resources. Bugs manifest themselves sporadically and often are not repro-

ducible. Programs can no longer be instrumented to collect information on their execu-

tion environment, because this now changes their timing characteristics and thus their

behavior.

To attack the problems of debugging in a distributed environment several mechan-

isms have been proposed and implemented[3, 4, 22-24]. Garcia-Molina et al. argue that

distributed debugging is different from debugging sequential programs and then show a

bottom-up debugging method that records traces of program execution, examines the

traces, and uses them to reconstruct the problem in a simulated environment[3]. LeBlank

and Mellor-Crummey save a trace of the relative order of significant events as they occur

and use these traces to replay the program[24]. Multibug[23] used a general-purpose

computer with UNIX to monitor the node computers, which had a skeletal software

environment, similar to our DPM. Multibug worked at a low level, tracing variables and

events, but not addressing the larger issues of porting sequential code to their distributed

system. The Jade projects monitoring system — Mona[4] — provides tools and graphi-

cal displays to monitor at the interprocess communication (Jipc) level. They found that

using trace records to recreate erroneous execution was not practical when the system

executed for a long time before the error occurred. They suggested that further work

should be done in specifying higher level behavior to the monitors. Figure 7 illustrates a

high level monitor built for one of our applications using the NMP routines. Our

approach to debugging includes these high level monitors as well as a method for
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assisting in the porting of sequential code to a distributed environment.

5.1. Graphical Aids

A typical development cycle of an application in the NMP environment involves

first designing and testing the code with the whole virtual machine residing on one physi-

cal processor. This eases the task of monitoring and keeping track of output from all

nodes, and eliminates most of the timing dependencies mentioned above since the com-

munication is now all driven by the same clock. The code may be instrumented for

debugging without changing its execution behavior. Once the program runs bug-free

under a single clock, it can be distributed over several physical processors. Any

anomalous behavior that is now detected must be caused by timing problems. This

change from a single clock to a truly distributed execution often does not involve recom-

pilation or relinking of the code, but simply a change to the configuration file describing

the mapping of the NMP. Recompilation is only required when the processor type

changes.
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Figure 7. Sample NMP monitor display

Problems with timing must still be found and corrected, and for the reasons men-

tioned above, this must be done with minimal effect on the timing characteristics. One

way to do this is to program a separate, dedicated machine, to the task of monitoring all

processes, and use it to condense and abstract information for human consumption from

the other processors in the system. This is done by a ‘monitor-server’ residing on a

machine with a graphical display. The user has complete control over the information

that is sent to the monitor as well as how this information is interpreted and presented. In

essence, users write their own monitors using the primitives provided.

An example of such an interface, designed to monitor the execution of a multipro-

cessor chess program, is shown in Figure 7. In the lower left corner, next to the clocks,
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the current NMP node configuration is displayed. The horizontal bars to the right show

work completed by the named nodes, with the lighter grey blocks representing synchroni-

zation points between iterations of the iterative deepening search. The numbers beside

the bars measure how many nodes were searched by each processor during the previous

iteration.2 All processors are now in the midst of their 5th iteration, but the display

shows that sunnynook may now be doing less work than the others. The rest of the

display is then used by the application itself (here Parabelle[25]). The use of such visual

representation of the execution and communication characteristics of distributed pro-

grams provides a more intuitive understanding of the behavior of parallel algorithms, an

understanding that is difficult to obtain simply by analyzing the results.

5.2. Robustness

One approach to parallel program development is to avoid the potential for bugs in

the code. A technique that has proven useful, is to design timing discrepancy tolerance

into the algorithms. Consider, as an example, a uniform message format. A node,

expecting a message of a particular type, may receive a message of an unexpected type

because of delays or other timing-related problems. If all messages are tagged, the

receiving node can determine what action to take on receiving the unexpected message.

Imagine that a master control process (a parent) does not notice that a ‘work completed’

message has arrived from a child, and so sends it more information that may speed its

progress. The child, meanwhile, is waiting for more work, so if the message is tagged it

may simply be discarded as opposed to being interpreted as new work.

_______________
2 The horizontal bars are a coarse measure of the work completed in terms of trees traversed,

the numbers beside the bars count the nodes visited, and is a finer measure of work done.
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Polling is another method that should be considered, especially as an alternative to

interrupt-driven code. In the NMP environment polling is used to eliminate the danger of

blocking because of a lost interrupt. When an interrupt occurs the node must identify the

neighbor(s) that have sent messages, by polling all communication paths and reading out-

standing messages. This eliminates the danger of deadlock should interrupts be lost

when two or more messages arrive simultaneously. In some applications, polling can

replace interrupts and can be made less expensive, since no state-change or context-

switch is involved. However, one must poll often enough to minimize communication

delays, and yet not so often that excessive time is spent on the polling function.

6. Sample Applications

The facilities described here have been used primarily in experiments with parallel

tree-searching algorithms. One vehicle for these experiments were the chess programs

Parabelle and ParaPhoenix. Other applications included parallelization of methods to

solve the vertex cover problem, a dynamics of articulated bodies study[26], and studies

of the overheads in the system[27]. A recent experiment[28] used the NMP to simulate

performance of an image compression algorithm. The predicted performance was very

close to that obtained on a Connection Machine. More recently a user information

management system for configuring multicomputer systems has been built[29].

6.1. Parallel Chess Machines

Parabelle, whose 1983 results are shown in Figure 8, was used to explore the effect

of sharing information, to reduce the search times. With distributed machines it is com-

mon for one processor to have far more memory than the others, and so is used to hold

shared information. However, considerable processing time may be lost when several
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Figure 8. Comparative speedups for selected multiprocessors
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processors must await access to the shared global tables. Conversely, the smaller local

tables may become overloaded during a search, and so lose their effectiveness. The

forerunner of our present NMP system was used to explore the tradeoffs in local/global

memory usage[25]. Parabelle itself used a processor tree of depth 1, and the game-trees

were searched in a special way by p processors, using the PVSplit algorithm[10]. One of

these processors was called the master and had extra duties, such as allocating work to

itself and others, and polling them at convenient intervals for their results. For the data

here, the processes ran on the DPM, except for the root process, which always uses a gen-

eral purpose UNIX-based machine. The degrading performance shown in Figure 8 stems

from the static nature of PVSplit, which forces the processors to synchronize their activi-
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ties as they back out of the tree. The difficulty is not fundamental to the NMP system, as

the recent experience with ParaPhoenix shows [30].

ParaPhoenix was the first major NMP application (referred to as VTM in earlier

literature[31]). When installed in 1984, it used the same tree-splitting algorithm and pro-

cessor tree architecture as Parabelle, but a separate process was named the master. Since

the master could be put on a separate dedicated machine, it had ample time to measure

the activity and effective CPU speed of the others. Thus ParaPhoenix accounted accu-

rately for the synchronization losses in PVSplit, and was used to identify the serious

nature of that overhead[31]. Even though, as Figure 8 shows, ParaPhoenix (1984) ini-

tially exhibited only comparable speedup to Parabelle, it was a far superior program. Not

only did it search 5 times as fast, but also the better heuristics and greater search depth

allowed it to achieve better results on standard test suites. This shows that by itself

speedup is not an all-purpose measure of performance. By 1989 Schaeffer[30] reported

on a dynamic tree-splitting method under NMP in which idle machines were dynamically

re-assigned to busy processors. The performance curve for ParaPhoenix thus matched

that obtained independently on a Sequent computer by Hyatt et al. (1989) [32], also plot-

ted in Figure 8. Finally, the seemingly best result with that same Bratko-Kopec test suite

was obtained by Feldmann et al. (1990) [33], using a Transputer-based system. How-

ever, although the speedup curve is impressive, and the testing results were comparable,

there remain questions about the validity of limiting the search width to 25 successors

(far below the known average search width of 34 moves[25]). This width pruning heuris-

tic is known to be effective but dangerous. It is not clear whether reduced search width

helps or hurts speedup, but again it places the measure in doubt. The main problem here

is that there is no incentive for anyone to compare their system against the most efficient
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uniprocessor version. These excellent speedup results are nevertheless encouraging,

since they show the benefit of shared global memory tables. Felten and Otto[34] have

also recorded good results including a 101 times speedup on a 256-processor hypercube.

Although their basis for comparison is not the same, the benefits of distributed global

memory tables come through clearly.

6.2. Additional Case Studies

Other applications include a parallel implementation of the branch-and-bound algo-

rithms for the travelling salesman and vertex cover problems, which were used to investi-

gate the tradeoff between communication, search, and synchronization overheads[27]. It

was found that the communication overhead was negligible, even though the workload

and communication of optimal results is required, but a new overhead associated with

waiting times within the UNIX operating system was uncovered.

Our experiments attempt to measure experimentally some of the costs and over-

heads involved in distributed processing[27]. Theoretical investigations into parallel

algorithms rarely take into account the losses attributed to communications or synchroni-

zation overhead. This is understandable, since they are difficult to formulate in the

theoretical model of the computation. It is therefore important to have access to facilities

to measure these and other poorly understood aspects of parallel algorithms, including

losses within the operating system software itself.

Finally, the NMP facilities have also been used for teaching purposes, specifically in

parallel processing and operating systems courses. They are especially useful for learn-

ing about parallel computing, because the communications are easily reconfigured and

the students do not have to schedule time on a single-user multiprocessor.
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7. Conclusions

With the proliferation of low-cost but powerful processing elements it becomes

increasingly important to address the question of how to best deploy many such proces-

sors in a single system. There is no one correct method of doing so. It is necessary to

evaluate different alternatives, and facilities must exist to experiment with different algo-

rithms and different programming techniques. Although it is easy to build distributed

systems hardware, it is difficult to program and use such a system. This difficulty is

often compounded in research systems by both the lack of operating system support for

the design and development phase, and the lack of run-time support.

Our experience with the facilities described here show that it is possible to develop

and test distributed algorithms under near normal conditions. As long as the results are

interpreted correctly, network multiprocessor architectures can provide valuable insight

into the behavior of non-existing, new, or unavailable real machines[8]. Algorithms for

execution on these architectures can be developed, tested and debugged using this facil-

ity. Although the primary purpose of the NMP architecture is to apply several processors

to a single application, it can also be used to model large multiprocessor systems and

study their processor synchronization and communication delay properties[28].

Future plans for expanding this facility include providing more NMP interconnec-

tion paradigms, such as simple bus structures, and providing simpler and faster commun-

ication protocols, thus making the virtual environment competitive with tightly coupled

systems, while retaining all the advantages of operating system support procedures.
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