
The Anatomy of Chess Programs
T.A. Marsland

Computing Science Department
University of Alberta

Edmonton, AB
Canada T6G 2H1

Tony.Marsland@ualberta.ca

Abstract
This short paper defines the terminology used to support
computer chess work, and introduces the basic concpets
behind chess programs. It is intended to be of general
interest, providing background information not new ideas.

Introduction
Logically, chess is a trivial game: at every move, simply
follow through each possible reply and its consequences
until either a mate or a draw position is reached. In
practical terms, however, this strategy is not workable,
since an astronomically large number of chess positions
would have to be examined. Thus both human players and
computers rely on simplification to build an approximate
model of the game. Human players have centuries of
tradition and at least two hundred years of chess literature
to draw on in building their personal model, but computer
chess is less than fifty years old. Significant among the
early ideas in computer chess is Claude Shannon's 1949-50
distinction between a brute force (type-A) strategy for
looking at every combination of moves, and the use of
chess knowledge to select and examine only a subset of the
available moves (type-B strategy). Although some electro-
mechanical systems to play a subset of chess had been
built prior to Shannon's work, it was the programming of
his ideas that led to the development of today's computer
chess machines.

Current chess programs view the game as a tree search
in which each position corresponds to a node in the game-
tree, and each move is a branch (a transition from one node
to the next). Thus the tree is made up of alternating layers
or levels of moves for each side. (The term "ply" is used
to denote each layer, and refers to one move by one
player.) A three-stage tree model is popular with computer
chess programmers. The first stage uses a brute force
(Shannon type-A) approach, the second a selective (type-
B) search, and the third a strategy known as a quiescence
search, designed to resolve the problems and conflicts that
remain. In this final stage the program evaluates
sequences of capturing moves, assesses pawn promotion
potentials, examines checking sequences and considers

other highly constrained tactical issues. All programs use
the same underlying depth-first alpha-beta search
algorithm. What varies from program to program is the
length (or "depth", to keep the layer analogy) of search
assigned to each of these stages. Ultimately the stage
length is not fixed, but varies by small amounts depending
on the current sequence of moves being examined. For
example, a search path may be locally lengthened because
one side has attacked the King (given check), leaving the
opponent with only a few alternatives to consider. There
are so many options here that even programs using the
same basic model can achieve a radically different style
and speed of play.

Tree Searching
While the human method of analyzing alternatives seems
to involve selecting a few promising lines of play and
exploring them, computers are necessarily exhaustive
rather than selective, so refinement techniques have been
developed. In a technique called "iterative deepening,"
instead of embarking on a single search of a certain ply
(which might not be completed in the given time) the
computer performs a series of increasingly deeper searches
(N-ply, then N+1, then N+2, etc.) until the allotted time
runs out. Thus it is able to produce the best move that the
time constraint allows--a computer-chess situation that has
many parallels in real-time applications. The computer can
combine iterative deepening with various memory
functions, particularly refutation and transposition tables,
to reorder moves, so that at the next iteration its selected
"principal variation" (best sequence of moves found during
the previous iteration) is explored first. Another move-
reordering technique is to keep a short list of "killer"
moves, which are tried first. Killer moves are those that
have successfully "cut off" or pruned the search elsewhere.
Often these killer moves are captures, so a simplification
involves considering capture moves before all others. This
technique is nicely generalized in the "history heuristic
table" that many programs use. In its most elementary
form a history table has 64x64 entries, each containing a

value that measures the frequency with which the
corresponding possible move has recently pruned the
search.

Move-reordering mechanisms enhance the efficiency of
the depth-first alpha-beta search algorithm. Three other
improvements--Pearl's Scout algorithm and the related
NegaScout and Principal Variation Search (PVS) methods-
-share a common theme: once a principal variation has
been found it is sufficient to show that each alternative is
inferior. Any that is not inferior must be re-searched, since
it now constitutes the preferred path. Another technique
for curtailing the search is called aspiration alpha-beta
search. In this approach the value of the tree from the
current position is estimated and a narrow search window
(customarily plus and minus the value of half a pawn
around that estimate) is used. Aspiration searching is a
popular and better understood alternative to the Principal
Variation Search method, although not as efficient.

It is difficult to be precise about the advantages that
more searching provides. The size of the chess tree for any
position is highly variable. In many endgames there are

only about 8 moves for each side, while in complex middle
game positions each side might have close to 80 moves.
With today's technology, programs search 9 to 12 ply in
the middle game, while at least one programmer claims to
extend searches selectively to 40 ply! Selective extensions
are based on heuristics devised by individual programmers
to explore the sphere of influence associated with a key
move: to examine the moves that might defend against a
mate threat, or that might provide a counter attack and thus
indirectly avoid some imminent loss. Selective extensions
are not to be confused with singular extensions. The latter
technique re-examines any move that looks singularly
good relative to the others. The search depth is increased
to determine whether the singular move remains best. In
some sense this is a way of extending the principal
variation in the small. It is a potentially costly but
interesting method.

More popular and more widely used is the null move
heuristic, where one side provisionally makes two
successive moves. If the value of the position remains
poor even with the benefit of two moves in a row, then the
line of play is abandoned. This is one way to identify
situations where an inevitable loss is otherwise being
pushed out of sight beyond the search horizon. While
many forward pruning methods fail too often to be useful,
null move forward pruning is usually beneficial.

Transposition Table
A transposition table serves as a cache memory and is used
to store information about positions that have been visited
before, usually during an earlier part of an iterative
deepening search. It is so called because it can be used to
recognize transpositions in the order of moves. Stored in
the entry associated with a position are important items
like the "value" of the position, the best move from there,
and the length of the previous search. "Value" is computed
by applying an evaluation function at the terminal nodes of
the tree (the nodes on the horizon where the search is
stopping). This evaluation function often includes a
quiescent search to help resolve existing capture sequences
and other uncertainties in the position, such as pending
pawn promotions. Transposition tables are also invaluable
as a means of extending search in the endgame, where only
a few new moves emerge at each node, the others leading
through transposition to positions that have been seen
before. These tables do not increase program size or
complexity, since the total space allocated to them is
simply a matter of cost. Each transposition-table entry
requires about 10 bytes of memory, and most programs
have tables in the range from 32,000 to 1 million entries,
though in 1993 one Supercomputer program boasted a
table with a 1,000 million entries! This wide range simply

reflects the memory available to the programmer.

Program Performance and Rating
Despite the underlying similarity in methods there is wide
variation in performance among the programs, even in
machines using identical hardware. In some cases this
merely reflects the effort put into the program's
development. For example, although every program has
an opening book, there is no basic book for them to use.
Each team develops its own. At present these books vary
in size from about 10,000 chess positions to about 500,000
positions, although one experimental program has 1.7
million book entries. Conversely, only a few people use
Ken Thompson's CD-ROM database of 5 and 6-piece
endgames. This is partly for technical reasons related to
relatively slow access to the database, but also because
most games finish before reaching these known endings.
Perhaps programmers are just being realistic about how to
spend their time!

When it comes to speed of execution, contemporary
programs examine between 3,000 and 500,000 positions
per second on a single processor. Big differences in speed
exist even for programs using identical machines. There
are many explanations. Those who program in assembler
tend to have faster programs, but even for the same
programming language, not all compilers (translators)
produce equally fast executable code. Much depends too
on the relative sizes of the brute force, the selective and the
quiescent search stages. Extra time is required in the
selective stage to assess and identify which moves will be
examined. The extent of this slow, knowledge-based
process accounts for much of the speed difference. One
other factor that influences the speed and strength of a
program is the size of its transposition table.

Although many chess programs are similar to each other,
their relative playing strength can still differ greatly.
Determining that strength is no easy matter, since
programs can be tuned to perform well on any standard test
suite. For this reason the group who produce the Swedish
Rating List use a more traditional approach. All
commercially available programs continually and
automatically play games against each other, leading to
hundreds of statistically valid results. From these data an
ELO rating is computed, much like the rating system used
for chess-players in America and elsewhere. In the US the
average player has a rating over 1500, while experts are in
the range 2000-2200 and masters are rated 2200-2400.
Above that come the super elite players called Grand
Masters, of whom about 100 are active worldwide. At the
Eighth World Computer Chess Championships most
programs have an ELO rating in the range 2100-2500. The
current Swedish rating list is published in each issue of the

International Computer Chess Association Journal.

The Future
These days the top chess machines are challenging the
Grandmasters, especially in rapid play where the stand-
alone PC-based machines have an advantage over
multiprocessor-based systems. Stand-alone machines are
especially fast, because they don't need the services of a
computer network to transmit their moves. Multiprocessor
machines using 10 to 100 processors are often better at the
standard competition rate of play of 40 moves in 2 hours.
Soon systems with 1000 processors, each as powerful as a
high-performance PC, will be with us. Even if their
efficiency is only at the 50% level, they will be able to
search 2 or 3 ply deeper in a typical middle-game position
than any single-processor system. By then computers will
be clearly out-searching humans. Whether this will be
enough to compensate for the human's proven strength in
long-term planning remains to be seen. Human chess
players are especially skilled at simplifying complex
situations and identifying the fundamental issues. They are
also adept at provoking long-term weaknesses in their
opponent's position, until it becomes indefensible. Despite
these advantages, each year we draw closer to realizing the
perennial prediction that computers will beat the best
humans at chess within 5 years. It could certainly take
another decade to achieve that, but the inevitability is clear.

References
These are general sources about Chess Programs and
Programming Techniques.

Levy, D. ed. 1988. Computer Chess Compendium, New
York: Springer-Verlag.
Marsland, T.A. 1992. Computer Chess and Search. In
Encyclopedia of Artificial Intelligence, S. Shapiro (editor),
2nd edition, 224-241. New York: J. Wiley & Sons.
Herik, van den H.J. ed., since 1983. International
Computer Chess Association Journal, Universitiet
Maastricht, The Netherlands.
Marsland, T.A. and Schaeffer, J. eds. 1990. Computers,
Chess, and Cognition, New York: Springer-Verlag.
Various editors, 1997-1994. Advances in Computer Chess,
Volumes 1 to 7, various publishers.

