
From MiniMax to Manhattan

Tony Marsland and Yngvi BjSrnsson
University of Alberta

Department of Computing Science
Edmonton, Alberta
CANADA T6G 2H1

E-mail: {tony,yngvi}@cs.ualberta.ca

Abstract

The thinking-process for playing chess by computer is
significantly different, from that used by humans. Also,
computer hardware/software has evolved considerably
in the half century since minimax was first, proposed as
a method for computers to play chess. In this paper we
look at. the technology behind today’s chess programs,
how it has developed, its current, status, and explore
some directions for the fllture.

Introduction
One of the most spectacular shows ever to be hosted
on Broadway takes place this May. Human supremacy
in chess is being challenged by a computer. Garry
Kasparov, the current world-champion and one of the
greatest chess players in history, will defend the honor
of mankind. The challenger, Deep Blue, is a computer
specially designed for playing chess, a masterpiece of
science and engineering. Whatever the outcome of the
match, the significance of this event is the same. A
combined effort of research in artificial intelligence (AI)
and computer hardware development, has made it pos-
sible for computers to match humans in a game that
has for centuries been considered a measure of human
intelligence:

Problem solving in AI often reduces to a process
of tackling three main issues: representing knowl-
edge, searching for solutions, and using knowledge
to direct the search. A hallmark of intelligence is
the use of knowledge to make search problems more
tractable. The most studied search problems are those
that arise in game playing. For decades chess has been
viewed as an important testbed for machine intelli-
gence, with some researchers regarding computer-chess
as its Drosophila. Early chess programs were inspired
by concepts from human thinking. However, with
steadily increasing computer power--making brute-
force methods more attractive--and with the difficul-
ties of implementing human-like reasoning, computer-
chess research took a different direction. Most of the

effort went into search techniques, while less attention
was paid to the acquisition and use of knowledge.

The paper opens with a brief history of computer-
chess, followed by an overview of current methodology.
Finally we consider the future of computer-chess and
its technology, and offer some direction forfuture work
on the software aspects.

The Past: a Brief History
Development of computer-chess techniques has been
strongly influenced by advances in search algorithms
and computer hardware. The evolution of these two
has often gone together, more powerful hardware al-
lowing more complex search strategies.

Search Algorithms

Half a century ago von Neumann and Morgenstern pro-
posed minimax as a method to decide which move to
make in chess. Using the negamax framework, the min-
imax algorithm is described recursively as

Miniax(n) = iAXi(-Miniax(ni))

where {ni} are the successors of node n. If n does not
have successors, then it is a leaf node and MinMax(n)
is defined as the merit of node n from the perspective of
the side that has the move. In principle, minimax can
be used to determine an optimal action in every chess
position, simply by expanding all continuations to the
end and backing up the precise value of the outcome;
in this case win, loss, or a draw. In practice, this is of
course infeasible because of the astronomical nurnber
of possible continuations.

In the 1950’s early pioneers of computer chess, like
Claude Shannon and Alan Turing, proposed various
search strategies based on the minimax principle, and
laid the foundation of an active research area. Faced
with the large search space, early chess programs used
highly selective search methods, expanding just a few
plausible moves in each position. This human-like

31

From: AAAI Technical Report WS-97-04. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

approach proves difficult., the programs often neglect.
good moves--throwing the baby out with the bathwa-
ter. The quality of play by the early chess programs
was therefore poor.

Over the years, numerous algorithms were proposed
to backup minimax values in game-trees, most notably
Alpha-Beta. Knuth and Moore (Knuth ~ Moore 1975)
worked the algorithm into the negamax framework and
described its full pruning capabilities. However, the
underlying idea was known in 1958, and weaker forms
of it were implemented in such early chess programs as
NSS, by Newell, Shaw, and Simon. The method uses
an effective cutoff technique based on the observation
that parts of the tree expanded by the minimax algo-
rithm are irrelevant for proving the value of the tree,
and thus need not be visited. The basic idea behind
the pruning is that having already found one way of
refuting the opponent’s play, there is no need to look
for others. The Alpha-Beta algorithm is a major im-
provement over exhaustive minimax. In the best case,
the number of nodes visited is about the square root
of the number seen by minimax, and it never searches
more nodes.

As more and more powerful computers became avail-
able, and the full pruning capabilities of Alpha-Beta
became better known, brute-force search programs
based on the method replaced other approaches. Dur-
ing the past. two decades, much effort has been in-
vested in enhancing the efficiency of the search. By
expanding the expected best line of play first, (the
principal variation) the alternatives only need to be
shown inferior to that best line. This observation led
to more efficient, variants, such as Principal Variation
Search (Marsland & Campbell 1982) and NegaScout
(Reinefeld 1983). These variants rely on having a good
move ordering scheme that expands promising moves
early. Various techniques to improve the move ordering
and to make the search more efficient were developed,
for example, iterative-deepening, use of transposition-
tables, and forward pruning. From now on we will
refer to these techniques as search enhancements, and
call Alpha-Beta--particularly its variants that employ
such enhancements--by the generic name Null Win-
dow Search (NWS), thus reflecting the essence of the
more effective implementations.

Minimaxing is not the only way to backup values in
game trees, nor do the enhanced methods necessarily
traverse the smallest trees. Various other algorithms
have been proposed and implemented, but none have
found wide use in practice, because they are not time-
efficient.

Hardware

As cornputers evolved it became clear that increas-
ing search speed dramatically improves the playing
strength of even the simplest chess programs. Using
only elementary chess knowledge, the programs could
play reasonably well by applying extensive search. The
quest for more speed took two directions; on the one-
hand developing special-purpose hardware for playing
chess, and on the other adapting the search to run on
many general-purpose processors in parallel.

The first special-purpose high-speed circuitry for
playing chess was developed by Ken Thompson in the
late 1970’s, and was used in his chess program Belle.
The chess-specific hardware provided fast, move gener-
at.ion. In the 1980’s more high-speed chess circuitry
saw the light, of day, like the developments at. CMU
for Hitech and Deep Thought. Not. only were the new
custom chips capable of move generation, but, they also
provide position evaluation and search.

In the early 1980’s chess programs running on multi-
processor systems started to compete in computer-
chess tournaments. While the first, multi-processor
based chess programs ran on only few processors, to-
day’s systems use hundreds. Searching in parallel poses
many new programming problems, and many tech-
niques have been developed to allow NWS algorithms
to traverse game-trees in parallel.

The Deep Blue program combines both of the above
approaches; it runs on many general-purpose proces-
sors, where each processor has access to several high-
speed special-purpose chess circuits.

Other Improvements

Although improvements in search algorithms and com-
puter hardware have dramatically increased chess
programs’ playing strength, other sources have con-
tributed as well. For instance, use of openings books
and endgame databases have proved very useful. Last,
but. not least., decades of experience have shown pro-
grammers what kind of chess knowledge most benefits
the program, and how it can efficiently be represented.
For chess programs, just. as for humans, the knowledge
acquisition period needed to achieve mastery is long
and tedious.

The Present: Current Technology

It is safe to state that today’s best chess programs are
playing at the GM level. This success comes frorn grad-
ual improvements over the last half century; a direct
result of active research in cornputer-chess. Advances
in search algorithrns, parallel computing, special pur-
pose chess hardware, knowledge representation, and

32

opening/endgame databases all contribute to increased
playing strength.

Search Algorithms

Most cont.emporary programs use some form of NWS,
see Figure 1. It keeps track of a lower-bound, o!, and
an upper-bound, fl, of the value a player can hope
to achieve. During the search, whenever the value
returned from a subtree exceeds the upper-bound fl,
a cutoff occurs. Intuit.ively this means that we have
found a refutation of the current, line of play, and there-
fore our opponent will not. select, this variation, but. will
instead play the line that achieves the value indicated
by the upper-bound/3. The algorithm first expands the
so called principal variation with a full a-fl window,
and then the remaining moves with a minimal window
around the score the principal variation returned. This
results in efficient, searches and only occasionally, when
an alternative move really turns out. to be better, is a
re-search with a wider window necessary.

When equipped with enhancements such as a trans-
position table (accessed by functions LookTT() and
AddTT() in Figure 1), move-ordering (AddCteditO,
NeztMoveO) , search extension/pruning schemes
(Extend(), NullMove), and quiescence search (QSO),
the algorithm is extremely efficient.. Thus the fastest
chess programs look ahead about 5-7 moves for each
side in complicated middle-game positions, and search
lines of special interest even more deeply. In the
endgame and in other less complicated positions a
much deeper search is possible.

Search Enhancements

Various search enhancements are essential for the NWS
algorithnl to achieve exceptional performance. Many
of them focus on allowing the algorithm to be more
selective in how the search effort, is spent.. The se-
lectivity is introduced by varying the search horizon,
some lines are searched to a depth that. is greater than
the nominal depth, while others are terminated at a
shallower depth. The real task is to identify which

alternatives are worth considering further and which
can be pruned off. In Figure 1 three common met.h-
ods to vary the search horizon are shown: quiescence
search, extending forcing lines, and a forward pruning
heuristic called null-move.

Having searched some initial position to a designated
maximum depth, some of the positions that arise are
volatile and hard to evaluate. For example, if we evalu-
ate a position where a capture has just occurred, with-
out. giving the opponent, opportunity to re-capture, a
huge error may be introduced. Therefore, all captures
for both sides are played out. before a position is eval-
uat.ed. Sollietirnes other moves that can dramatically

int NWS(int height, int alpha, int beta)
MOVE move, tt_move=NullMove, best_move=NullMove;
int score, best_score, bound, ttbound;
TT tt;

//Check for draw by repetiton or 50 move rule
if (IsDraw()) return DRAW;
if (Extend()) height++; //Extend forced moves

//Call quiescence search if horizon is reached
if (height == 0) return QS(alpha, beta

//Look the position up in the transposition table
if (LookTT(~tt)

if (tt.height >= height)
switch (it.bound)
case TValue: return it.score; break;
case UBound: beta = MIN(tt.score,beta);break;
case LBound: alpha = MAX(tt.score,alpha);

}
if (alpha >= beta) return it.score;

}
best_move = it_move = it.move;

}

//Do a null-move search with search reduction R>I
//if not in check and last move not a null-move
if ((height > R) && NullmoveIsOK()

Make(NullMove);
score = -NWS(height-l-R, -beta-l, -beta);
Retract(NullMove);
if (score >= beta) return beta;

}

//Get the first move if it wasn’t found in the TT.
//If no legal moves, either a mate or a stalemate.

if (best_move==NullMove &~ !NextMove(&best_move))
return IsCheckmate() ? LOSS : DRAW;

//Search the principal move before the others
Make(best_move);
best_score = -NWS(height-l, -beta, -alpha);
Retract(best_move);
while ((best_score < beta) &~ NextMove(&move)

if (move == tt_move) continue;
bound = MAX(alpha, best_score);
Make(move)
score = -NWS(height-l, -bound-l, -bound);
if ((score > bound) && (score < beta)

score = -NWS(height-l, -beta, -sCore);
Retract(move);
if (score > best_score)

best_move = move; //A new best move is found
best_score = score;

}
}
//Update the TT and move ordering information
ttbound = (best_score <= alpha) ? UBound

(best_score >= beta) ? LBound : TValue;
AddTT(height, best_move, best_score, ttbound);
AddCredit(ttbound, height, best_move);
return best_score;

}
Figure i: NWS enhanced wit}, TT and Null-move

33

change the evaluation are also made, fox’ example pro-
motions. This resolution of dynamic factors is called
the quiescence search phase.

A common practice is to extend the search along
"forced" lines, such as certain re-captures, or when one
side is moving out of check. In Figure 1 we assume
the existence of a function Extend() that checks for
forced moves. If a decision is made to extend, then the
maximum depth of search for this line is extended by
one.

As opposed to search extensions, pruning schemes
select, branches which are to be searched to less than
nominal depth. This is referred to as forward pruning,
and can involve erroneous decisions by prematurely
truncating good lines. The null-move heuristic is the
commonest forward pruning method used in contem-
porary chess programs. The underlying idea is that
in chess it is almost always beneficial to make a move
rather than to pass. Therefore, if the score received
by giving up a move is still good enough to cause a
cutoff, it is very likely that at least one legal move will
too. When the position is assessed using a shallower
search than we would otherwise, considerable search
effort is saved. The constant R shown in Figure 1 de-
cides the search reduction for the null-move searches,
and is typically set to 2. Some precautions are nec-
essary when using a null-move, for instance, we can
not allow null-rnove to be made when the side to move
is in check, nor can two consecutive null-moves be al-
lowed. In chess it is almost always safe to make the
assumption that making a move will improve the posi-
tion, but for a special case, called zugzwang positions,
this is not true. Most chess programs turn off the null-
move heuristic when entering the endgame, because
zugzwang positions are more likely to arise there.

The transposition table is used to store information
about positions that have been visited before, either
during an earlier iteration or when different move se-
quences transpose into the same position. Typical
items to store in a transposition table are: the merit
value of a position, type of the value (i.e. true value,
upper-bound, or lower-bound), the height of the sub-
tree the position was searched to establish the value,
the best move in the position, and a hash key for the
position. The hash key is necessary because hashing is
used to index the table. Whenever a node is visited,
the transposition table is checked to see if it was seen
before, and if so, if it was searched sufficiently deep
so that we can reuse the merit value fl’om the table.
The merit can be used to determine a true value for
the position, thus eliminating the need to search the
position further, or to adjust the current ~-fl bounds,
which can also lead to a cutoff. The use of a transpo-

sition table can reduce the search space significantly,
especially in endgames where transpositions occur fre-
quently. The table can only hold a small portion of ac-
tual positions searched, therefore various replacement
schemes are used to decide which positions to keep; one
uses two-level transposition tables. A two-level table
stores for each entry, not only the most recent posi-
tion hashed into that entry but also the position that
was searched the deepest. In Figure 1 the functions
LookTT0 and AddTT() retrieve and insert entries into
the transposition table, respectively.

NWS-like search algorithms perform best when good
moves are expanded first. Therefore, various move-
ordering heuristics have been developed. One such is
to store the best move in the transposition table. When
a node is revisited this move is always tried first; the
rationale being that a move previously found to be
good in one position is also likely to be good when the
position is searched to a greater depth. Brute-force
methods explore all possible moves in each .position,
many of which can easily be refuted by an obvious
capture. Chess programs therefore often order capture
moves early in the move-list. The killer move (Slate &.
Atkin 1977) and the history heuristic (Schaeffer 1989)
are more sophisticated move ordering schemes that are
widely used, both are based on the idea that a move
that is good in one position is often good elsewhere.
The former keeps track of a few best moves found at
each height level in the tree, while the second keeps
a global table for all possible moves. The best move
found in each position gets a credit, shown in Figure
1 as a function call AddCreditO, and when moves are
generated by Ne~ctMove(), captures are done first and
then the remainder in order by the credit they have.

When using a depth-first search it is necessary to de-
cide beforehand how deep to search. This makes it dif-
ficult to estimate how long the search will take. How-
ever, by gradually increasing the search depth one can
better decide how long the search will take and when
to stop searching. This is called iterative-deepening.
Because the time for each iteration grows exponen-
tially with increased search depth, the effort, spent, in
earlier iterations is relatively small compared to the
last iteration. The search overhead introduced by it-
erating on the search depth is therefore small. Fur-
thermore, when used in cornbination with a transposi-
tion table, the principal variation is kept between it-
erations. This leads to a better rnove ordering, often
resulting in iterative-deepening searching fewer nodes
in total than the non-iterative approach. The tech-
nique of iterative-deepening search later found its way
into other Al-domains, such as theorem-proving and
single-agent search.

34

Hardware

Today’s state of the art PC is extremely powerful.
The commercial chess programs running on them are
also quite sophisticated, and the playing strength ap-
proaches the GM-level. The state of the art computer-
chess hardware is undoubtedly Deep Blue. It uses 256-
512 chess-specific processors, and under tournament
time controls is capable of searching 50-100 billion po-
sitions for each move.

Knowledge Representation

Tile chess knowledge used in contemporary chess pro-
grams is primitive by human standards. The programs
have a notion of basic chess concepts such as material,
mobility, pawn-structures, king-safety, weak/strong
squares, space, center-control, and development. A
good description of a typical knowledge encoded in
chess programs can be found in Cray Blitz (Hyatt,
Gower, & Nelson 1990), whose evaluation function is
described in some detail.

More elaborate chess concepts, such as long-term
planning, piece co-ordination, theme consistency, im-
balances, long-term weakness, are totally missing from
their vocabulary. It would be impossible for human
players to achieve master strength without this knowl-
edge. The chess programs partially compensate for this
lack by using deep exhaustive searches.

Openings Books and Endgame Databases

Just as for humans, good opening play is an important
part of a strong chess program. The best programs
invariable have opening books prepared by chess mas-
ters. Not only do the masters manually prepare new
openings lines, but computers are also used to verify
existing analysis in the hope of finding flaws or further
improvements. The opening book must guide the pro-
gram to positions that are not only favorable, but also
well suited to the computer’s play. This often implies
avoiding closed positions in favor of more open and
tactical ones. The importance of having a good open-
ing book is evident from the fact that the top commer-
cial programs specifically prepare opening lines against
other top programs. Therefore, to prevent both chess
programs and human players from repeatedly exploit-
ing the same opening mistakes, some programs auto-
matically update their opening book during a game;
deleting lines that lead to an inferior positions soon af-
ter deviating from the book, while adding others that
showed promise. Similar concepts were tried in ear-
lier chess programs such as BEBE (Scherzer, Scherzer,
& Tjaden 1990). It stored positions from its previous
games in a special long terra transposition table, thus

preventing the program from making the same mistake
twice.

Pre-calculated endgarne databases are also available,
for endgames with 5 or fewer pieces. When arriving at
a position in the database, the programs play the best
moves fl’om there without any search.

The Future: What is the Right Way

The benefit of each additional ply diminishes the
deeper we search. This implies that the utility of
searching deeper will become less and less. Therefore,
we believe that there will be a shift, in emphasis; less
effort will be spent on search algorithms and more on
the knowledge part.

Search

Search is, and will remain, fundamental to chess play-
ing programs--after all, tactical combinations are a
big part of the game. This is one reason why chess
programs have an advantage over human players. By
exhaustively looking at all alternatives the programs
often discover unexpected tactics or brilliant defend-
ing resources that are hidden to the human eye. Fur-
ther search improvements can come fl’om one of two
sou rces:

* Searching faster.
The search may benefit from increasing computing
speed, but this will not be as dorainating a factor
as before. It. can be more beneficial to invest the
extra computing speed in incorporating additional
knowledge. Research in parallel search is, and will,
stay important, although not of ultimate importance
to the AI community.

* Searching smarter.
Alternatively, more selective search algorithms can
be developed, that search "smarter" by more aggres-
sively extending branches of interest while pruning
others of lesser potential. Selective search methods
are likely to attract, increased attention from the re-
search community. One of the fundamental ques-
tions of Al--how to use knowledge to direct search--
has to be revisited.

Knowledge

Further major improvements must come from addi-
tional chess knowledge. Questions like, what addi-
tional knowledge is important, how can it be acquired
and effectively implemented, need to be addressed.
These issues have been largely neglected in the past.

As mentioned before, knowledge acquisition is a long
and tedious task. Methods to make this task easier,
like tools for automatically extracting relevant chess

35

knowledge from big databases, will become increas-
ingly useful.

The long-range planning component of chess pro-
grams should also be worked on. An old adage says
that it is better to play with a bad plan in mind than
no plan at. all. Deep searches certainly give the pro-
grams some notion of a plan, but. often it. is too superfi-
cial and short sighted. It is sometimes emban’assing to
watch a well prepared human opponent make even the
strongest chess programs look like absolute beginners;
simply by applying an uncomputer-like style of play.

Ideas are the tools of the chess pl.ayer. Players do not.
reinvent the wheel every time a game is played. The
same themes occur over and over again, and during a
game players recall similar situations from their own
and other people’s games, and reuse the ideas from
there. Often these ideas are based on long-term plans
that are outside the scope of any search, they are sim-
ply memorized. Humans have an extra-ordinary tal-
ent for adapting existing knowledge and applying it to
similar situations, reasoning by analogy. This is, for
example, reflected in the way they play chess. Chess
might become an active t.estbed for Case-Based Rea-
soning methods that experiment with such memory
based reasoning. In the long run, chess programs could
greatly benefit, from such methods, allowing them to
reuse plans and adapt, them to different, over the board
situations.

(]hess

An interesting question to ask is whether chess pro-
grams will influence the way chess is played in the
future. Chess, like most. other things is receptive to
changes, both from fashion and from new discover-
ies. Computers have already been used to discover
new facts about various chess endgames, and to im-
prove opening theory. The question here is more on
the lines of whether they will change the style humans
play. Humans often deliberately play slightly inferior
moves, to surprise the opponent., complicate things, or
to seek some counter chances.

The psychological effect, of a surprise move is of lit-
tle value against, a computer program. One can argue
that the programs have certain psychological advan-
tages over the humans. For example, in the first, game
of the 1996 Kasparov vs. Deep Blue match, Deep
Blue showed a t.otal disregard for Kasparov’s attack,
calmly grabbing a pawn on the queenside while its king
fortress was under seemingly disastrous threats. A hu-
man player might have shown the world champion a
little more respect by taking his attack seriously. In
the last game of the same match, Kasparov had a win-
ning piece sacrifice on h7, but after thinking for a long

time he played differently, apparently deferring to the
judgment of the computer.

Conclusions
It is inevitable that chess programs will one day out-
smart even the strongest humans. The future pro-
grams will continue to rely on extensive search, but
whether that approach alone is sufficient to reach the
top is moot. More sophisticated methods are needed,
that allow the programs to understand the more elab-
orate chess concepts. However, even though a pure
brute-force approach will suffice to make a world-class
chess program, the program will to be of limited inter-
est unless it can share its knowledge. For a program
to be an effective tutor, it must be able to explain var-
ious chess related concepts in a manner that is under-
standable and natural to us humans, instead of simply
returning a raw numeric score indicating a merit of
a chess position. Therefore, independent of the out-
corrie of the Garry Kasparov vs. Deep Blue match, we
believe that computer-chess will remain an important
testbed for AI applications, not only in search but also
in fields such as reasoning, knowledge representation,
and knowledge acquisition.

References
Hyatt, R. M.; Gower, A. E.; and Nelson, H. L. 1990.
Computers, Chess, and Cognition. New York, NY:
Springer-Verlag. chapter 7 -- Cray Blitz, 111-130.

Knuth, D. E., and Moore, R. W. 1975. An analysis of
alpha-beta pruning. Artificial Intelligence 6(4):293-
326.

Marsland, T. A., and Campbell, M. S. 1982. Parallel
search of strongly ordered game trees. A CM Comput-
ing Surveys 14(4):533-551.

Reinefeld, A. 1983. An irnprovernent to the Scout
tree search algorithm. ICCA Journal 6(4):4-14.

Schaeffer, J. 1989. The history heuristic and alpha-
beta search enhancernents in practice. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence
PAMI-11(1):1203-1212.

Scherzer, T.; Scherzer, L.; and Tjaden, D. 1990.
Computers, Chess, and Cognition. New York, NY:
Springer-Verlag. chapter 12 -- Learning in Bebe, 197-
216.

Slate, D. J., and Atkin, L. R. 1977. Chess Skill in Man
and Machine. New York, NY: Springer-Verlag. chap-
ter 4. CHESS 4.5 - Northwestern University Chess
Program, 82-118.

36

