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Abstract

This chapter provides a brief historical overview of how variable-
depth-search methods have evolved in the last half a century of
computer chess work. We focus mainly on techniques that have not
only withstood the test of time but also embody ideas that are still
relevant in contemporary game-playing programs. Pseudo code is
provided for a special formulation of the PVS/ZWS alpha-beta search
algorithm, as well for an implementation of the method of singular
extensions. We provide some data from recent experiments with
Abyss’99, an updated Chinese Chess program. We also pinpoint the
current research in forward pruning, since this is where the greatest
performance improvements are possible. The work closes with a
short summary of the impact of computer chess work on Chinese
Chess, Shogi and Go.

1. INTRODUCTION

The number of nodes visited by the alpha-beta algorithm grows exponentially with
increasing search depth. This obviously limits how search can be used to assess
the outcome of a game state. The basic question remains; how can game-playing
programs make best use of the available time to find a good move? Although, the
basic formulation of the alpha-beta algorithm explores all continuations to the
same depth, it has long been evident that this is not the best search strategy.
Instead, some continuations should be explored more deeply, while less interesting
ones are terminated prematurely. In chess, for example, it is common to resolve
forced situations, such as giving check or re-capturing, by searching them more
deeply. The search efficiency, and consequently the move-decision quality, of the
programs is greatly influenced by the choices of how to vary the search horizon.
Therefore, the design of variable-depth search criteria is fundamental to any game-
playing program using an alpha-beta minimax method.
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2. BACKGROUND WORK

In the early 1970s programmers were still pursuing Shannon’s proposed strategies.
Type-A programs considered every move for a few move sequences (at that time 3
to 5 ply). Type-B programs selected only plausible moves and searched them for a
few moves, and followed that with a variable depth quiescence stage until no
captures remain. At this time the design of computer chess programs was mostly
focussed on move ordering: checks, captures, “killer moves”, threats and advanced
pawn pushes. By categorizing moves into groups with either tactical (short-term)
or strategic (long-term) threats, one can arrange that forcing moves are examined
first. This technique leads to cut-offs (reductions) in the search trees of the
remaining siblings (unsearched moves in the current position).

It was also during the 1970s that the notion of iterative deepening was refined and
tuned. In the interests of completeness and uniformity, the searches were generally
done to some fixed depth (or iteratively so until the allotted time ran out). The use
of time to control the search is especially important, since it offers the flexibility
to confirm that the best move from the previous iteration continues to preserve its
status as a safe choice. Meanwhile the selective search approach fell into disuse,
although always trying to re-emerge through some kind of forward pruning
method. Forward pruning (the discarding of moves after cursory examination)
proves to be far more difficult to implement in computers than it appears to be for
humans to handle.

Thus it became clear that the reliability that comes from completely searching all
necessary continuations provides consistently better results than is possible by the
selective discard of some variations on the grounds that they have little potential
(are not relevant to the current themes). For example, medium term sacrifices are
typically discarded prematurely. Thus the notion of forward pruning fell out of
favour during this decade, and with it went Mack Hack’s reliance on a plausible
move generator (Greenblatt et al., 1967) – though this early chess program was the
established leader for about five years. By the end of the decade the benefits of the
variable depth quiescence search became apparent and this led to the dominance of
the Type-A programs, as they evolved into a two-stage search process by adding a
quiescence phase (Figure 1).
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Figure 1: Staged search to variable depth.

3. GROWTH OF THE MICRO

With the steady increase in processing speeds, deeper searches became possible,
causing the focus of the 1980s to move to a staged search. Figure 1 illustrates the
common three-stage search – several ply of full width search (where every required
move is examined), followed by an approximately equal layer of selective search
and terminated with a tapered quiescence search of predominantly capturing moves
and responses to check. Although somewhat ad hoc at the time, this model of
variable-depth search proves to be quite robust. Nevertheless, this kind of staged
search does not adequately reflect the intuitive notion that extensions to the search
depth should be selectively, instead of uniformly, applied along forcing lines.
Widely recognized was the need to extend the search by a single ply whenever one
side is in check. A related idea was to extend when one side has only a single
move, but really what is wanted is an extension whenever one side has only one
“sensible” move (e.g., a simple piece exchange). This implies some kind of
forward pruning to prematurely stop expansion of identifiably bad moves. Two
well-established workable forward pruning ideas were razoring and futility cutoffs.
For example: if, just before the horizon, the score is already above the beta bound
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for the side to move, prune immediately (razoring). Alternatively, if the current
move is below the alpha bound and the available positional factors don’t have the
potential to raise the score above the alpha bound, discontinue this line (futility
cutoff). While seemingly good at reducing the nodes visited, futility cutoffs are
often not cost-effective in terms of time. Thus it is a more implementation-
dependent method than one would like.

Variable depth methods like these were further refined to ensure that the extensions
would be controlled, so that an unbounded search (e.g., during perpetual check)
did not arise, or so that search explosion did not occur (e.g., when a pawn is
promoted at or near the nominal search horizon). Of primary concern to the
programmers of this era was how to deal with the horizon effect (i.e., how to
prevent the pushing of material loss beyond the search horizon by the insertion of
frivolous moves – often checking moves). Thus from an early time it was clear
that some form of selective variable depth search was necessary. 

The 1980s was also a period of tremendous technological change, with the price of
a small computer falling below that of an automobile. During this time the speed
of the central processing unit in a computer doubled every two years or so, and
personal computers became common and within reach of recreational programmers.
The price of RAM fell dramatically, while secondary storage capacity rose steadily.
With the newer processors came a larger address space, so that now three things
became possible. 

Firstly chess programs quickly migrated from general-purpose multiprogramming
mainframe computers to single-user personal machines dedicated to one application
at a time. Secondly, move ordering mechanisms continued to be important, but
were further refined. For example, the use of “killer moves” was supplemented
with the more general idea contained in the history heuristic – a 64×64 table for
tracking how often feasible moves had recently been causing cut-offs (Schaeffer,
1983). Finally the additional memory and larger address space made it possible for
transposition tables to increase dramatically in size and to be used for more than
just storing the results of searches of sub-trees (used to restore a solution, should a
previously occurring position occur again through transposition of moves). 

Being larger, the transposition table now became the preferred and most powerful
move-ordering mechanism, guiding the search from one iteration to the next along
the best available path that had been found thus far. By this means move
generations are sometimes avoided (e.g., if the table moves causes a cut-off) or
delayed until it is certain that some sibling moves must be examined. With
increased memory space, renewed interest was also shown in the Best-First
strategies like Stockman’s SSS* and B* (Berliner, 1979) and combination
methods like DUAL* (Marsland et al., 1987) although versions that are
computationally efficient were slow to evolve. Nevertheless steady progress was
made, eventually culminating in MTD(f) (Plaat et al., 1995) which reformulated
SSS* to use zero-width windows and transposition tables, and so obtain efficiency
comparable to the alpha-beta methods that are the mainstay of computer chess
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search. All state-space methods are limited by their memory requirements, and by
their use of expensive methods for determining the best node to expand next.

On the other hand, the alpha-beta search algorithm appears to be concise, especially
in Knuth & Moore’s original NegaMax framework, but with its many refinements
an actual implementation can also be lengthy and involved. Some people find the
NegaMax formulation alien, as Figure 2 suggests, and yet its programming
elegance and simplicity cannot be denied. Figure 2 illustrates the case when a zero-
width window search fails high and this initiates a PVS search (the area in the
box). Here PV and ALL nodes represent positions where every successor must be
examined, while a CUT node represents the case where only a few successors are
examined before a cut-off occurs. In the ZWS phase,    CUT    represents a node where
a cut-off was expected, but now every successor is being expanded (it is being
converted into an ALL node). Similarly   ALL    represents an expected full-width
node that is now cutting off, thus indicating that a new PV may be emerging.
Although it is true that game trees are made up of only three types of node (PV
nodes along the principal variation, and alternating CUT and ALL nodes on the
other paths), the true situation is better described with at least five node types
(Reinefeld & Marsland, 1987).

Figure 2: Sample Pruning with the NegaMax Method.

Despite the increased computing power that was brought to bear on the computer
chess problem during the 1980s, the best programs were barely contending for
Grandmaster status in regular play, though they more than held their own in speed
chess against anyone. Nevertheless, the end of the decade saw increased use of
dedicated computers, and heavy reliance on various hash-transposition tables not
only to provide improved support for iterative deepening, but also to help speed
the horizon node quiescence search. This period also saw much work on the
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production of 3, 4 and 5-piece endgame databases, and the review of some end
games that were thought to be drawn by the 50-move rule (Thompson, 1986).
Thus by 1990 all the important elements were in place for computers to play
consistent grandmaster chess.

4. ASCENT TO GRANDMASTER

In the 1990s, with good criteria for automatically extending search well
understood, attention once again turned to “forward pruning”, an idea that had been
repeatedly tried in the previous two decades, but with mixed success. Humans are
adept at simplification and apparently ignore moves that seem irrelevant to the
current themes of play. From the computational standpoint, the size of the game
tree can only be significantly reduced through the use of powerful forward pruning
techniques. 

A generalization of the razoring and futility ideas is use of the null-move in a
quiescence search  (Beal, 1989). The essence of the third (quiescent) stage of search
is to consider only capturing moves, some early checking moves and destabilizing
tactical moves like fork threats. The use of a null move (that is, allowing one side
to move twice) ensures that a tight bound on the search outcome can be found
more quickly. Losing capture sequences are truncated by assuming that one side
can “stand pat”, and so the search can achieve a merit value equal to that of a non-
capturing (quiet) move.  

Null-move techniques were the forward pruning method of choice in the early
1990s, and remain so. They also provide the possibility of generating a short list
of opponent threats. Thus new criteria for dynamically re-ordering the current
player’s move list became possible, namely that moves which explicitly counter
those immediate threats should be considered first.

The most successful null-move variation, widely incorporated into chess programs
during the 1990s, is Null Move Forward Pruning (Goetsch and Campbell, 1990;
Beal, 1990; Donninger, 1993). Although a formal definition of the null move was
provided many years ago, let us look more closely at what it is trying to do, and
consider why and when it is effective as a forward pruning method. Figure 3
shows pseudo code for PVS/ZWS (Principal Variation Search using a Zero-Width
Search). The transposition table code is omitted, since it is adequately described
elsewhere (Marsland, 1986). This particular formulation is different from that
found in NegaScout, but has advantages in parallel processing applications, since
it simplifies the work distribution problem. Here the null move heuristic appears
as bold font in the ZWS portion of the search. This is the most frequent usage.
Here ReduceSearch() computes the appropriate search reduction to apply, while
ForwardPrune() determines whether the pruning condition is met. The code can
also be included in the PVS portion, not only to curtail the search but also to raise
the alpha bound of a new principal variation, although here the method is more
problematic. Given that a null move or “pass” is not legal in chess, it would seem
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to be a contradiction to allow one side to move twice. However, by allowing a
second move by the same player, albeit to less than the current nominal search
depth, one can determine if the situation is probably futile, and so forward prune at
that point. The method will fail in Zugzwang situations, where the side to move
can only weaken its position. To reduce the chance that Zugzwang will cause a
problem, null-move forward pruning is not done in the endgame.

/*
* Given a Principal Variation Search procedure
* V = PVS (Root, Alpha, Beta, D)
* that returns V, a value in (Alpha, Beta),
* by searching the “Root” game-tree to Depth D.
* PVS draws on ZWS (Zero-width Window Search procedure)
* Merit = -ZWS (Sibling, -Alpha, D-1, TryNullMove)
* to determine a bound for the Sibling value.
* An ZWS search fails-low if Merit < Alpha
* and fails-high if Merit >= Alpha.
* TryNullMove enables the Null-move forward pruning
* heuristic, with depth reduction of R > 1.
* It is applied recursively.
* Omitted is any use of a Transposition Table.
*/
PVS (Root, Alpha, Beta, Depth) � ExpectedValue of Root

// maximum depth or (stale)Mate
if (Depth <= 0) || (Root == TERMINAL)

return (Evaluate(Root));

// generate successors, select first one
Next = SelectSuccessors (Root);

// Find expected value of the first variation.
Best = -PVS (Next, -Beta, -Alpha, Depth-1);

// Select next move on list
Next = SelectSibling (Next);

// Begin zero-width window (ZWS) searches
while (Next != NIL)

if (Best >= Beta)
return(Best);

Lower = Max (Alpha, Best); // Raise lower bound
Merit = -ZWS (Next, -Lower, Depth-1, TRUE);
If (Merit > Lower) // re-search, new PV

Merit = -PVS (Next, -Beta, -Merit, Depth-1);
if (Merit > Best) // Fail-high

Best = Merit;
Next = SelectSibling (Next);

return (Best); // A PV-node

ZWS (Root, Bound, Depth, TryNullMove) � EstimateValue of Root
if (Depth <= 0) || (Root == TERMINAL)

return (Evaluate(Root));

R = ReduceSearch (Next, Depth);
// typically, R is one of {1, 2, 3}

if (ForwardPrune(Next, TryNullMove, Depth > R))
Next = SwapSides(Root); // null-move
Merit = -ZWS(Next,-Bound+epsilon, Depth—1-R,FALSE);

// if bound exceeded, treat as CUT-node
if (Merit >= Bound)

return(Bound); 
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Next = SelectSuccessors (Root);
Estimate = -INFINITY;

// Loop doing zero-width window searches
while (Next != NIL) 

Merit = -ZWS (Next, -Bound+epsilon, Depth-1, TRUE);
if (Merit > Estimate) // Improved bound

Estimate = Merit; // Raise lower bound
if (Estimate >= Bound)

return(Estimate); // Fail high, CUT-node
Next = SelectSibling (Next);

return (Estimate); // Fail low, ALL-node

Figure 3: Null-move forward pruning in PVS/ZWS.

Typical results from this era are given in the work by Ye and Marsland (1992),
where a cost-benefit comparison for single and combination extensions for: check
evasion, recapturing moves, king threats, evasive moves and strictly forced moves
was given. Of these, extensions on check and on a strictly forced move are the
most effective in Chinese Chess. Over the years the Chinese Chess program Abyss
has evolved to form Abyss’99 and Tables 1A and 1B show some data from the
current program.  These results are for 5 to 8-ply searches and so complement the
earlier ones. The comparison here is against the base program that includes both
futility cutoffs and the null move. The full power of the null move is readily
apparent in the comparison with the version without that feature (-null in Table
1A). For an 8-ply search a 10-fold improvement in search speed is achieved,
without any negative impact on the solution rate (Table 1B). Additional data for
the base version with extensions for giving check (+ch) and on a strictly forced
move (only one legal reply, +sf) is provided. Both the traditional node-count and
the more pertinent time ratios are given. The data in Table 1B illustrates the
improved performance of Abyss’99 over the earlier version, not only are 20% more
problems now solved with a 5-ply search, compared to Abyy’99, but also slightly
fewer nodes are visited. To achieve this, significant improvement was made in the
quiescence search (where a new capture-move ordering scheme is used, and all
responses to check are examined to a maximum depth of three times the current
iterative depth), and the whole program is now more precise and robust. From
Table 1A we see the relative cost of the two most effective extension heuristics.
Use of the null move in ZWS leads to a significant node count reduction without
loss of solutions found, while the check extension and strictly forced move
extension provide significantly improved performance at acceptable cost, even at
the deeper searches. As a minor statistical note the +ch+sf version of Abyss’99
spent about 3900 seconds processing the 50 problems in the test suite (and solving
86% of them), at an average search rate of 53,000 nodes per second, and using a
maximum iterative search depth of 8 ply.

Table 1A: How the total node count and CPU time values increase with different
extension heuristics, using a test suite of 50 positions.

5 ply 6 ply 7 ply 8 ply

Features time
ratio

node
ratio

time
ratio

node
ratio

time
ratio

node
ratio

time
ratio

node
ratio



Variable Depth Search 13

-null 1.56 1.14 4.33 2.59 3.85 2.24 10.50 6.27
base 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
+ch 1.25 1.16 1.32 1.18 1.46 1.29 1.39 1.26
+ch+sf 1.58 1.42 1.60 1.39 1.93 1.62 2.03 1.74

Table 1B: The  improvement of Abyss'99 over Abyss’92, using a test suite of 50
positions.

5 ply
Abyss’92

5 ply 6 ply 7 ply 8 ply

Features Solved Solved Solved Solved Solved
-null 30% 36% 50% 56% 64%
base 30% 38% 50% 56% 64%
+ch 50% 52% 62% 74% 80%
+ch+sf 50% 60% 68% 80% 86%

At about the time the null-move methods were being described, people began to
work on other ways to vary the search distance. It was already well established that
responses to check should not count as a move that takes one closer to the search
horizon. To this, an automatic extension can be done for every forcing move with
but a single response. In the early 1990s, the notion of a singular extension was
introduced and tried (Anantharaman et al., 1990). Figure 4 provides pseudo code
for our version of this method. It is employed at each node on the PV (but not at
the root, because implementation details of this special case are awkward). Moves
that are substantially, or singularly, better than any sibling are searched one ply
further to reduce the risk of a horizon effect. That effect is particularly troublesome
when one side “wins” a major piece and then sacrifices some smaller piece in a
futile attempt to prevent the recapture of the major one.

/* ----------------------------------------------
* PVS with Singular Extensions.
* ----------------------------------------------
*/
PVS (Root, Alpha, Beta, Depth) � ExpectedValue of Root

if (Depth <= 0) || (Root == TERMINAL)
return (evaluate(Root));

// Generate successors, select first one
Candidate = SelectSuccessors (Root);

Best = -PVS (Candidate, -Beta, -Alpha, Depth-1);
Next = SelectValidSibling (Candidate);

research:
// Candidate is the first PV.  Is it singular?

while (Next != NIL)
if (Best >= Beta)

return (Best);
Lower = Max (Alpha, Best);
if (Candidate != NIL)

// determine upper bound on current move
Merit = -ZWS (Next, -Lower + Margin, Depth-1);

// Is the current move close to candidate?
if (Merit > Lower - Margin)

Candidate = NIL;
if (Candidate == NIL)

Merit = -ZWS (Next, -Lower, Depth-1);
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if (Merit > Lower)
Merit = -PVS (Next, -Beta, -Lower, Depth-1);

if (Merit > Best) // New PV emerges
if (Merit > Best + Margin)

Candidate = Next; // new singular
Best = Merit;

 Next = SelectValidSibling (Next);

if (Candidate != NIL)
// does singular move holds up under extension

SS = -PVS (Candidate, -Best, -Best+Margin, Depth) 
// Candidate may be best, but not singular

if (SS <= Best – Margin)
Delete move from "SelectValidSibling List";
Set Next to first entry in SelectValidSibling;

// Restart with first move on shorter list
go to research;

else return (SS); // Singular move preserved
else return (Best);

Figure 4: PV Singular Extension

In a similar vein, an implementation of Fail-High singular extensions is given in
Figure 5. Despite the strong case that was made for the singular extension method
(it was thought to be especially beneficial in human-computer matches), there is
little evidence of its effectiveness in computer–computer games.

/* ----------------------------------------------
* ZWS with Fail-High Singular Extensions.
* ----------------------------------------------
*/

ZWS (Root, Bound, Depth) � EstimatedValue of Root

if (Depth <= 0) || (Root == TERMINAL)
return (Evaluate(Root));

Next = SelectSuccessors (Root);
Original = Next;

Estimate = -INFINITY;
while (Next != NIL)

Merit = -ZWS (Next, -Bound + epsilon, Depth-1);
if (Merit >= Bound)  // A cut-off?

Singular = Next;
/*
* If Merit exceeds every sibling by more
* than FH_Margin, move is singular. 
* Extend depth, see if the cut-off
* preserved.  If so, return.  If not, 
* keep looking.  Return if not singular
*/
Tmp = Original; // Start at previous
while (Tmp != NIL)

if (Tmp != Singular)
R = ReduceSearch (Next, Depth);

// R usually in {1, 2, 3}
Value = -ZWS (Tmp, -Bound+FH_Margin,Depth-1-R);
if (Value > Bound-FH_Margin)

return (Merit);
// Candidate not FH_Singular

Tmp = SelectSibling (Tmp);

// Currently best move is singular, extend
// Compare new cut moves to "Candidate”
Merit = -ZWS (Singular, -Bound+epsilon, Depth);
if (Merit >= Bound)

return (Merit); // valid singular
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// Merit < Bound, singular did not cut-off
Original = Singular; // Note candidate
if (Merit > Estimate)

Estimate = Merit; // Raise best value
Next = SelectSibling (Next);

Return (Estimate); // Fail-low, ALL node

Figure 5:  Fail-High singular extension
Table 2 shows the outcome of a match between two versions of the same Chinese
Chess program, one with and one without singular extensions deployed. The
singular extension version does increasingly poorly with increasing time per move
available. Abyss’99 was used for this small-scale feasibility study. Note that at
100 seconds per move the tournament mode version of Abyss’99 (null-move
version with check and strictly forced move extensions enabled) was searching
about 8-ply in the middle game. Clearly SE.Abyss’99 (Abyss with singular
extensions enabled) does less well with increasing average search time per move.
Despite this discouraging performance the ideas behind singular extensions enabled
better forward pruning techniques to emerge (Björnsson and Marsland, 1998). On
the other hand it could be argued that this experiment is biased against the
Singular extension method. This opens the interesting question of how to estimate
the incremental cost of singular extensions. A simple experiment where
SE.Abyss’99 was given 10% more time (33 seconds/move) against Abyss’99 (30
seconds/move) was done. The last line in Table 2 provides the outcome from a
sample test, and suggests that approximate equality can probably be achieved if
Singular Extensions can be run on a machine with a 10% speed advantage. A
much more complete experiment is necessary, the pseudo code of Figures 4 and 5
can be used for that purpose, before definitive answers are possible.

Table 2: 24-games (from 12 unique starting positions) matching SE.Abyss'99
against Abyss'99 (both in tournament mode).

wins draws losses result SE win percentage

10 secs/move 8 9 7 12.5 - 11.5 52.08
30 secs/move 7 6 11 10 - 14 41.67
100 secs/move 6 6 12  9 - 15 37.5
33 s/m for SE.Abyss 10 5 9 12.5 – 11.5 52.08

Finally, as part of the need for increased variability in the search horizon, more
flexible search limits are commonly enabled during the end game phase. By
making the search node-count-limited, instead of depth-limited, it is possible to
follow much longer sequences of moves at positions with few continuations (hence
making it possible to avoid draw by repetition in endings).

5. SOPHISTICATED PRUNING

In the past, forward pruning has been a high-risk method, but one with high
potential pay-off. At present the variable-depth search methods are an active
research area. Recently, some of the existing pruning methods were greatly
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improved (Heinz, 1999). First, the futility-pruning and razoring methods were
generalized to allow for pruning further away from the horizon. The generalized
methods are called extended-futility-pruning and limited-razoring, respectively. By
using a wider “security-margin”, the extended pruning methods can be applied
relatively safely at pre-frontier nodes. Second, Heinz’s experiments with the null-
move show that it is relatively safe to use a search-reduction factor of 3 when the
remaining search depth in the tree is greater than 6 plies (except when approaching
the endgame, when an 8-ply margin is necessary for safety). For shallower sub-
trees the null-move searches are shortened by only 2 plies, as is normal practice.
This variable scheme is called Adaptive Null-Move pruning, but collectively Heinz
refers to the three above methods (Adaptive null-move, Extended futility-cutoff,
and Limited razoring) as AEL-pruning.

Multi-cut pruning is another new search reduction method (Björnsson and
Marsland, 1998). For a new principal variation to emerge, every expected CUT-
node on the path from the root to the horizon must become an ALL-node. At cut
nodes, however, it is common that even if the first move does not cause a cut-off,
one of the alternative moves will. The observation that expected CUT-nodes
–where many moves have a good potential of causing a cut-off – are less likely to
become ALL-nodes forms the basis of this method. More specifically, before
searching an expected CUT-node to a full depth, the first few children are expanded
to a reduced depth. If more than one of the depth-reduced searches causes a cut-off,
the search of that subtree is terminated. However, if the pruning condition is not
satisfied, the search continues in a normal way. Clearly by basing the pruning
decision on a shallower depth, there is some risk of overlooking a tactic that
results in the node becoming a part of a new principal continuation. However, it is
reasonable to take that risk, since the expectation is that at least one of the moves
that caused a cut-off when searched to a reduced depth will cause a genuine cut-off
if searched to full depth. This multi-cut scheme can be thought of as the
complement of Fail-High singular extensions; the former prunes the tree if there
are many viable moves at an expected CUT-node, whereas the latter extends the
tree when there is only one viable move there.

Both AEL pruning and Multi-cut pruning have been shown to result in improved
game-play, and are being employed by at least some of today’s strongest chess
programs.

6. SUMMARY: STATE OF THE ART

To conclude, let us consider the situation in other adversary games. Chinese
Chess, for example, has complexity comparable to chess, although it seems to lead
to longer tactical exchanges. On average slightly more capturing moves are
possible, the board is slightly larger, and a draw by repetition of forcing moves is
not allowed. Despite that, the tactical exchange and long-term planning ideas from
chess carry across. Thus most computer methods developed for chess apply equally
well in Chinese Chess.
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For Shogi, on the other hand, things are not so clear.  First the complexity of
Shogi is greater than for Chess and Chinese Chess (Matsubara et al., 1996).
Captured pieces in Shogi “change colour” and can be returned to the board at any
later time in lieu of a move. Current research on computer Shogi is very active.
Second, it would seem that transposition tables are less valuable (since
transposition of moves is less common). Many of the latest ideas from chess have
been tried, and there is some potential for forward pruning methods to work well,
because of the increased complexity that arises from the more uniform search width
that must be maintained. In Shogi, the notion of an endgame is also quite different
from chess, thus transposition tables are less likely to be as effective for guiding
the search in that phase, although it should still be good for recognizing repetition
cycles. Other memory functions should be possible, however. Perhaps a good
source of information about the difficulties faced by Shogi programmers is to be
found in Grimbergen’s recent paper (Grimbergen, 1998). One group of Shogi
programmers is experimenting with a different type of staged search, one where the
alpha-beta algorithm is used is used in the first stage and a Proof Number Search
(Allis et al., 1994) for the second.

The next game in increasing complexity is Go, where brute force search techniques
are thought to have far lower potential. At first sight Go is simple, but the 19×19
board leads to lengthy move sequences which require long-range planning.  Move
selection may come down to identifying a few key moves and exploring them to
the exclusion of other “provably irrelevant” stone placements. Since search does
not yet provide the answer, much of the work continues along classical lines of
gathering data about how expert players “see” the game, and how humans learn Go
concepts (Yoshikawa, 1998). Some of the recent papers are philosophical in tone
(Mueller, 1998). The thrust remains on the need for plausible move generators,
like those used by Greenblatt thirty years ago, thus closing our circle. While
Computer Go is not thirty years behind in terms of research ideas and activity, the
playing strength of Go programs remains at the amateur (good club player) level. 
Unlike in chess, the Go professional is not yet threatened by, and does not yet
need, a Computer Go program as an assistant.
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