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Abstract. The dynamic equations of motion for rigid links connected at hinges to form a tree are amenable
to a parallel solution. Such a solution can potentially provide a real-time simulation of the dynamic behavior of a
broad class of objects used in animation and robotics even when the number of links is large. However, the design
of a parallel algorithm poses problems not encountered in the sequential, one-processor case, such as assignment of
links to processes, allocation of processes to physical processors, synchronization of processes, and the reduction of
communication losses. The computation time using a parallel algorithm and an unlimited number of processors is
shown to grow with the height of the tree rather than with its number of links. Increased communication costs
degrade performance by a factor at most equal to the fanout. The facility used to investigate these problems is a
Virtual Tree Machine (VTM) multi-computer implemented on a network of autonomous VAX-11/780 computers
and SUN-2 workstations, each running a UNIX operating system.‡ Although the VTM is physically connected via
a local area network, its performance in this study reflects what would occur in a point-to-point interconnection of
processors in a tree configuration which would be much more expensive to build and test.
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1. Introduction. Recent papers have discussed the use of dynamics for purposes of
graphical simulation or animation. The thesis of Wilhelms gives a general overview of the
area [1]. It has been noted that the computation time required to solve the equations of
motion of a collection of rigid links, connected at hinges, by techniques such as that of
Gibbs-Appel can grow as the cube or fourth power of the number of links in the system [2],
making such techniques inappropriate when the number of links is large. Recently, the
equations of motion of such tree linkages have been formulated in hinge-centered coordi-
nates, and solved by a method requiring time growing linearly with the number of links [3].
In addition, this new algorithm allows a significant amount of parallelism. Indeed, the
exploitation of parallel execution on several processors has the potential to reduce the
growth of the computation time to being linear in the height of the tree, rather than in its
number of links.

The improved performance due to parallel processing should make possible applica-
tions of dynamics to graphical simulation and animation which have heretofore been beyond
the capacity of existing general-purpose computers. For example, the use of dynamics to
generate frame-to-frame motions of animated characters, under real-time control of an ani-
mator, can possibly add realism and reduce costs of animation, as well as allowing some
exploration of alternative possibilities by the animator. The addition of numerous “sensor”
links to the dynamic system, no longer an impediment to real-time operation, has been sug-
gested as a way to control the shape of deformable surfaces. Again, this could remove con-
siderable burden from the animator. There are applications of the parallel simulation to
computer-aided manufacturing. For example, the graphical simulation of a robot manipula-
tor in real-time can be useful during its design as well as for the training of operators.
Recently, methods of using parallel processing for manipulator control have been proposed
which depend on solving a scheduling problem [4], however that work takes the desired
motion as input and produces joint forces and torques to realize the motion as output. In ani-
mation, the forces and torques (or control information from which they can be derived) are
the inputs, and the motion is the output. In this way, built-in limitations on forces and
torques constrain the animator to create a motion which could realistically be produced by
muscular action.
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The main thrust of our paper is to describe a parallel solution for determining the
motion of tree linkages. In § 2 the equations are given and a solution is outlined which
imposes an order on the computations reflecting the interconnection of links. In § 3 we
show how these computations can be mapped to a tree of processes. Details of these compu-
tations are deferred to the Appendix. The Virtual Tree Machine multicomputer which sup-
ports the parallel implementation is described in § 4. Experimental and analytical results
follow.

2. The equations of motion and their solution. The linkage trees considered consist
of rigid links connected at hinges. The hinges allow three rotational degrees of freedom.
This corresponds to a ball and socket joint. The reason for using this type of joint is the
greater ease of formulating the equations of motion without the constraints which reduce the
rotational degrees of freedom. Prismatic joints, which allow translations, are not considered.
A typical linkage is shown in Figure 1.

place figure 1 about here

The following representations are used for physical quantities, whereby vectors, unless
otherwise noted, are here represented in a frame attached to link r and moving with it: mr is
the mass of link r; aG is the acceleration of gravity (in an inertial frame); f r

E is an external
force (inertial frame) acting on link r at the point pr

E ; gr
E is an external torque (inertial

frame) acting on link r; ar is the acceleration of the proximal (parent) hinge of link r; ω r is
the angular velocity of link r; cr is the vector from the proximal hinge to the center of mass
of link r; f r and gr are the force and torque which link r exerts on its parent at the proxi-
mal hinge; ls is the vector from the proximal hinge of link r to the proximal hinge of child s
of link r. Rr converts vector representations in the frame of link r to the representations in
the frame of the parent link; Rr

I converts to representations in the inertial frame; Jr is the
3 × 3 moment of inertia matrix of link r about its proximal hinge; Sr is the set of all links
having link r as parent.

The first equation of motion, giving the rate of change of ω r as a result of various
torques, is:

Jr ω̇ r = gr
Σ − mr cr × ar +

s ∈ Sr
Σ ls × Rs f s (1)

where

gr
Σ = − ω

r × ( Jr ω r ) − gr +
s ∈ Sr
Σ Rs gs + Rr T

I gr
E (2)

+ mr cr × Rr T
I aG + pr

E × Rr T
I f r

E.

The next equation of motion gives the constraint force which link r exerts on its parent at the
proximal hinge

f r = f r
Σ − mr ar + mr cr × ω̇ r +

s ∈ Sr
Σ Rs f s (3)

where

f r
Σ = − mr ω

r × ( ω r × cr) + Rr T
I ( f r

E + mr aG ). (4)

The last equation comes from the hinge constraints

Rs as = as
c + ar − ls × ω̇ r (5)

where

as
c = ω

r × ( ω r × ls). (6)

The hypothesis which aids in solving the equations is that there exist linear relation-
ships
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ω̇ r = Kr ar + dr (7)

f r = Mr ar + f ʹ′r. (8)

In solving the equations of motion at each time step, we set the external forces f r
E , the

external torques gr
E and the hinge torques gr according to the control parameters, then we

solve for Kr, dr, Mr, and f ʹ′r , starting at the leaves of the tree of links and proceeding
towards the root. Intuitively, the solution method can be understood as follows. Suppose
some agent accelerates a certain point on a rigid body r by an amount ar . Then there will be
a certain change of the angular velocity vector (represented in the frame of link r) giv en by
the derivative ω̇ r . At the same time, there will be a force f r (represented in frame r) acting
upon the agent. Here the agent is the parent link of link r. In the absence of any child links,
the equations of motion will suffice to determine ω̇ r and f r as a function of ar . The func-
tion will be linear as expressed in equations (7) and (8) through the coefficients Kr, dr, Mr,
and f ʹ′r . If there are child links, then link r will act as an agent to accelerate them. Assum-
ing that the coefficients of (7) and (8) for the child links are known, and without knowing
any of the accelerations, the coefficients for link r can be computed [3]. In this manner the
coefficients for all links can be computed in an inbound pass towards the root link. Then,
since the root is not subject to forces and torques from any parent body in the tree, we can
solve the equations to get the linear and angular accelerations of all the links in an outbound
pass toward the leaves.

3. Parallel implementation. The design of a parallel solution to these equations poses
problems not encountered in the sequential case. Difficulties such as synchronizing pro-
cesses, process to processor allocation, and communication overhead must be addressed [5],
[6]. Synchronization overhead occurs any time a processor becomes idle, waiting for others
to complete their tasks. Processor allocation deals with the problem of minimizing the possi-
bility of two or more processes trying to use the same processor at the same time. Commu-
nication overhead is the additional burden incurred by sending messages between processes.

place figure 2 about here

For example, in real-time animation of the human body, the problem can be represented
by a tree-like process structure with each process representing a link. In Figure 2, processes
are assigned in a one-to-one fashion to each link in the stick-figure. If two processes which
are neighbors in the tree are assigned to different processors (single-link-per-process), there
is overhead involved in their exchange of data, but only slightly more than if they are
assigned to the same processor. Alternatively, this overhead can be minimized by assigning
several interconnected links to the same process (multiple-links-per-process). Both of these
approaches are examined, but for simplicity the single-link-per-process model is used to
explain the distributed implementation, unless otherwise stated.

No matter whether a single-link-per-process or multiple-links-per-process model is
used, each cycle (time step) of the computation proceeds in three phases. In a first outbound
phase, a process waits for control information from its parent, processes it, passes it on to all
its descendants, and then waits. In the following inbound phase, a process must receive data
from all its descendants before it can perform its computations and send the results back to
the parent. In particular, the computation of the quantities Kr, dr, Mr, and f ʹ′r is done in
this phase. The second outbound phase calculates the linear and angular accelerations of the
links and performs part of their integration. Since not all nodes can be computing at the
same time, the processes should be allocated to processors so that two processes that may be
active at the same time are not on the same processor.

During initialization, the data from a non-distributed version of the dynamics program
are read in and converted into the corresponding data for the distributed version. Following
initialization, the dynamic equations are solved using a time step δ t, whereby certain quanti-
ties are updated only every ν time steps. The functions which update the latter quantities
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belong to what we shall call the “slowband” computations, and the rest will be said to belong
to the “fastband.” The state of the simulation is graphically displayed every µ cycles.

It is worth noting at this point that the difference of execution times during fast- and
slowband cycles means that an assignment of links to processes and processes to processors
which is optimal for execution of the fastband may cause synchronization problems for the
slowband, and vice versa. This would considerably complicate an attempt to formulate and
solve the mathematical performance optimization problem.

A complete simulation cycle during the step δ t, including the slowband functions and a
display call, which are really only done periodically, consists of the following sequence of
calls by each link process:

Outbound control pass Inbound pass Outbound pass
slowband_control_out receive_data_in receive_data_out
fastband_control_out slowband_integration_in fastband_out
send_control_out slowband_in fastband_integration_out

fastband_in send_data_out
send_data_in

An optional pass can be done during initial testing runs to verify the correctness of the solu-
tion of the equations by using the fastband_check procedure.

The control functions transmit data from a control process through the root to the vari-
ous links. Again some “control” quantities may be updated in the slowband: slowband_con-
trol_out. For example there can be certain external forces and torques on links which vary
slowly (like wind pressure). Other “control” quantities vary quickly (relative to δ t), such as
the forces of contact with the earth or other objects, and the torques generated by muscular
action. These are updated in fastband_control_out. We can model contacts with the earth or
with fixed or moving objects using springs and dampers. In this way the contact does not
need to be considered as a constraint, which would require reformulation of the equations of
motion, and perhaps loss of the efficient solution technique. In order to compute contact
forces and to display the links, the root must have the orientations of all links as determined
by the rotation matrices. The latter can be used to compute accurate positions and orienta-
tions of all links with respect to the root link. Passing such information inward is done by
receive_data_in.

place figure 3 about here

The three functions slowband_in, fastband_in and fastband_out perform the algebraic
solution of the equations of motion. Given control forces and torques applied externally and
the torques at the hinges generated by the muscles or motors, the linear accelerations of the
hinges and the rates of change of the components of the angular velocity vectors of the links
are determined. The fastband_check function determines whether the solution performed by
those three functions is correct or not. The current simple integration technique in fast-
band_integration_out assumes that the previously mentioned linear and angular accelera-
tions will be constant over the next time step. The accelerations are multiplied by δ t and
added to the current angular and linear velocities to get the new ones, and then the velocities
are integrated again to get infinitesimal rotation vectors and positions. The slowband_inte-
gration call converts the infinitesimal rotation vectors into rotation matrices. To prevent
accumulation of errors, the positions of the links are all derived from the root position using
the rotation matrices. However, if positions are needed in the fastband for control purposes,
this can be done using the results of fastband_integration_out. Figure 3 is a schematic view
of the communications between an arbitrary interior node in the process tree, and one of its
children.

4. The virtual tree machine. The facility used to solve the equations of motion is a
multi-computer called the Virtual Tree Machine [7]. It is implemented on a network of
autonomous VAX-11/780’s and SUN-2 processors each running the 4.2BSD UNIX
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operating system [8]. The Virtual Tree Machine consists of processes under operating sys-
tem control and communication paths implemented as virtual connections between processes
over a local area network. The experimenter views the machine as a collection of processors
(interconnected to form a tree) - each with its own local memory and peripherals. In reality,
a VTM is a collection of procedures, callable from application programs, and a collection of
servers, responsible for the creation of the nodes in the tree-machine according to the
description provided by the user. From this description the environment is created automati-
cally with no intervention by the user. No restriction is placed on the mapping between vir-
tual processing elements and physical processors. During development, the whole machine
might reside on one physical processor before being distributed over the selected physical
machines for productive use.

The Virtual Tree Machine makes it possible to investigate issues such as synchroniza-
tion, allocation and communication overhead and thus can provide valuable insight into the
behavior of unavailable real machines. For example, one such machine has tree structure
and high parallelism and may prove suitable for the dynamics computations [9]. Algorithms
for execution on these architectures can be developed, tested and debugged using this facil-
ity, and their synchronization and communication delay properties can be studied.

5. Experimental results. Several 10-second simulations of the man-like stick figure
depicted in Figure 2 were carried out. Both the single-link-per-process and the multiple-link-
per-process implementations were tried. The single-link-per-process model assigns each
link to its own process and then assigns processes on a path to a leaf to the same processor
Pi . One such assignment is shown in Figure 4. The advantage of this method is that it
ensures that information necessary for calculations within each link is made available as
soon as possible. Thus, the flow of data up and down the longest path from root to leaf of
the process tree determines the length of the computation cycle. The disadvantage is that the
cost of communicating all the needed information between processes is high.

place figure 4 about here

The solid line of Figure 5 depicts the time needed for simulation of the 12 link figure.
The figure’s “torso” is selected as the root of the process tree to minimize the depth of the
tree and execution starts with the root reading the control information and passing it on
down the tree. The children are idle until this information arrives. When the control infor-
mation has propagated down to the leaves (the head and lower arms and legs of the figure)
the inbound pass is started. Calculations for the inbound pass are made first in the leaf nodes
and the results passed up to their parents which begin their inbound calculations only after
receiving the inbound data from all their children. Once the root link has received all the
inbound data from its subtrees and performed its own inbound calculations the outbound
pass is started by calculating the outbound data and sending it to all the child links. Refer to
Figure 3 for a graphical representation of the communication and synchronization character-
istics of this implementation.

In our simulation the time-step is set to 0.01 second. The execution time is plotted
against various degree of parallelism, from all processes assigned to one physical machine to
the highest degree of useful parallelism (5 processors). For the optimal configuration of 5
processors, the execution time is reduced to 148 seconds from 227 seconds in the sequential
case. It is not clear from these results whether it is the synchronization overhead or the com-
munication overhead that plays the major role in the total overhead experienced. (The total
overhead is over 100 seconds, comparing the sequential case to the single-link-per-process
case when all processes run on a single machine.)

place figure 5 about here

The multiple-links-per-process model eliminates the need for communication between
links on the same branch by allowing each process to handle more than one link. Several
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links are assigned to each process, and each process is assigned to a different processor. Fig-
ure 6 shows one such assignment. Links are grouped into five processes and each process is
assigned to a separate processor P1 through P5. Thus, only the solid lines in Figure 6 repre-
sent actual communication links. Here, calculations are done for all links assigned to a pro-
cess before any information is sent on to its child processes or its parent. Although this
reduces the communication overhead, the synchronization overhead increases as each link
must wait slightly longer for the data from its parent or its children (if assigned to a different
processor). The results from the multiple-links-per-process implementation are shown as the
dotted line in Figure 5. The reason for the small drop in speed going from one process to
two, is the fact that calculations for all links that share a process with the root link are done
before any results are sent to the process handling the remaining links, resulting in almost
sequential execution. For the 3 process case, the root link is given to a separate process and
the remaining links are divided between the other two processes, resulting in close to parallel
execution for all but one link.

place figure 6 about here

Comparison of the results from these two implementations shows that the synchroniza-
tion overhead rather than communication overhead is the principal cause for the lack of per-
formance of the parallel implementations. (Eliminating much of the communication does
not result in significantly better performance.) We expect that simulating several similar
stick figures at once, as would be required for certain animated sequences, would reduce the
effect of the synchronization overhead and permit better speedup with nearly full processor
utilization. In the next section we will analytically derive formulas for estimating the maxi-
mum speedup. This will lead to a better understanding of how to use parallelism.

6. A simple model for estimating maximum speedup. To obtain an upper bound on
the possible relative improvement of the VTM implementation over the sequential imple-
mentation (the “speedup”), given arbitrarily many processors, we shall consider a simple
case: balanced trees of height h and fanout f . We suppose that the first control pass is
nonexistent, and that the inbound pass mirrors the outbound pass as far as time is concerned,
so that we can limit consideration to just the outbound pass. The speedups for the two
passes are different in our case, but dealing with the synchronization of communications in
both passes at once is more complex, and so we shall use the more expensive of the two
passes for our estimate. We assume further that the execution time for one link is equal for
all links and is tE . Similarly all communications from a link to a child take time tC ≤ tE .

Computation in the outbound pass of a tree of height h + 1 starts at the root link, and
takes time tE . Then the root successively communicates to f − 1 of its f children the infor-
mation they require, taking time ( f − 1) tC to do it. The same processor goes on to compute
one of the subtrees of height h, while the other subtrees of height h either have started, or are
just starting. If an upper bound on the total time to complete the computation for a tree of
height h and fanout f is denoted by T (h, f ), then we have

T (h + 1, f ) = tE + ( f − 1) tC + T (h, f ).

Since T (1 , f ) = tE , we get the general formula

T (h, f ) = tE + (h − 1)(tE + ( f − 1) tC).

The number of nodes in the tree is ( f h − 1) / ( f − 1), and in a sequential version the compu-
tation time would be that number times tE . Thus the speedup resulting from parallel compu-
tation is given by

f h − 1
( f − 1) [ 1 + (h − 1)(1 + ( f − 1) tC / tE )]

.

For zero communication time, this becomes
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( f h − 1)
( f − 1) h

.

When tC = tE , we get the maximum speedup

( f h − 1)
( f − 1)[ 1 + (h − 1) f ]

.

If h = 2, there is no speedup at all in the latter case.
The computation time using the parallel algorithm and an unlimited supply of proces-

sors is thus theoretically shown to grow with the height of a balanced linkage tree rather than
with its number of links. Considering communication times between links even as large as
the execution times for the links worsens this improvement by a factor at most equal to the
fanout.

place figure 7 about here

Experiments were done on balanced trees using the VTM. The execution time was var-
ied by adjusting a waiting time tE , while tC was measured. The observed speedups shown in
Figures 7 and 8 are close to the above theoretical predictions. If we examine the speedup
which could be obtained with the tree representing our stick-figure (Figure 2) by using paral-
lelism, we get 12tE compared to 4(tE + tC), for a speedup of 3/(1 + tC /tE). Averaged over
both the in- and the outbound pass for the stick figure, the ratio tC /tE is about 0.7 which,
according to the above formula, gives maximum speedup of 1.76 with five processors. This
is also in close conformity to our observations.

place figure 8 about here

For animation purposes, we may want to simulate several stick-figures at once, say four
of them. Then tC /tE would be reduced by a factor of four, assuming that the cost of commu-
nication were unchanged. Then the speedup, by the above, would be 2.55, much closer to the
theoretical limit of three. The synchronization overheads causing the nonlinear speedup (of
three using five processors) remain, and could be dealt with by running several stick figures
out of phase, so that the idle times of one stick-figure are used by others. For example, for
two-stick figures on six processors, the synchronization overhead disappears if the link
execution times are equal.

7. Conclusions. The parallel solution of the equations of motion of a tree-linkage using
the VTM has been successful in providing a significant speedup. The speedup is a function
of the tree size and configuration. The computation time using the parallel algorithm was
shown to grow with the height of a balanced linkage tree rather than with its number of
links. Considering communication times between links even as large as the execution times
for the links worsens this exponential speedup by a factor at most equal to the fanout.

Tw o steps were taken which subsequently proved to be beneficial in reducing the
effects of communication overheads: 1) several links were handled by a single Unix process,
avoiding interprocess as well as interprocessor communications, and 2) information was not
sent as soon as it became available within a process but was accumulated and sent in a single
communication at the end of an iteration cycle (even though this runs counter to a dataflow
philosophy).

The example of the 12-link human stick-figure which has low fanout, a height of four,
and communication times which are comparable to the execution times, illustrates a case of
poor speedup due to both communication and synchronization overheads. The simultane-
ous, in-phase simulation of several stick-figures at once would give a speedup near the maxi-
mum of three using five processors, since this reduces the ratio of communication time to
execution time. To reduce synchronization overhead and approach linear speedup, several
figures could be simulated out of phase so the idle times for one are used by the others.
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The VTM implementation was, of course, much easier to implement and test than a
physical network of processors would have been; yet the kinds of communication and syn-
chronization problems closely reflected what could be expected in a “real” tree machine.
Because there is negligible contention in the local area network while solving this problem,
the VTM emulates a multiprocessor machine with point-to-point connections except for the
time to form packets in the processes and ship them off serially. With more voluminous
computations in the processes, and communications which better utilize the packet size, the
approximation to point-to-point communications would be much closer than has been
observed in the case of the stick-figure.

Many computing facilities currently use a local area network similar to the one on
which the VTM is based, and hence, with the aid of VTM software, or its equivalent, it
becomes possible to study parallel algorithms on networks of processors without resorting to
actual construction of hardware.
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Appendix: Details of the dynamics computations. The details of the dynamics com-
putations for the VTM implementation are outlined here. No attention is paid to the control
pass, since that could vary considerably depending on how control is to be achieved. In the
following, the unit 3-by-3 matrix will be denoted by I. The tilde operation on a 3-vector v,
with components v1, v2, v3, produces a 3-by-3 matrix V such that for any 3-vector w, the
vector v × w is equal to the product of V and the column-vector w.

ṽ = V =
⎡
⎢
⎢
⎣

0
v3
−v2

−v3
0

v1

v2
−v1

0

⎤
⎥
⎥
⎦

.

The following variables are also introduced in the solution since they appear as common
subexpressions or are computed in the slowband and used in the fastband: W r , T r , Qr , ar

c,
f ʹ′ʹ′r .

The receive_data_in function gets f ʹ′s, δ us (which is an infinitesimal rotation vector),
and ω s from all children s of link r. In addition, during a slowband pass, receive_data_in
gets M s, and Rs

I . The force f ʹ′s is the part of the force exerted by the child s on the proximal
hinge which is independent of the child’s acceleration. The difference between δ us and δ ur

(converted to frame s) can be used in determining a torque due to rapid changes in the angles
at hinge s deriving from hinge stiffness. The difference between the omegas (the parent one
converted) is similarly used for computing a frictional torque at that hinge. These quantities
are treated as fast-varying, although ω , whose rate of change depends on a physical inertia,
should vary slowly and could probably be placed in the slowband. (N. B. This points out a
need for careful study of the rates of change of various quantities which could lead to
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improved simulations involving more than two bands. In such simulations, one might also
determine, either beforehand or adaptively, that certain terms in our solution can be entirely
neglected.)

The slowband_integration_in computation takes the infinitesimal rotation vector δ ur

and uses it to update the rotation matrix Rr
I , resulting in a new link orientation. The result

must be orthonormalized to prevent accumulation of errors.
The slowband_in computation for link r proceeds as follows:

Compute as
c = ω

r × ( ω r × ls) for s ∈ Sr. (9)

Compute Qs = Rs M s Rs T for s ∈ Sr. (10)

Compute W s = l̃ s Qs for s ∈ Sr. (11)

Compute T r = ( Jr +
s ∈ Sr
Σ W s l̃ s ) −1. (12)

Compute Kr = T r (
s ∈ Sr
Σ W s − mr c̃r ). (13)

Compute Mr = ( mr c̃r ) Kr − mr I +
s ∈ Sr
Σ Qs ( I − l̃ s Kr ). (14)

Compute g1r
Σ = − ω r × ( Jr ω r ) + Rr T

I gr
E (15)

+ pr
E × Rr T

I f r
E + ( mr cr ) × Rr T

I aG

(assuming f r
E and gr

E are slowly-varying).

Compute f r
Σ = − ω

r × ( ω r × ( mr cr )) + Rr T
I ( f r

E + mr aG ) (16)

( assuming f r
E is slowly-varying).

The fastband_in computation proceeds as follows:

Compute f ʹ′ʹ′s = Rs f ʹ′s for s ∈ Sr. (17)

Compute gr
Σ = g1r

Σ − gr +
s ∈ Sr
Σ Rs gs. (18)

Compute dr = T r ( gr
Σ +

s ∈ Sr
Σ ls × ( f ʹ′ʹ′s + Qs as

c )). (19)

Compute f ʹ′r = f r
Σ + ( mr cr ) × dr (20)

+
s ∈ Sr
Σ ( f ʹ′ʹ′s + Qs ( as

c − ls × dr )).

The send_data_in function, which occurs last in the inbound pass, provides the data to
the parent for its receive_data_in function. In the multiple-links-per-process version, this
data is, of course, not sent or received, but merely written to and accessed from the shared
memory possible when only one process is involved.

Now we turn our attention to the outbound pass. The first function there is
receive_data_out. All it does for link r is get ar from the parent. If r is the root, this quan-
tity must instead be computed, which is done in the following computation (equation 21).
The fastband_out computation for link r proceeds as follows:

If r is the root then compute ar = − ( Mr ) −1 f ʹ′r. (21)

Compute ω̇ r = Kr ar + dr. (22)
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Compute as = Rs T ( as
c + ar − ls × ω̇ r ) (23)

for all children of link r.
In fastband_integration_out, ω̇ r is multiplied by δ t and the result added to ω . Then

δ ur is obtained from a further integration step. The velocity and position of the root link are
similarly determined by integration starting from a1. Recall that other links have their posi-
tions determined by the root’s position and link orientations. This integration technique is
not stable, and development of some efficient “implicit” technique would be very useful.
For animated figures, accuracy is not the goal, only realism, and the present method should
be satisfactory. In an interactive system, the animator will correct for inaccuracies. Applica-
tions in robotics or biomechanics require better accuracy and stability. To the best of our
knowledge, how to achieve this is an open question.

The send_data_out procedure merely sends as to all children of r. The fastband_check
procedure goes as follows:

Receive f s from all children.

Compute f r = Mr ar + f ʹ′r. (24)

Compute ω̇ r from equations 1 and 2, and check that it agrees with the solution value.

Compute f r from equations 3 and 4, check that it agrees with the value computed in (24),
and send it to the parent link.



SIAM EDITOR: FIGURE CAPTIONS

FIG. 1. Quantities associated with link r.

FIG. 2. Stick figure and the corresponding process tree.

FIG. 3. Quantities communicated between links.

FIG. 4. Assignment of links to twelve processes on five processors.

FIG. 5. Execution time vs. number of physical processors.

FIG. 6. Assignment of links to five processes on five processors.

FIG. 7. Observed speedup vs. communication to execution time ratio (tC /tE ).

FIG. 8. Observed speedup vs. communication to execution time ratio (tC /tE ).


