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1. INTRODUCTION

A typical chess program contains three distinct elements: board description\agemeration,
tree searching/pruning, and positioralaation. Seeral good descriptions of the necessary tables and
data structures to represent a chess bosisd | readily &ailable books [12] and articles [34].
Even so, there is no general agreement on the best or ricsnéfrepresentationFrom these tables
the mave list for each position is generateBometimes th&eneate function produces all the feasi-
ble mores & once, with the adantage that themay be sorted and tried in the most probable order of
success. Ismall memory computers, on the other hand, theemae produced one at a timé&his
saves ace and may be quiekif an early moee refutes the current line of playSnce only limited
sorting is possible (captures might be generated first) the searchdignef is generally laver, how-
eve. Rather than re-address these issues, first-tinilddrs of a chess program are well advised to
follow Larry Atkin’s excellent Riscal-based model [5].

Perhaps the most important part of a chess program EBvtdeate function invoked a the max-
imum depth of search to assess the merits of theesnmary of which are capturing or forcing mes
that are not‘dead’ Typically a limited search (called a quiescence search) must be carried out to
determine the unkmn potential of such aet noves. Theevduation process estimates thaue of
chess positions that cannot be fulkplred. Inthe simplest casEvaluate only counts the material
difference, ht for superior play it is also necessary to measurey pasgitional fictors, such as pa
structures. Thesaspects are still not formalizedjtbtadequate descriptions by computer chess practi-
tioners areailable in books [26].

In the area of searching and pruning, all chess programs fit theifalgeneral pattern. A full
width “exhaustve” search (all mwes ae considered) is done at the firstvfrayers of the gme tree.
At depths bgond this &haustve regon some form of selest ®arch is used.ypically, unlikely or
unpromising mees ae simply dropped from the me list. Moresophisticated programs select those
discards based on artensive analysis. Unfortunatelythis type of forvard pruning is kman to be
error prone and dangerous; it is attneetiecause of the big reduction in tree size that endtieslly,
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at some maximum depth of search, thawation function is imoked; that in turn usually entails a fur

ther search of designated wes like captures. Thusll programs emplkp a model with an implied
tapering of the search width, aariations arex@lored more and more deeplyhat diferentiates one
program from another is the quality of theleation, and the serity with which the tapering opera-

tion occurs. This paper concentrates on the tree searching and pruning aspects, especially those which
are well formulated and ke povable characteristics.

2. COMPONENTSOF SEARCH

Since most chess programsamine lage trees, a depth-first search is commonly uJétht is,
the first branch to an immediate successor of the current node isveguegbanded until a leaf node
(a node without successors) is reached. The remaining branches are then considered as the search pro-
cess backs up to the rodDther &pansion schemes are possible and the domain is fruitful for testing
new search algorithmsSince computer chess is well defined, and absolute measures of performance
exist, it is a useful testahicle for measuring algorithmfefiengy. In the simplest case, the best algo-
rithm is the one that visitsvieest nodes when determining the tradue of a treeFor a two-person
game-tree, this alue, which is a least upper bound on the score (or merit) for the sidevépaano be
found through a minimax searchn chess, this so called minimaslue is a combination of both
“ MaterialBalancé’(i.e., the diference in alue of the pieces held by each side) a8t-dtegicBal-
ance’ (e.g., a composite measure of such things as molsiitiare control, pan formation structure
and king safety) componentdlormally, Evaluate computes these components in suchag that the
MaterialBalance dominates all positionatfors.

2.1. Minimax Search

For chess, the nodes in adwerson gme-tree represent positions and the branches correspond
to moves. Theaim of the search is to find a path from the root to the higladstd leaf node that can
be reached, under the assumption of best play by both Sidespresent a &l in the tree (that is, a
play or half mee) the term “ply’” was introduced by Arthur Samuel in his major paper on machine
learning [7]. How that word was chosen is not clegeerhaps as a contraction gflay” or maybe by
association with forests as in layers of phpa. Ineither case it as certainly appropriate and it has
been uniersally accepted.

A true minimax search of aage tree may bexpensve snce every leaf node must be visited.
For a uniform tree with &actly W maves & each node, there aw'® nodes at the layer of the tree that
is D ply from the root.Nodes at this deepest layer will be referred to as terminal nodes, and vell serv
as leaf nodes in our discussioBome gmes, lile Fox and Geese [8], produce nawrtrees (fever
than 10 branches per node) that can often beedakhaustvely. In contrast, chess producessby
trees (serage branchingaictor W, of about 35 mees [9]). Becausef the size of thea@me tree, it is
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not possible to search until a mate or stalemate position (a true leaf node) is reached, so some maxi-
mum depth of search (i.e., a horizon) is specifieden so, an xhaustve sarch of all chessagne

trees iwolving more than a f@ moves for each side is impossiblézortunately the wrk can be
reduced, since it can be stiothat the search of some nodes is unnecessary

2.2. TheAlpha-Beta («-£) Algorithm

As the search of theaghe tree proceeds, thalwe of the best terminal node found so f
changes. Ithas been knen since 1958 that pruningas possible in a minimax search [10lit b
according to Knuth and Moore the ideas go back furtbelbhn McCartly and his group at MIT The
first thorough treatment of the topic appears to be Brgdif#83 paper [11]. The «-4 algorithm
emplgys lower (&) and upper ) bounds on thexg@ected ®lue of the tree. These bounds may be used
to prove that certain mees cannot aflect the outcome of the search, and hence thgtcdre be pruned
or cut of. As part of the early descriptions aboutwheubtrees were pruned, a distinction between
deep and shalle cut-offs was made.Some ‘ersions of thex-g algorithm used only a single bound
(@), and repeatedly reset tifebound to infinity so that deep cut-é¢$ were not achieed. To correct
this flav, Knuth and Moore introduced a recuesdgorithm called F2 [12], and used it to peoprop-
erties about ther-g algorithm. A*“ negamax” framevork was also emplged whose primary adw-
tage is that by alays passing back the gaive d the subtree alue, only maximizing operations are
needed. IrFigure 1, Rscal-lile pseudo code is used to present aup function, AB, in the same
negamax fram&vork. A Return statement has been introduced as theadion for iting the func-
tion and returning the best subtresdue or score. Omitted are details of tleeng-specific functions
Make andUndo (to update the @me board)Geneate (to find moes) andEvaluate (to assess termi-
nal nodes).In the pseudo code of Figure 1, the neggfore) operation represents Fishixs “fail-
soft” condition [13], and ensures that the besilable \alue is returned (rather than arfys bound),
even if it lies outside thex-4 window. This idea is usefully empjed in some of the meer refine-
ments to thex- S algorithm.



FUNCTION AB (p : positiong, 8, depth : intger) : intger;
{pis pointer to the current node }
{ « and B are windev bounds }
{ depth is the remaining search length }
{the alue of the subtree is returned }

VAR <core, j, \alue : intger;
posn : ARRA [1..MAXWIDTH] OF position;
{ N ote: depth must be posi¢ }

BEGIN
IF depth = 0 THEN {’horizon node, maximum depth? }
Return(Ealuate(p));
posn := Generate(p); { point to successor positions }
IF empty(posn) THEN {leaf, no mges? }
Return(Ewaluate(p));
{find score of bestariation }
score := eo;
FOR j := 1 TO dzeof(posn) DO BEGIN
Make(posn[j]); {malke aurrent mae }
value := -AB (posn[j], 8, -max(,score), depth-1);
IF (value > score) THEN { note nev best score}
score := alue;
Undo(posnlj]); {retract current mee }
IF (score= 8) THEN {a ait-off? }
GOTO done;
END ;
done:
Return(score);
END ;

Figure I Depth-limited Alpha-Beta Function.

Figure 2 The Effects ofa — g Pruning.

Although tree-searching topicsvimlving pruning appear routinely in standard Artificial Intelli-
gence tets, chess programs remain the major application fowtifealgorithm. Inthe tets, a typical
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discussion aboutagne-tree search is based on alternate use of minimizing and maximizing operations.
In practice, the rgamax approach is preferred, since the programming is simigigure 2 contains a

small 3-ply tree in which a Deey-decimal scheme is used to label the nodes, so that the node name
carries information about the path back to the root nddwris p.2.1.2 is the root of a hidden subtree
whose alue is shan as 7 in Figure 2Also shavn at each node of Figure 2 is the initial alpha-beta
window that is emplged by the searchNote that successors to node p.1.2 are searched with an initial
window of («,5). Since the alue of node p.1.2.1 is 6, which is greater than 5, a €i-adid to occur

and node p.1.2.2 is not visited by #he3 algorithm.

2.3. Minimal Game Tree

If the “best” move s examined first at\eery node, the minimaxalue is obtained from a trer-
sal of the minimal gme tree.This minimal tree is of theoretical importance since its size isvarlo
bound on the searchzor uniform trees of width W branches per node and a search depth of D ply
Knuth and Moore pnade the most elgant proof that there are

Po Po
W20+ W0O20- 1

terminal nodes in the minimalge tree [12], whergxnis the smallest intger = x, and xgis the
largest intger< x. Since such a terminal node rarely has no successors (i.e., is not a leaf) it is also
called a horizon node, with D the distance from the root node to the horizon [14].

2.4. Aspiration Search

An «a- B search can be carried out with the initial boundseitog a narrev range, one that spans
the epected alue of the treeln chess these bounds might be (MaterialBalaravaPMaterialBal-
ance+Rwn). If the minimax walue flls within this range, no additionalork is necessary and the
search usually completes in measurably less tifile method s analyzed by Brudno [11], referred
to by Berliner [15], and»perimented with by Gillogly [16], it was not consistently successfi.
disadwantage is that sometimes the initial bounds do not enclose the miraoax m which case the
search must be repeated with corrected bounds, as the outline of Figures3 $pically these dil-
ures occur only when material is beingrwor lost, in which case the increased cost of a more thor
ough search is acceptablBecause these re-searches use a semi-infinite wjrficdmm time to time
people &periment with a‘'sliding window” of (V, V+Piece\alue), instead of (Mo). Thismethod is
often efective, but can lead to>eessve re-searching when mate ordar material gin/loss is in the
offing.



{ Assume V = estimatedalue of position p, and}

{ e = expected error limit }

{ depth = current distance to horizon '}

{ p = position being searched }
a:=V-e { I ower bound}
B:=V+e; {'upper bound}

V:=AB (p, «, B, depth);

IF (V= B) THEN { failing high }
V :=AB (p, V, +o, depth)

ELSE

IF (V < «) THEN { failing low }
V :=AB (p, <0, V, depth);

{ A successful search hasmbeen completed }
{  V now holds the currentalue of the tree }

Figure 3 Narrow Window Aspiration Search.

After 1974, ‘iterated aspiration searcitame into general use, as folle: “Before each itera-
tion starts, and B are not set toee and o as one mightxpect, lut to a windav only a fav pawns
wide, centered roughly on the final scoralpe] from the préous iteration (or prdous mave in the
case of the first iteration)This setting of ‘high hopes’ increases the numbergf cutoffs” [6].
Even so, although aspiration searching is still popular and has much to commend it, minimel windo
search seems to be moréicént and requires no assumptions about the choice of aspirationvwindo
[17].

2.5. Quiescenc&earch

Even the earliest papers on computer chess recognized the importaneliatirey only those
positions which are'relatively quiescent’[18] or “dead’ [19]. Theseare positions which can be
assessed accurately without further seargpically they haveno maoves, such as checks, promotions
or comple captures, whose outcome is unpredictailet all the mees & horizon nodes are quies-
cent (i.e., lead immediately to dead positions), so some must be searched Turtimait the size of
this so called quiescence search, only dynamieemae selected for consideratioifhese might be
as fev as the mwves that are part of a single compleapture, It can &pand to include all capturing
maoves and all responses to check [20Heally, passed pan moves (especially those close to promo-
tion) and selected checks should be included42]i,kut these are often onlkamined in computa-
tionally simple endgmes. Theoal is alvays to clarify the node so that a more accurate positidn e
uation is made Despite the olious benefits of these ideas, the realm of quiescence search is,unclear
because no theory for selecting and limiting the participation ofesnexists. Presentuiescent
search methods are attraefithey are simple, It from a chess standpoint \@amuch to be desired,
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especially when it comes to handling forking ve® end mate threatsEven though the current
approaches are reasonablfeefive, a nore sophisticated method is needed fdeeding the search,

or for identifying rel@ant moves to participate in the seles# quiescence search [23Dn the other
hand, some programs manage quite well without quiescence search, using direct computedion to e
ate the rchange of material [24].

2.6. Horizon Effect

An unresoled defect of chess programs is the insertion of delayingesnthat cause an
inevitable loss of material to occurymnd the prograns’horizon (maximum search depth), so that the
loss is hidden [14].The ‘horizon efect” is sid to occur when the delaying wes unnecessarily
wealen the position or ge yp additional material to postpone thgeatual loss. The efect is less
apparent in programs with more kviedgeable quiescence searches [23{,atl programseibit this
phenomenon. Therare may illustrations of the dffculty; the example in Figure 4, which is based
on a study by Kaindl [23], is cleaHere a program with a simple quiescence seangbiving only
captures wuld assume that grblocking move saves the queen. Ean an 8-ply search (..., Pb2; Bxb2,
Pc3; Bxc3, Pd4; Bxd4, Pe5; B%) might not she the ineitable, ‘thinking” that the queen has been
saved a the expense of four pans! Thusprograms with a poor or inadequate quiescence search suf-
fer more from the horizon fefict. Thebest vay to proide automatic @ension of non-quiescent posi-
tions is still an open question, despite proposals such as bandwidth heuristic search [25].

Rb Kb
QwPb Qb
© uPbno:
“Pb:Pb: Pw
“Pb: Pw
“Pb: Pw
Pw
Bw Kw ::
Black’'s Move

Figure 4 The Horizon Effect.



3. ALPHA-BETA ENHANCEMENTS

3.1. Minimal Window Search

Theoretical adances, such as Scout [26] and the comparable minimal wisekrch techniques
[13,17,27]came in the late 1979’ Thebasic idea behind these methods is that it is cheaperye pro
a dubtree inferioy than to determine itsxact \alue. Ewen though it has been st that for lushy
trees minimal winde techniques pnide a significant adantage [17], for randomagne trees it is
known that @en these refinements are asymptotically egent to the simplet-g algorithm. Busk
trees are typical for chess and so ynemntemporary chess programs use minimal wintkechniques
through the Principal &fiation Search (PVS) algorithm [28[n Figure 5, a Bscal-like pseudo code is
used to describe PVS in agamax frameavork. The chess-specific functionglake andUndo have
been omitted for clarity Also, the original grsion of PVS has been impeal by using Reinefelds
depth=2 idea [29], which sius that re-searches need only be performed when the remaining depth of
search is greater than Zhis point, and the general ahtages of PVS, is illustrated by Figure 6,
which shavs the traersal of the same tree presented in Figure 2. Note that usingvnamadows to
prove the inferiority of the subtrees leads to the pruning of an additional horizon node (the node
p.2.1.2). This is typical of the wags that are possible, although there is a risk that some subtrees will
have o be re-searched.



FUNCTION PVS (p : positiong, 3, depth : intger) : intger;
{p is pointer to the current node }
{ @ and g are windev bounds }
{ depth is the remaining search length }
{the \alue of the subtree is returned }

VAR score, j, \alue : intger;
posn : ARRA [1..MAXWIDTH] OF position;
{ Note: depth must be posié }

BEGIN
IF depth =0 THEN { horizon node, maximum depth? }
Return(Ewaluate(p));
posn := Generate(p); { point to successor positions }
IF empty(posn) THEN {leaf, no mwes? }
Return(Ewaluate(p));

{ principal variation? }
score := -PVS (posn[1] 5; -«, depth-1);
FOR j := 2 TO dzeof(posn) DO BEGIN

IF (score= 8) THEN { cutoff? }
GOTO done;
a = max(scoreg); { fail-soft condition }

{ zero-width minimal-windw search }
vaue = -PVS (posn[j],a-1, -«, depth-1);
IF (value > score) THEN {re-search, if ‘4il-high* }
IF (o < value) AND (\alue <g) AND (depth > 2) THEN
score := -PVS (posn[j],5, -vadue, depth-1)
ELSE score :=&alue;
END ;
done:
Return(score);
END ;

Figure 5 Minimal Window Principal Variation Search.

(. B)

Figure 6. The Effects of PVS Pruning
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3.2. Forward Pruning

To reduce the size of the tree that should beetsd and to pndde a weak form of selegt
search, techniques that discard some branches lis@n tried. For example, tapered N-best search
[30, 31] considers only the N-best wes & each node, where N usually decreases with increasing
depth of the node from the root of the treé%s noted by Slate and AtkifiThe major design problem
in selectve sarch is the possibility that the lookahead process xglude a ley nove d a low levd
in the game treé. Good e&amples supporting this point are found elsere [32]. Other methods,
such as mainal forward pruning [33] and theagnma algorithm [34], omit m@s whose immediate
value is worse than the current best of thedues from nodes already searched, sincexpeoctation is
that the opponerg’move s anly going to mak things worse. Generallgpeaking these fomvd prun-
ing methods are not reliable and should @ded. Thg haveno theoretical basis, although it may be
possible to deslop statistically sound methods which use the probability that the remainives ae
inferior to the best found saif

One \ersion of maginal forward pruning, referred to as razoring [35], is applied near horizon

nodes. Thexpectation in all fonard pruning is that the side to wea@n imprae the current glue,

so it may be futile to continueUnfortunately there are cases when the assumption is untrue, for
instance in zugzang positions.As Birmingham and Knt point out‘the program defines zugang
precisely as a state in whicteey move available to one player creates a positionihg a laver value

to him (in its avn evaluation terms) than the present bound for the positj@&%]. Mamginal pruning

may also break den when the side to mre has more than one pieea prise(e.qg., is forled), and so

the decision to stop the search must be applied cautiously

Despite these disadutages, there are sound farh pruning methods and there V&g incen-
tive b devdop more, since this is oneaw to reduce the size of the treevéraed, perhaps to less than
the minimal gme tree.A good prospect is through thevd®pment of programs that can deduce
which branches can begiected, by reasoning about the treeyttnaverse.

3.3. Move Ordering Mechanisms

For efficieng (traversal of a smaller portion of the tree) the ve®m & each node should be
ordered so that the more plausible ones are searched sodrésiis ordering schemes may be used.
For example, ‘since the refutation of a bad wm®is dten a capture, all captures are considered first in
the tree, starting with the highestlwved piece capturéd’20]. Speciatechniques are used at interior
nodes for dynamically re-ordering nes during a searchln the simplest case, ateey level in the
tree a record isdpt of the mues that hae been assessed as being best, or good enough to refute a line
of play and so cause a cuf-ofAs Gillogly puts it: ‘If a move is arefutation for one line, it may also
refute another line, so it should be considered first if it appears ing#erleve ist” [20]. Referred
to as the killer heuristic, a typical implementation maintains only tlentast frequently occurring
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“killers” at each level [ 6].

Recently a more peerful and more general scheme for re-orderingesea an interior node has
been introducedSchaefier's history heuristic ‘maintains a history forvery legd move ®en in the
search treeFor each mae, a record of the mee's ability to cause a refutation iseht, rggardless of
the line of play’[ 36]. Atan interior node the best m®is the one that either yields the highest score
or causes a cut-bf Many implementations are possiblejtla pair of tables (each of 64x64 entries) is
enough to kep a frequeryccount of hav often a particular mee (defined as a from-to square combi-
nation) is best for each sid&@he aalable moves ae re-ordered so that the most successful ones are
tried first. An important property of this so called history table is the sharing of information about the
effectiveness of mees throughout the tree, rather than only at nodes at the same seeatchrlee
idea is that if a mee is frequently good enough to cause a citioiwill probably be eflective when-
eve it can be played.

3.4. Progressve and Iterati ve Deepening

The term progresge ceepening \as used by de Groot [9] to encompass the notion of aadgcti
extending the main continuation of interedthis type of selecte expansion is not performed by pro-
grams emplging thea- 8 algorithm, &cept in the sense of increasing the search depth by one for each
checking mge m the current continuation (path from root to horizon), or by performing a quiescence
search from horizon nodes until dead positions are reached.

In the early 197® sveal people tried aariety of ways to control thexponential gravth of the
tree searchA simple fixed depth search is inflible, especially if it must be completed within a spec-
ified time. Jim Gillogly, author of theTech chess program [20], coined the term iteatibepening to
distinguish a full-width search to increasing depths from the progeBssnore focused search
described by de Groo#bout the same time Dal Slate and Larry Atkin sought a better time control
mechanism, and introduced the notion of an iterated search [6] for carrying out a prelgrdesiper
and deeper analysid-or example, an iterated series of 1-pByply, 3-ply ... searches is carried out,
with each ne search first retracing the best path from theviorgs iteration and therxtending the
search by one plyEarly experimenters with this scheme were surprised to find that the iterated search
often required less time than an egient direct searchlt is not immediately olious wty iterative
deepening is &ctive; as indeed it is not, unless the search is guided by the entries in a memory table
(such as a transposition or refutation table) which holds the bessrinom subtrees trkarsed during
the previous iteration. All the early &perimental gidence indicated that thev@head cost of the pre-
liminary D-1 iterations w&s often receered through a reduced cost for the D-ply searchter the
efficiengy of iterative deepening \as quantified to assesarious refinements, especially memory table
assists [17].Today the terms progressi and iteratve deepening are often used sygomously
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One important aspect of these searches is the role played by re-sorting root wesleetmeen
iterations. Because there is only one root node xgansve positional analysis of the nees can be
done. Een ranking them according to consistendth continuing themes or a long range plan is pos-
sible. Havever, in chess programs which rate terminal positions primarily on material balange man
of the mwes (subtrees) will return with equal scoreBhus at least a stable sort should be used to pre-
sene an initial order of preferences. Em so, that may not be enough. In the early iterationgsrae
not assessed accurateéBpme initially good mwees may return with a poorgected score for one or
two iterations. Latethe score may impre, but the mee muld remain at the bottom of a list of all
maoves o equal score -- not near the top as the initial ranking recommertgleould this mee uti-
mately proe © be best, thendr too mag moves may precede it at the diseay iteration, and dispos-
ing of those mees may be inordinately x@ensve. Experience with our test data has whothat
among mees o equal score the partial ordering should be based onxtans¥e re-analysis at the
root node, and not on thagaries of a sorting algorithm.

3.5. Transposition and Refutation Tables

The results (score, best w& satus) of the searches of nodes (subtrees) in thecaaebe held
in a lage direct access table fB, 31]. Re-visits of positions that ke keen seen before are common,
especially if a minimal winde search is usedWhen a position is reachedaag, the corresponding
table entry sems three purposesirst, it may be possible to use the table score to wahe (,)
window bounds. Secondjythe best mee that was found before can be tried immediately had
probably caused a cutfdnd may do so ajn, thus eliminating the need to generate the remaining
moves. Herethe table entry is being used as arm@-ordering mechanisntinally, the primary pur
pose of the table is to enable recognition ovenbanspositions that ke lead to a position (subtree)
that has already been completekamined. In such a case there is no need to seaath. aghisuse
of a transposition table is arample of gact forward pruning.Many programs also store their open-
ing book in a vay that is compatible with access to the transposition table. In #yishgy are pro-
tected aginst the myriad of smallariations in mge ader that are common in the opening.

By far the most popular table-access method is the one proposed by Zobrist [37]. Hedobserv
that a chess position constitutes placement of up to fi2atit piece types {K,Q,R,B,N;K ... -P} on
to a 64-square boardThus a set of 12x64 unique iges (plus a f@ more for en passantand
castling prvileges), R}, may be used to represent all the possible piece/square combingfimns.
best results these igfers should be at least 32 bits long, and be randomly independent of each other
An index of the position may be produced by doing &al@sive-or on selected inggers as follws:

P; =Ry xor Ry xor --- xor Ry

where theR, etc. are intgers associated with the piece placemehevement of a ‘man” from the
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piece-square associated wiRh to the piece-square associated WRttyields a nev index
Px = (P; xor R¢) xor R

By using this inde as a fash ley  the transposition table, direct and rapid access is posstbfe.
further speed and simplicitgnd unlike a rormal hash table, only a single probe is madere elabo-

rate schemes ka been tried, bt often the cost of the increased comjiie of managing the table
undermines the benefits from imped table usage.Table 1 shas the usual fields for each entry in

the hash tableFlag specifies whether the entry corresponds to a position that has been fully searched,
or whetherScoe can only be used to adjust theg bounds. Heightensures that thealue of a fully
evduated position is not used if the subtree length is less than the current search deptovattzer
played instead.Figure 7 contains pseudo code wing usage of the entriddove Scoe, Flag and

Height Not shavn there are functionRetrieve and Store, which access and update the transposition
table.

Lok To ensure the table entry corresponds to
the tree position.

Move Preferred mee in the position, determined
from a preious search.

Scoe Value of subtree, computed preusly.

Flag Is the score an upper bound, @év bound
or a true score?

Height Length of subtree upon which score is based.

Table 1: Typical Transposition Table Entry.
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FUNCTION AB (p : positiong, 8, depth : intger) : intger;
VAR value, height, score : irger;
j, move : L.MAXWIDTH ;
flag : (VALID, LBOUND, UBOUND);
posn : ARRA [1..MAXWIDTH] OF position;
BEGIN
{ Seek score and best r®for the current position }
Retrieve(p, height, score, flag, nae);

{ height is the dé&ctive sibtree length}
{ height < 0 - position not in table. }
{ height=0 - position in table.  }

IF (height= depth) THEN BEGIN
IF (flag = \ALID) THEN
Return(score); §orward prune, fully seen before }
IF (flag = LBOUND) THEN

a = maxf, score); {Narraw the windav }
IF (flag = UBOUND) THEN
B = min(, score); {Narrawn the windav }

IF (e = 8) THEN
Return(score); §orward prune, no further interest }
END;
{ Note: update of the or g bound }
{ ismtvalid in a selectie ®arch. }
{ Ifscore in table insticient to end }
{ search, try best me from table first }

{ before generating other mes. }
IF (depth = 0) THEN { horizon node?}
Return(Ewaluate(p));

IF (height= 0) THEN BEGIN
{ Re-ordertry 'move’ from table }
score := -AB (posn[me], -3, -«, depth-1);
IF (scorez g) THEN
GOTO done; {Success, omit nve generation }
END ELSE score :=os;
{ N o cut-off, produce mue list }

posn := Generate(p);
IF empty(posn) THEN { I eaf, mate or stalematg?

Return(Ewaluate(p));

FOR j:= 1 1O szeof(posn) DO
IF j # move THEN BEGIN
{ using fil-soft condition }
value := -AB (posn[j], #, -max(x,score), depth-1);
IF (value > score) THEN BEGIN
score = alue;
move =j;
IF (score= 8) THEN
GOTO done; {Normal g cut-off }
END;
END;
done:
flag := \ALID;
IF (score< a) THEN
flag := UBOUND;
IF (score= 8) THEN
flag := LBOUND;
IF (height< depth) THEN {'update hash table }
Store(p, depth, score, flag, v,
Return(score);
END;

Figure 7. Alpha-Beta Seach with Transposition Table.
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A transposition table also identifies the preferreder®quences used to guide thextneration
of a progressie ceepening searchOnly the mae is important in this phase, since the subtree length
is usually less than the remaining search depthnsposition tables are particularly adtageous to
methods lilke PVS, since the initial minimal windw search loads the table with useful lines that are
used in theent of a re-searchOn the other hand, for deeper searches, entries are commonly lost as
the table is werwritten, even though the table may contain more than a million entries [BBider
these conditions a small &a size transposition table may beroised (werloaded) until it is indec-
tive & a means of storing the continuationo overcome this &ult, a special table for holding these
main continuations (the refutation lines) is also us€de table has W entries containing the D ele-
ments of each continuatiorror shallow searches (D < 6) a refutation table guides a progressep-
ening search just as well as a transposition tableus a refutation table is the preferred choice of
commercial systems or users of memory limited processdbrsmall triangular vorkspace (DxD/2
entries) is needed to hold the current continuation as it is generated, and these entriesrksfiaeev
can also be used as a source of killevead39].

3.6. Interpretation

The \arious terms and techniques describecehaolved over the years, with the superiority of
one method wer another often depending on which elements are combitiethtve deepening &r-
sions of aspiration and PrincipaaNation Search (PVS), along with transposition, refutation and his-
tory memory tables are all useful refinements tosth@ algorithm. Their relatie performance is ade-
qguately characterized by Figure Bhat graph s made from dataathered by a chess program ana-
lyzing the standard BratkKopec positions [40] with a simple/auation function. Other programs
may achige dightly different results, reflecting d&rences in thewvauation function, bt the relatre
performance of the methods should not Hecad. Normallythe basis of such a comparison is the
number of horizon nodes (also called bottom positions or terminal nodes) viSugdation of these
nodes is usually morexgensve than the predecessors, since a quiescence search is carried out there.
However, these horizon nodes are ofaypes, ALL nodes, wherevery move is generated andvelu-
ated, and CUT nodes from which only as gnamoves s recessary to cause a cuf-afe assessed
[41]. For the minimal gme tree these nodes can be countedihere is no simple formula for the
generala-B search case. Thus the basis of comparison for Figure 8 is the amount of CPU time
required for each algorithm, rather than the leaf node cabithiough a somehat diferent graph is
produced as a consequence, the ragierformance of the methods does not change. The CPU com-
parison assesses tharious enhancements more usefudtyd also maks them look wen better than
on a node count basiAnalysis of the Bratk-Kopec positions requires the search of trees whose
nodes hee an average width (branchingattor) of W = 34 branchedlhus it is possible to use the for
mula for horizon node count in a uniform minimainge tree to prade a laver bound on the search
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size, as dman in Figure 8.Since search as not possible for this case, the trace represents the-% per
formance relatie  direct «- 4, but on a node count basigven so, the trace is a good estimate of the
lower bound on the time required.

One feature of our simple chess program is thatxéensve gatic analysis is done at the root
node. Theorder this analysis pvides to the initial mees is retained from iteration to iteration among
maoves which return the sameévalue” At the other interior nodes, if the transposition and/or refuta-
tion table options are infect and either prades a alid move, that mave is tried first. Should a cut-
off occur the need for a me generation is eliminatedOtherwise the pnasional ordering simply
places safe captures ahead of otheveso If the history table is enabled, then thevendist is re-
ordered to ensure that the most frequentigatize moves from elsevhere in the tree are tried soonest.
For the results presented in Figure 8, transposition, refutation and heuristic tables wéret iangy
for the traces whose label istended with +trans, +ref and/or +hist respetyi Also, the transposi-
tion table vas fixed at eight thousand entries, so tHfeat$ of table werloading may be seen when the
search depth reaches 6-pKigure 8 shws that:

(a). Iteratve ceepening costs littlever a drect search, and so can béeefively used as a time con-
trol mechanism.In the graph presented aveeage werhead of only 5% is sk, even though
memory assists lktransposition, refutation or history tables were not used.

(b). Wheniterative ceepening is used, PVS is superior to aspiration search.

(c). Arefutation table is a spacdiefent alternatie o a ransposition table for guiding the early iter
ations.

(d). Odd-plya-p searches are mordfiefent than gen-ply ones.

(e). Transposition table size must increase with depth of search, or else tpentras will be wer-
laid before thg can be used.The indvidual contrilutions of the transposition table, through
move re-ordering, bounds naming and forvard pruning are not brought out in this study

(f). Transposition and/or refutation tables combinfeatively with the history heuristic, achigng
search results close to the minimahge tree for odd-ply search depths.
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Figure 8 Time Comparison of Alpha-Beta Enhancements

% Performance Relate © a Drect $alpha$-$beta$ Search

4. OVERVIEW

A model chess program has three phases to its se@ypitally, from the root node arxbaus-
tive examination of layers of m@s occurs, and this is folleed by a phase of seleati ®arches up to
a limiting depth (the horizon)Programs which hee ro sslectve search component might be termed
“ brute force, w hile those lacking an initialxbaustve phase are often seleati aly in the sense that
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they employ some form of maginal forward pruning.An evaluation function is applied at the horizon
nodes to assess the material balance and the structural properties of the position (egyfaetati
ment of pavns). T ad in this assessment a third phase is usedriable depth quiescence search of
those mwoes which are not dead (i.e., cannot be accurately asses$as)the quality of this quies-
cence search which controls thee#y of the horizon dect ehibited by all chess program&ince

the evaluation function is gpensve, the best pruning must be used. All major programs use the ubig-
uitous - # algorithm and one of its refinementsdikspiration search or principabsiation search,
along with some form of iterat ceepening.

These methods are significantly imped by dynamic mae re-ordering mechanisms ékthe
killer heuristic, refutation tables, transposition tables and the history heufstiward pruning meth-
ods are also sometimedegftive. The transposition table is especially important because it irepro
the handling of endgnes where the potential for adrby repetition is high.Like the history heuris-
tic, it is also a paverful predictor of cut-dfmoves, thus saing a mae generation. Thenerits of these
methods has been encapsulated in a single figuwirghoheir performance relag o a drect a-48
search.
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