PHASED STATE SPACE SEARCH

T.A. MARSLAND and N.SRIMANI

Computing Science Department, Uasity of Alberta, Edmonton, Canada T6G 2H1.

ABSTRET

PS*, a nw sequential tree searching algorithm based on the State
Space Search (SSS*), is presentB&*(k) dvides each MAX node

of a game tree into k partitions, which are then searched in sequence.
By this means te major disadantages of SSS*, storage demand
and maintenanceverhead, are significantly reduced, and yet the cor
responding increase in nodes visited is not so grest ia the ran-

dom tree caseThe performance and requirements of PS* are com-
pared on both theoretical andperimental grounds to the well
known « g and SSS* algorithmsThe basis of the comparison is the
storage needs and theseage count of the bottom positions visited.

To gopear in the Procs. of theCM/IEEE Fall Joint Computer Con-
ference, Dallas, No 1986, pp 514-518.

*N. Srimani is nav at: Computer Science Department, Southern lllinoisvemsity, Carbondale, IL 62901.

INTRODUCTION

Phased search is awevariation on a method for wersing
minimax game trees Although based on SSS*phased search has a
range of performance which represents a continuum of algorithms
from SSS* th,BZ. The o 8 algorithm was the first minimax search
method to incorporate pruning intcarge-playing programs, and
modified \ersions of it still predominateyen though more dicient
pruning methodsést. For example, SSS* neer visits more termi-
nal nodes thanxg, achieving better pruning at thexpense of a
larger storage requiremenitere better pruning impliesvier termi-
nal node (bottom position) visits, although other measures of perfor
mance, such asxecution time and storage needs, may be more
important. Een so, the number of bottom positions (NBP) visited is
particularly rel@ant, because in grgame-playing program theval-
uation function spends significant time in assessing these nbdes.
this reason, SSS* has the potential to reduce the search time signifi-
cantly by the virtue of its better pruninglowever, for uniform trees
with a constant width ofv branches and a &xl depth ofl ply, SSS*
must maintain an ordered list (called OPEN)@fw®?) entries.
Because of this abnormally high memory demand and the consider
able time spent in maintaining the OPEN list, SSS* is not widely
used, despite its ki pruning dominancever « 5.

In its general form, the phased search algorithm, denoted here
by PS* has laer storage requirements than SSStt &t the same
time consistently outperformgg for trees of practical importan%e
The Phased Search algorithm with k phases, PS*(k), partitions the
set of all immediate successors of MAX nodes into k groups (each of
maximum sizéWw/k[) and limits its search to one partition per phase.

It does not generate all the solution trees simultaneously as does
SSS*, generating instead only a subset of théfrhe algorithm
searches the partitions from left to right one at a tifn&e SSS*,

the search stragg within each phase of PS* is non-directionalt b
with a recursiely sequential partitioning of the MAX nodedote

that the storage requirement of PS*(kDig—)%2), because PS*(K)

searches only w/k successors at alterna@def the ame tree (i.e.,
at the MAX nodes).

GAME TREES

To provide a formal footing the folleing definitions are intro-
duced. Inauniform tee T(w,d), every interior node hasxactly w
immediate successors and all terminal nodes are at the same distance
d from the root. The termrandom teewill be applied to those uni-
form trees whose terminal nodes are assigaadomvalues from a
uniform distrilution. Suchtrees are commonly used for simulation
as well as asymptotic studies of search algorithm performance,
because theare ragular in structure and are simple to analyhe.
ordered treesthe best branch at mmode is one of the first w/R suc-
cessors. Such tree is said to be of order Rthe higher the alue of
R the stronger the ordefor random trees R = 1, while R = w corre-
sponds to aninimal tree that is, a tree in which the first successor is
eveaywhere best. More useful areprobabilistically odered trees
with parameter (p,R). Here it is only with probability p that the best
subtree is among the first w/R successofbese definitions are

-3-

useful since gme tree searching algorithmsvbdeen compared on
a basis of their dectiveness on random uniform trées and on
probabilistically ordered trefs’.

After generating the list of nves (a ®t of successor positions),
most game playing programs use some \texlge of desirable fea-
tures to sort the mes in order of merit. Often, the kna/ledge is
guite accurate so the best successor will be found among thewirst fe
considered. Thuseal game trees are not randomytkthave been
approximated bgtrongly odered tee$. These in turn are similar to
probabilistically ordered trees with p=0.7 and R=Iihe perimen-
tal results reported here veleen obtained from searches of both
ordered and random trees, so that tHec&¥eness of search algo-
rithms can be obseed under dierent conditions.More detailed
results are to be found in Srimantiesis.

PHASED SEARCH (PS*) ALGORITHM

Let PS* with k partitions be denoted by PS*(Ior simplicity,
it is assumed that the partitions are of equal size. That is, the width w
of the uniform search tree is a multiple of the number of partitions.
This is not a restriction, since PS*(k) generalizes easily to encompass
arbitrary partition sizes.

Let P(n) be the Deey-decimal identifier of the parent of a
node n, let PSIZE be the size of each partition and let V(n) be the
static @auation at a terminal node, WWe will show that PS*(1) has
identical performance to SSS*, and PS*(w) is edent toa 8. PS*
is based on SSS*ub maintains tw lists: one is like the OPEN list
in SSS*, and the other is aABKUP list to keep track of partially
expanded MAX nodesOPEN consists of triples (n,s,hi), wherés
the node identifiers is the status (an element in the set {LIVE,
SOLVEDY}), and hi is a bound on the merit of that state (a real num-
ber in [©,+]). As in SSS* the OPEN list is maintained as an
ordered list of triples with non-increasinglwe of hi. The BACKUP
list consists of gctors of the form (n,lastighigh), wheren is the
identifier of a MAX nodelastis the node identifier of the last son of
n included in OPEN, antbw and high are the current iger and
upper bounds on thealue of node nWheneer a MAX node in the
OPEN list is soled or pruned, the correspondingctor is deleted
from BACKUP.

O

31 — — —

el
2.1 -

37

42
L) =

44

11

Figurel. How PS*(2) Partitionsa Tree.

The operation of phased search is seen most easily xaan e
ple. Figurel shows the search of a tree T(4,3) by PS*(Rlote that
the successors of MAX nodes argided into tw partitions of equal
size, as shan by brolen lines in Figure 1This partitioning is done
recursvely at each MAX node in the tree, so that the successors of a
MAX node in two different partitions are wer added to the OPEN
list in the same phase of the PS* algorithNote also that, as with
SSS*, at eery MIN node only one successor at a time is included in
the search treeThus for the wample in Figure 1, at gninstant no
more than four terminal nodes are present in the OPEN list for

-5-

PS*(2), while in contrast SSS*auld hare gxteen nodes present in
OPEN simultaneously at some points in the seaFahally, note that
PS*(2) will aways work well if the best successor occurs in the first
half of the subtrees at nodes which must be fullyaaded (i.e., to
use Knuth and Moors’ terminolog;?, a the type 1 and type 3
nodes).

Description of the Algorithm

Fdlowing the lines of Stockmas’'SSS* algorithm, and using
hisT” operator terminolody PS*(k) is formed as follars:

(1) For simplicity, assume that w is a multiple of k and set PSIZE =
wik.

(2) Placethe initial state (n=root, s=LIVE, hi=¢) on the OPEN list.

(3) Repeatedlyetrieve the neat state (n,s,hi) from OPEN (this node
has the currently highest merit, hi) and/dke the I' operator
described in @ble 1, until the termination condition is reached.

In Table 1, case 1 corresponds to the redlief a LIVE interior
MAX or MIN node. If a MAX node is found the first partition is
added to OPEN, otherwise (for a MIN node) only the first successor
is talen. Inthe case of a MAX node, an entry is also added to the
BACKUP list. For a LIVE terminal node,” either inserts n into
OPEN with SONED status, or inserts the parent of n, P(n), into
OPEN with SOVED status. The choice is made in alternags 2a

& 2b and depends on moV(n), the ®aluation of node n, compares

to the lav bound. Fer a SOWVED MAX node, n,I" purges the suc-
cessors of P(n) from theABEKUP list, and either adds thextesuc-
cessor of P(n) onto OPEN or prunes by pushing theedgbarent
node onto the OPEN list, cases 3b & 3c respegti Smilarly for
SOLVED MIN nodes,I" either adds another partition to OPEN or
purges the pruned successor partitions. Here case 4(b) is especially
comple, since it must deal with the situation when the parent MAX
node has another partition to procedore than ay other, it is the
actions in case 4 which distinguish PS* from SSS*.

Correctness of PS*

To make it clear that the PS* algorithmvadys returns the min-
imax \alue, the follaving theorem is pnaded.

Theoem.
PS*(k), with its state operatdr, computes the minimaxalue of
the root for all trees.

Proof: It is necessary to shidhat
(1) PS*always terminates, and
(2) PS*does not terminate with an inferior solution.

The aim of a gme tree search is to find the best solution tree.
Each solution tree is a unique subtree of thmeg tree and is made
up of all successors of each MIN nodet bnly one successor of
each MAX node it containsThe minimax alue of a gme tree is
the \alue of the best solution tree. Hence fwoilog the notation of
Stockman, g(root) = f(T,o0t), Where flToqt) is the \alue of a solution
tree and g(root) is the minimaahe. Also,f TO,y: is the best solu-
tion tree then g(root) =T(0,,0). It follows that the algorithm adays

-6-

terminates after a finite number of steps, since there are only a finite
number of solution trees, andyasubtree once sobd or discarded is
not searched an.

PS* manipulates its search amongdfediént solution trees, in
order to find the best one as easily as possibiima solution tree
it carries out a minimax search, and uses the upper bound stored in
the BACKUP list to help prune the search of redundant subtrees.
ary solution tree, Tygot, f(Troot) &SO represents the minimaxalue
returned by PS*, praded PS* has searched that solution tree com-
pletely All that remains is to shwthat PS* finds the best solution
tree TO,ot- BY contradiction, suppose that, for some KR, PS*(k)
terminates with a solution treel which is inferior toTO, that is,
f(T1o0t) < f(TOpot).- Thiscannot happen iT0 and T1 occur in the
same patrtition, since PS* will select the best for the same reason that
SSS* does.If TO is in a pevious partition, thenTO would be
SOLVED before T1 is encountered, and thereowid be a triple
(n,shig) for the solution tre@ 0 such thathig = f(TO0,0t) = f(T 11001)-
The \alue hig is held as a bwer bound in the BCKUP list, and so
prevents T1 from being fully @panded and selecte®therwise, if
T1 is SOLVED andTO occurs in one of the later partitions, the-cor
responding state (nt8g) would appear at the front of OPEN before
the root node can be declared S@D. WhenTO0 gpears, the corre-
sponding solution tree auld be gauated fully and found to be bet-
ter thanT 1, since as the best solution tr&@, cannot be pruned.

From the theorem it folles naturally that if the number of
phases in PS* is k, then

for k=1, PS*(k) is equialent to SSS* and
for k=w, PS*(k) is equvalent toa 3,

as fr as nodes visited is concerned, since PS*(w) reduces to a depth-
first left to right (directional) searchAlso, for k > 1, the space
requirement for OPEN is less than th&? needed for SSS*, since

tr\}&e maximum size of OPEN for PS* with k partitions is at most
(E)d’2 entries.

Finally the BACKUP list, for partially e&panded MAX nodes,

requires
d-1
2w w1
> (F)J entries, which is aboutR() 2 “entries.
j=0

Thus for PS*(k) the size of BCKUP is aboutk/w of the size of
OPEN, and the twlists together occypsignificantly less space than
the single OPEN list used by SSS€onsequentlyif S(A) denotes
the space needed by an algorithm A, then S(PSYISJSSS*) for
ary k > 1 AND FOR an depth and width of the search tree.

Comparison with other M ethods

Let R be the order of the tree being searched, and let PS*(k) denote
the Phased Search algorithm with k phasdsing the notation of
Roizen and Pedtlet I(A) represent the number of bottom positions
visited by algorithm A.

(1) For minimal trees (optimally orderedage trees), 1(SSS*) =
I(PS*(k)) = I(@p), because all algorithms w&se the best branch

first and so achie maximal cut-ofs.

(2) For ordered trees, when p = 1 an&R, I(PS*(k)) < I(SSS*) <
I(AB), since the best solution isvedys among the first w/R branches
at every node in the solution treeAlthough there may not be man
cases where strict inequality holds, PS*(k) is at least as good as SSS*
as long as R k, because the best solution iwa}s found in the first
partition. Figure2 provides an rample where I(PS*(2)) < I(SSS*),
for a tree of depth 5 and width ©nly that part of the tree which is
enough to demonstrate the point has been preseAtssiime that
node 2.1 is sokd with \alue 64, so thealue of node 2.2 has an
upper bound of 64Consequently2.2.1.1.1 and 2.2.1.1.2 are set
with values 18 and 21 respedy. Then 2.2.2.1, 2.2.2.2, 2.2.2.3 and
2.2.2.4 are included in OPEN and smlvwith alues> 64, hence
node 2.2.2 is sobd. Notethat nodes crossed in Figure 2 are visited
by SSS* lnt not by PS*(2).

Figure2: TreeT(4,5) in which PS*(2)
is better than SSS*.

(3) For ordered trees, if p = 1 and R <k, I(PS*) can be greater than
[(SSS*). Similarly if the tree is random, then PS*(k) will occasion-
ally evaluate some xdra nodes.However, our experimental results
showv that en when R < Kk, in most of the cases (including random
trees) PS*(k) is still better than thes aIgorithm°’.

(4) Thereare trees which are umnfarable for PS*, so that I(PS*(k))

> (¢ B). Suchtrees are statistically insignificant, and are uncommon
in typical applications, because yheepresent a wrst first ordering
within every partition.

PERFORMANCE COMPARISON

The search algorithms PS*(k), SSS*, and have keen imple-
mented on a AX 11/780 using the C language. Experimentaksa
tigations were carried out with both ordered and random trees, using
different combinations of depth, width and tree orderiBgme of
the results on minimal, random, and orderetsions of the uniform
trees T(8,4), T(16,4), T(24,4), T(32,4) and T(8,6) are preserkted.
the trees of width 8, 16 and 24, orders R = 2 and 4 were searched and
for trees of width 32, order 8as also studiedFor each combina-
tion, 100 diferent trees were generated using a modifedion of
the scheme deloped by Campbéﬁl and the aerage NBP visited by
each algorithm are presented in the tablHse maximum amount of
space needed is also@i in terms of list entries.

Based on the search of 100feient trees, the folleing obser
vations about thewerage performance of PS*(k) are possible:

(1) Datain Tables 2 through 6 shothat on random trees (R = 1),
the arerage NBP for PS*(2) is much less than &8, but more than
for SSS*. For trees of order R = 2 and high&6*(2) and SSS* hae
the same performanceutbit is clear that PS*(2) needs much less
space.

(2) SSSH*is aways better thamx g and is statistically better than PS*
for both random and probabilistically ordered treeshld@ 4. For

-8-

perfectly ordered trees, each algorithm visits minimum bottom posi-
tions.

(3) Table 4 shws the results on both ordered and probabilistic trees
of depth=4, width=24 and of orders R=2 andld.the probabilistic
case, the \@rage NBP are slightly greatess we would expect,
because atvery MAX node there is some nonzero probability that
the best branch is not found in the first partition searched by PS*.

(4) For most of the trees, I(PS*(i)) < I(PS*(j)), fordi<j < w.
That is, PS*(k) visits terminal nodes in increasing number with
increasing k.There are some trees for which this is not ru is
also knevn that the abee relation maginally fails to hold for
ordered trees (probability p=1), see fotample Bbles 5 and 6
where PS*(2) and PS*(4) oftenveagatistically insignificant better
performance than SSS* (i.e., PS*(1)) on order R = 4 trees.

Table2. Average NBP on Treeswith
depth=4 and width=8.

Search R1 R=2R=4 R=8 9®ace
method (random) (minimal) needs
SSS* 439 287 190 127 64
PS*(2) 571 286 190 127 21
PS*(4) 634 375 190 127 7
ap 689 415 248 127 4

Table 3. Average NBP on Treeswith

depth=4 and width=16.

Search R1 R=2R=4 R=% ace
method (random) (minimal) needs
SSS* 2250 1637 1146 511 256
PS*(2) 2829 1637 1146 511 73
PS*(4) 3363 2114 1146 511 21
PS*(8) 3743 2388 1496 511 7
ap 3952 2981 1664 511 4
Table4. Average NBP on Treeswith
depth=4 and width=24.
For minimal trees of depth 4 and width 24 NBP=1151.
prob=1.00 prob=0.90
Search R1 R=2R=4 R=2 R=4 $ace
method (random) needs
SSS* 5805 4423 3206 4702 3513576
PS*(2) 7345 4423 3203 4956 3690157
PS*(4) 8650 5718 3201 6460 3940 43
PS*(6) 9207 6222 3950 7126 4649 21
PS*(8) 9753 6652 4300 7517 4938 13
ap 10602 7437 5031 8364 5660 4

-9-

Table5. Average NBP on Treeswith
depth=4 and width=32.

Search R1 R=2R=4 R=8 R=3 ace
method (random) (minimal) needs

SSS* 10816 8493 64244633 2047 1024
PS*(2) 13989 8478 6422 4632 2047 273
PS*(4) 16464 11089 64204632 2047 73
PS*(8) 18512 12782 83134631 2047 21
PS*(16) 20145 139669330 6209 2047 7
ap 20836 1466510046 6974 2047 4

-10 -

Table 6. Average NBP on Trees
with depth=6 and width=8.
Search R1 R=2R=4 R=8 9®ace
method (random) (minimal) needs

SSS* 6044 3475 1932 1023 512
PS*(2) 9984 3437 1921 1023 85
PS*(4) 11283 5213 1915 1023 15
af 11565 55552659 1023 6

Choice of Partition Count

From the preious discussions, it is clear that selection of the
partition count, Kk, is important if PS*(k) is to achéeits maximum
benefit. Iffrom some preious knavledge we kna that the tree is of
order R, we can choose k = Rhen I(PS*(k)) vould be the same as
I(SSS*), ut the storage requirement of PS*(kowld be about
1/(k%2) of that of SSS*.Clearly, there is a trade-bbetween space
and bottom positions visitedf k=w, minimum space is requiredub
NBP will increase to that of amg search. Orhe other hand, if k=1
the NBP would be lov but space neededowld be as much as for
SSS*. ThusPS* forms a continuum of altermegs between SSS*
anda 8. PS* can be made fefctive by using information about the
ordering properties ofagne trees, since one can choose the parame-
ter k both on the basis of the tree ordering and on the memory space
available. Diferent ordering schemes must be considered, since
ordered trees often are more typical of those appearing in applica-
tions than are random trees.

Storage needs are also significaRtr example, SSS* needs
1024 entries in the OPEN list to search a tree of depth=4 and
width=32, whereas PS*(4) requires 64+9 = 73, and PS*(8) needs
only 16+5 = 21 for both the OPEN and\BKUP lists. Note that
although PS* maintains twordered lists, the total size of thedaw
lists is much less than that of the single list of SS&fso, an
ordered list of size 64 or 16 is much cheaper to maintain than a list of
1024 elements.Hence, the time spent by PS* manipulating these
overhead lists may be less than that needed by SSS*.

CONCLUSION

The nev adgorithm PS*(k) can be viged as a continuum
between SSS* and g, as it attempts to mad use of the best charac-
teristics of both.The a g algorithm processes nodes in amg tree
much faster than SSS*ub SSS*, making more use of the kledge
ganed at earlier steps, prunes better thghand as a result visits
fewer bottom positions.SSS* achiees this better pruning at the
expense of etra bookleeping which needs more storage and consid-
erable time for the update process. The phased search algorithm PS*
also does some book&ping and achwes much better pruning than
a S in a statistical senseSince PS* concentrates only on a subset of
the solution trees in each phase, it consequently needs smaHer stor
age and mayven require less »xecution time than SSS*.Thus
PS*(k) can be comparable to SSS* in performance, especially on
bushytrees (i.e., trees with w > 20), and yet at the same time has sig-
nificantly lover storage werhead than SSS*Because of theuilt-in

-11 -

flexibility provided by phasing and the possibility for choosing the
partition size parameter (PSIZE), PS* igpected to be useful in
practice. PS*ecomes most #ient if parameter selection can be
done using some a priori kwtedge of the xpected location of the
solution.

Experimental results reported here are based oanzedgree
model, and the algorithm remains to be tested with a typarakeg
pla¥ing program. However, experience with other alternaés to
a ' shavs that performance on probabilistic uniform trees is a good
indicator of performance in a typical applicaﬁonln the work
reported here, the successors of a MAX node in the PS*(k) algorithm
are dvided into partitions of equal size$his is not a restriction,up
further work is necessary to determine if unequal partition siZes of
a performance adantage in practice. Certainly for probabilistically
ordered trees increasing partition sizes could be useful.

Adknowledg@ments

Financial support in the form of Canadian Natural Sciences and
Engineering Research Council Grant A7902 made Xiperenental
work possible. Discussions with Liwu Li on theoretical points and
the independent implementation of PS* by Erik Altmann helped and
were appreciated.

References

1. G.C.Stockman, A minimax algorithm better than alpha-beta?,
Artificial Intelligence 12(2)(1979), 179-196.

2. D. Knuth and R. Moore, An analysis of alpha-beta pruning,
Artificial Intelligence 6(4)(1975), 293-326.

3. N. Srimani, A nev algorithm (PS*) for searchingagne trees,
M.Sc. thesis, Computing Science Dept., wérsity of Alberta,
Edmonton, July 1985.

4. I. Roizen and J. Pearl, A minimax algorithm better than alpha-
beta? ¥s and No.,Artificial Intelligence 21(2) (1983),
199-220.

5. A.Musczycka and R. Shinghal, An empirical comparison of
pruning stratgies in @me treeslEEE Trans. on Systems, Man
and Cybernetics SMC-18 (1985), 389-399.

6. T.A. Marsland and M. Campbell,akallel search of strongly
ordered g@me trees, Computing Surys 14(4) (1982),
533-551.

7. A. Reinefeld, J. Schaefr and TA. Marsland, Information
acquisition in minimal winde search,Procs. 9th Int. dint
Conf on Art. Intell., Los Angeles, 1985, 1040-1043.

8. M.S.Campbell and A. Marsland, A comparison of minimax
tree search algorithmdrtificial Intelligence 20(4) (1983),
347-367.

9. TA. Marsland, Relate dficieney of alpha-beta
implementationsProcs. 8th Int. dint Conf on Art. Intell.,
(Los Altos: Kaufmann), Karlsruhe, &8t Germay Aug. 1983,
763-766.

-12 -

Table 1. State Space Operator (I') for PS* (k).

k is the partition count, and PSIZE = w/k is the partition size.
Let n be the m-th successor of its parent node i, where i = P(n).

Thus, n =i.m, preided n is not a root node.

Case Conditiomf the Action of "
input state (n,s,hi)
1. s=LIVE, n is
interior
la Type(n) = MAX Push states (n.j,s,hi) for all j=1,...,PSIZE onto the OPEN stackvénseeorder
Push (n,PSIZE,lw,hi) onto BACKUP, where lav is the laver bound of n and h
is the upper boundNote that, if n = root, then Vo=-c0 else lav = low of P(i)
stored in BA\CKUP.
1b Type(n) = MIN. Push (n.1,s,hi) onto the front of the OPEN list.
2. s=LIVE, n is Set Score = Min(V(n),hi), where V(n) is thalue returned by thevauation
terminal function.
2a Type(n) = MIN, Insert (n,SOVED,Score) into OPEN in front of all states of lesser mefTies
or are resoled in favar of nodes which are leftmost in the tree.
Score > lwv of
P(@).
2b Type(n) = MAX, Ifiis the last node in the current partition at P(i),
Score < low of then Score is changed talaf P(i).
P(i) Insert (i, SOVED,Score) into OPEN, maintaining the order of the list.
3. s = SOLVED, Pumge all successors of i = P(n) fromABKUP.
Type(n) = MAX.
3a m=w,n=root Terminate: hi is the minimaxalue of the tree.
3b hi>low of P(i), Expand: push (i.m+1,LIVE,hi) onto the front of OPEN.
m < W.
3c Otherwise Prune: push (i, SOLED,hi) onto the front of OPEN.
4. s = OLVED, Obtain \alues of lov(i) and high(i) from B\CKUP.
Type(n) = MIN, Set law(i) = Max(low(i),hi) and
update lav for all descendants of i oPABKUP.
4a If low(i) = high(i) Puge all successors of i from OPEN anfi@<UP.
Push (i,SOVED,high(i)) onto the front of OPEN.
4b If low(i) < high(i) If there are incompletely searched MAX successors (non-immediate) of 1

present in BCKUP, then add the n& partition of the first such node found
BACKUP to the front of OPEN;

Else Puge all successors of i from OPEN andi@KUP,

andeitherpush the net partition of successors of i onto OPIEN if there are ng
more partitions,

Push (i,SOVED,low(i)) onto the front of OPEN.

1ode i
in

