
CURRENT CHESS PROGRAMS: A SUMMARY OF THEIR
POTENTIAL AND LIMITATIONS*

P.G. RUSHTON AND T.A. MARSLAND
Computing Science Department, University of Alberta, Edmonton, Alberta

A B S T R A C T

The purpose of this paper is to discuss ideas used in current chess playing programs. A short
history of events leading to the present state of the art is given and a survey made of present
day programs. The Newell, Shaw, and Simon program of 1958 is included since it embodies
useful ideas that other programs appear not to employ. The possible performance limits for
current techniques will be considered, including reasons for these beliefs. A summary of the major
ideas contained in these programs is then presented and suggestions made for the improvement
and development of future chess-playing programs.

RESUME
Le but de cet article est de discuter certaines iddes utilisdes dans les programmes pour le jeu
d'echecs. On pr&ente un bref historique des ^vfenements qui ont abouti a l'dtat actuel. On fait
la revue des programmes actuels. Le programme de Newell, Shaw, et Simon, ^crit en 1958, est
inclus. En effet, il incorpore certaines id^es utiles qui ne semblent pas Stre encore exploit^es dans
les programmes actuels. Les limitations des mdthodes courantes ainsi que leurs causes sont
considdr^es.

Finalement, on resume les id^es principales contenues dans ces programmes et on pr^sente des
suggestions pour l'am^lioration et le d^veloppement des programmes qui jouent aux dchecs.

INTRODUCTION

Interest in designing machines to play games has only developed seriously
over the past two decades. Many reasons justify the research spent on games.
Most games present a closed environment with well-defined rules and goals.
Chess has been used extensively for the above reasons and also because
devising a high calibre chess program is a difficult task. It is believed that the
techniques used in a master class program would be relevant to many other
problem areas - natural language processing and theorem proving for example.
More reasons for using games, and chess in particular, can be found in
References (3) and (10) and in the book Human Problem Solving by Newell
and Simon.

A basic set of principles for chess playing programs was set down by
Shannon.''''' The ideas he suggested involved the following: limiting the size
of the game tree; using a polynomial scoring function and employing the
forward pruning technique, where the deeper one gets into the tree the fewer
variations are considered; using the minimax procedure to search the game
tree for the best move; applying the evaluation function only in quiescent
positions (one where no move exists which will drastically alter the value of
the scoring function); and separation of the phases of the game.

•Received 12 June 1972
13

INFOR, vol. 11, no. 1, February 1973



14 P.G. RUSHTON AND T.A. MARSLAND

Many of Shannon's ideas were applied to the game of checkers b}' Samuel.'"^
This work is mentioned since many of the techniques in Samuel's checker
playing program have been applied in current chess programs. The alpha-beta
algorithm in conjunction with plausibility ordering (possible moves from a
given position are ordered by a crude estimate of their likely worth) and
forward pruning are the methods used to search the game tree. A technique
that has not been applied to chess is the use of "signature tables" which allow
relations between terms in the scoring function to be considered. This evalua-
tion method is non-linear and has enhanced play, but the program still cannot
beat the best human checker players.

This paper is divided into two parts. In the first section emphasis will be
placed on programs which employ new ideas, are of noteworthy playing ability,
and for which reasonably complete documentation was available. Many other
programs exist and are described in more general terms. The second section
deals with ideas for unwritten or incomplete programs.

EXISTING PROGRAMS
Newell, Shaw, Simon^^''
A goal directed approach to the game was adopted by Newell, Shaw, and
Simon.'^' Features of the game were associated with goals, each of which
required a move generator, a static evaluator, and an analysis procedure. For
ease of modification, each goal consisted of a separate procedure.

In order to select which goals were relevant to a position, a preliminary
analysis routine was invoked and the corresponding goals chosen were ordered
by their suspected importance. This static set of goals controls the move
generation process, including selection of variations, evaluation, and final
choice.

Move generators for goals were responsible for proposing moves relevant to
a particular goal and finding positive reasons for making these. The generators
did not suggest continuations. A proposed move had then to be valued by an
analysis procedure which was concerned with acceptability of that move.
Before a position can be assigned a value it must be dead with respect to all
goals. If a position is not dead for a particular goal, moves are suggested by the
corresponding move generator and the resultant positions are checked to see
if they are quiescent for all goals. If not, the above procedure is repeated,
constituting an analysis of variations, until a position is reached which can be
evaluated. The final choice depends on an acceptance value and if a move
receives a value greater than this threshold it is played, otherwise the best
move found by the alpha-beta backing up procedure will be made.

This program did not realize the state of development and use that the more
recent programs have; however, hand simulation gave an indication, in the
openings at least, that the program would make moves for reasons similar to
those of chess players.

Greenblatt, Eastlake III, Crocker'-*^
The program (Mac Hack) written by this group implemented many of



16 P.G. RUSHTON AND T.A. MARSLAND

The tree structure is built and searched in a straightforward fashion. All
legal moves are obtained for the starting position and ordered by their scores
as assigned by the chess heuristics. This ordering is performed only once per
move at the root node for the tree. The game tree is now produced by brute
force to a set depth (which depends on the time available), the terminal
positions evaluated (difference in material is the only consideration), and the
move selected using the alpha-beta algorithm.

TECH has played in a number of tournaments and presently has a uscF
rating of approximately 1300, which puts it at the strength of a weak amateur
with little tournament experience.

Slate, Alkin,
Chess 3.5 (as Northwestern's program is called) is relatively young and is
capable of learning in a rather limited sense. Its learning ability is restricted
since it involves memorization rather than generalization.

A depth-first, forward pruned tree is built, and the alpha-beta algorithm
is used to select the move. In order to choose moves to be analysed, a number
of chess heuristics are employed. The main one of these chooses a number of
moves, dependent on depth, whose scores were the highest. For each position
to be evaluated, tables of information are built which, in turn, are used while
analysing capture sequences, square control, and pawn structure. This evalua-
tion results in a single number which is the score for the position. This means
of scoring may be avoided in the opening since it is also possible to look up
moves in a library.

The learning process is not very advanced and is of limited use. One form
of learning involves memorization of positions and the moves associated with
them. A seemingly better technique involves continual monitoring of the game
and when the value for a position is sufficiently different from what was
expected by an earlier look ahead analysis, credit or blame is assigned to the
previous four moves. Usage of these methods tends to cause the library to
grow rapidly.

Chess 3.5 has performed quite well, and indeed, has won the first, second,
and third U.S. Computer Chess Championships. The learning ability is an
interesting development but appears to be of use only in those positions which
are likely to match ones in the library (for example during the opening and
endgame). Future work along these lines will be interesting to observe.

The remaining programs, including those by Boos, Raymond, Scott, and Smith,
have not introduced new concepts. The approach used has been to build a
small tree using a sophisticated scoring function, WITA, written by T.A. Mars-
land< '̂ embodies the essential features of this group and is described as follows.

WITA generates every legal move and automatically considers all checks
and captures. The remaining moves are selectively added to the same list,
depending on the results of a preliminary scoring function. If possible, twenty
moves are always retained and in general the original move list is trimmed to



CURRENT CHESS PROBLEMS 15

Shannon's ideas. Its ability over and above that of its contemporaries was
particularly noteworthy.

For any position a list of legal moves is made and ordered by an assigned
plausibility score which is computed using a number of specific chess heuristics.
A subset of the possible positions is selected using the plausibility score and
these are used as root nodes for another tree. Thus a tree structure is built
to a fixed depth and then the evaluation function is applied to obtain a score
for the terminal positions. The evaluation function is linear and is comprised
of terms reflecting material balance, piece ratio (useful when considering
exchanges), pawn structure, king safety, and centre control. The alpha-beta
algorithm is used to search the game tree. Use of a hash coding technique
avoids unnecessary computation of duplicated positions and also aids in
detecting draws by repetition.

As a member of the USCF (United States Chess Federation) Mac Hack has
a rating of about 1500. It has improved in play over the years but this was due
to an evolutionary process of adding more chess heuristics rather than a learn-
ing mechanism within the program.

Kozdrowicki, Cooper'-^''
The COKO III program, as it is called by its authors, was based on the assump-
tion that an opponent would resign upon the loss of material. As they noted,
this could lead to problems whereby a player could sacrifice material for a
mating attack.

The program is organized around the concept of a minimal game. In a
minimal game, the move to be made is determined from the application of
chess heuristics to information collected from the position under consideration.
No look ahead is used. A preliminary analysis routine gathers the information
and chess heuristics are separate subroutines.

In order for coKO iii to look ahead, a tree of minimal games is constructed.
The size of the tree is adjusted dynamically, dependent on the present size of
the tree. The sprouting procedure ensures that the next path searched is the
one calculated (on the basis of chess heuristics) as most likely to succeed.
Thus, this technique is similar to that of Samuel's checker playing program
and the methods people use.

COKO III has a broad background of over the board play and has undergone
many programming improvements. Its level of play is comparable to that of
other chess programs.

Gillogly's program (TECH) was written specifically to provide a baseline for
other programs. The ideas are not novel, since TECH uses brute force to examine
the game tree.

While developing the program it was discovered that before anything tactical
happens (recognizable by material changes) the program had a hopeless
position. To rectify this difficulty about 5 per cent of the processing time was
devoted to chess specific heuristics.



CURRENT CHESS PROBLEMS 17

about two-thirds of its initial length. A separate and more detailed non-linear
evaluation function is used to assess the positions. The coefficients of its
individual terms vary with depth but otherwise remain unchanged. This second
score is used to restrict the number of variations analysed from any position to
a user specified limit. The actual tree is forward pruned and duplicate positions
eliminated. The move played is the first one whose score, backed-up by the
alpha-beta algorithm, exceeds some acceptance value. In order to save com-
putation time, the tree is salvaged from move to move.

wiTA has played a number of opponents and its results have been checkered.
In general, all of the programs have evolved by the additional programming
of chess heuristics and the level of play is in class D (1200-1400 USCF scale).

UNWRITTEN OR INCOMPLETE PROGRAMS

Good gave a plan for the creation of a chess playing program in five years.
However, no one has followed it up in detail. A brief outline of the plan
follows.

The first phase involves writing a program to play legal chess, compiling
a list of principles, and expressing them as clearly and unambiguously as
possible. One should now review the literature of learning theory, concept
formation, etc. to see if it contains relevant information. The next step is to
devise a special purpose chess language in which to express the principles of
chess and chess planning. This second phase involves program organization
and division for ease of construction, and then writing it using the special
language. Thirdly, one should develop the theory for evaluation techniques,
optimal tree search, and generation of goals. One ought to formalize the con-
cept of "progressive deepening" and apply this to the chess program. The
final phase consists of trying the program, improving it as seems necessary,
and conducting an investigation concerning how one can take advantage of
the psychology of a particular opponent.

A novel idea has been proposed by Botvinnik. He believes it is important to
know which pieces are able to reach a certain square or sector of the board
in a set number of half-moves. In this manner it is possible to determine the
pieces that one should be concerned with when planning a move and it estab-
lishes what Botvinnik calls an "horizon." Thus one could vary the horizon
by changing the amount of time pieces are allowed to take in arriving at a
given area. At the present time some of his ideas have been programmed, but
the successful completion of a program based on Botvinnik's ideas has not yet
been announced.

CRITIQUE

Essentially two approaches to the game of chess can be distinguished among
the programs that use scoring functions, TECH does not prune the move tree



18 P.G, RUSHTON AND T,A, MARSLAND

and uses a simple evaluation function, whereas most other programs etnploy
a complex scoring function to trim the tree. This trade-off has not been
investigated sufficiently but obviously merits attention since, in the second
u,s. Computer Chess Championship, TECH placed second, ahead of others
which used a sophisticated scoring function.

With the exception of the Newell et al. program, all use an evaluation func-
tion to limit the size of the tree. Strictly speaking COKO ill does not, but its
techniques for limiting the size of the tree are sufficiently similar, in our
opinion, for it to be grouped along with the others. This approach will not
produce a program capable of playing master strength chess. The reason for
this belief can be shown by the following analogy. Suppose a small girl is lost
in a corn field and is moving this way in an attempt to escape, but is making
little progress. If she could raise herself above the corn it would be possible
for her to get an idea of the direction in which she should move and eventually
find her way out. It is felt that using an evaluation function to determine the
proper move results in action similar to the lost girl trying blindly to find a
way to escape in that the program has no real idea of the direction to take.
This cannot be obtained by examining the corn stalks (the approach of pro-
grams using evaluation functions). The move tree should thus be examined
with a particular goal in mind, A program using a goal directed approach
would behave like the girl who could raise herself above the corn stalks.

This, then, is similar to the fault with current chess playing machines. An
evaluation function in no way allows one to get an idea of the direction of the
game and there will be a limit to the success of programs written along these
lines. Note that when specialized routines are written to hatidle certain
endgames, they are likely to be successful. Such an approach is equivalent to
a special form of a goal-directed search.

The Newell et al. program* '̂ used a goal oriented approach but, since work
was not completed on the program, it is not known how successful it may have
been. One difficulty with this kind of approach is recognizing which goals are
to be attained in a position, Newell, Shaw, and Simon do not describe their
preliminary analysis routine for selecting goals, so until it is known it would be
unfair to criticize this part of their work. We are told that a goal selector
rountine is used each time the program is to move, which indicates that there
is no planning continuity. The analysis routines, too, seem not to be the best.
These procedures essentially tried to make the position dead with respect to
their corresponding goal and proposed moves to accomplish this. It would
seem a better approach is for planning routines to suggest variations towards
the achievement of a goal. These would likely be the areas for possible failure
of a program using this approach,

Botvinnik's ideas are important but he has not indicated the significance
of goals. His method, used by itself, does not give an indication of the direction
of the game and thus will fail. Given a means for determining the relevant
goals, these ideas will most certainly assume an important role and must be
accounted for in future chess programs (especially since Botvinnik was the
world chess champion from 1948 to 1960, except for a few years).



CURRENT CHESS PROBLEMS 19

Good's suggestion of formalizing the concept of "progressive deepening"
and using a special purpose language in which to express chess programs has
not been investigated fully, but some attention should be devoted to these
ideas as they will prove relevant if a program is to model human behaviour.

A LOOK TO THE FUTURE

If a program could learn to improve its chess play, then most of the problems
would be solved. It is reasonable to assume that progressive deepening plays
an important role in this respect.

We are working on these ideas at the present and have conceived of a set of
pattern matching routines which identify goals worthy of achievement and a
set of analysis routines capable of developing and evaluating plans.("•<'"» A
learning program will then have the responsibility of changing the preceding
sets of routines. In particular, it will make changes depending on the difference
between present assessment of a position and that of a much superior chess
player. Exact methods for this adaptation have not yet been developed, but
it is felt that in order for learning to take place a program must be able to
change itself.

CONCLUSIONS

Current chess programs will not be of master calibre as long as an evaluation
function is used to limit the size of the tree. In keeping with the progressive
deepening idea, a better means is needed for selecting and evaluating relevant
plans in a given position. Learning is essential for effective play since otherwise
every time the program fails, a new change will have to be introduced by hand.
This does not seem to be any better than current approaches to the problem.
In order to make significant further progress in the area of chess playing,
current practices should be examined for something better.

REFERENCES

(1) M.M. Botvinnik, Computers, Chess and Long Range Planning, Springer-Verlag, 1970.
(2) J.J. Gillogly, "The Technology Chess Program," Nov. 1971, Rep., CMU-CS-17-109.

Department of Computer Science, Carnegie Mellon University.
(3) I.J. Good, "A Five Year Plan for Automatic Chess," Machine Intelligence, vol. 2, 1967,

89.
(4) R.D. Greenblatt, D.E. Eastlake iii, and S.D. Crocker, "The Greenblatt Chess Program"

AFIPS Conf. Proc. vol. 31, 1967, 801.
(5) E.W. Kozdrowicki and D.W. Cooper, "Algorithms for a Minimal Chess Player: A Blitz

Player" Int. J. Man-Machine Studies, vol. 3, 1971, 141.
(6) T.A. Marsland, Unpublished notes, 1970.
(7) T.A. Marsland and P. Rushton, "A Study of Techniques for Game-Playing Programs,"

Proceedings of the World Organization of General Systems and Cybernetics, Oxford University,
August 1972. To be published by Gordon and Breach 1973.

(8) A. Newell, J.C. Shaw, and H.A. Simon, "Chess Playing Programs and the Problems of
Complexity," IBM J. Res. Develop., Oct. 1958, 320.

(9) "Computer Chess Programs (Panel)," Proc. of the ACM Annual Conf., Aug. 1971.
(10) P. Rushton, "A Critique of Programming Techniques for Playing Chess," M.Sc. thesis.

University of Alberta, 1972.



20 P.G. RUSHTON AND T.A. MARSLAND

(11) A.L. Samuel, "Some Studies in Machine Learning Using the Game of Checkers. ii-Recent
Progress" IBM J. Res. Develop., Nov. 1967, 601.

(12) C.E. Shannon, "Programming a Digital Computer for Playing Chess," Phil. Mag. vol. 41,
March 1950, 356.

(13) D.J. Slate, L.R. Atkin, and K.E. Gorlen, CHESS 3.5 User Guide 1971, Northwestern
University.


