
Mechanisms For Comparing Chess Programs

T. A. Mars{and and P. G. Rushton,
University of Alberta

Abstract

The scientific utility of computer chess
tournaments is questioned and two
alternative means of comparing chess
programs are examined. Regardless of the
programming language employed or the
background load on the host machine, a
means is provided for measuring the
efficiency of chess algorithms.

!nt~d_uction
The occasion of the ACM National

Conference has been used to stage a
computer-chess match for the past four
years. After each tournament the
proficiency of the individual programs is
assumed to be measured by their relative
scores. Unfortunately, even though the
time used by the various programs is often
recorded, no account is taken of the power
or workload of the computing machinery
being used. For instance, the OSTRICH 4
executes on a dedicated minicomputer,
while Northwestern,s CHESS 4 operates in a
multiprogramming environment. How then
can any scientifically meaningful
comparison be made of the relative
efficiency of the two programs? The basic
efficiency of the algorithms used is
further obscured by the choice of
programming language. Some are written at
the systems programming level while
others, like COKO a, use a higher level
language for its portability and
flexibility.

Two alternative means of comparing
programs are discussed briefly and some
performance measurements on a chess
program (WI~A s, which is now being used
only as a test bed for analysing chess-
playing algorithms), are presented.

Common Machine ~R~Rarison

Programs which can execute on a variety
of computers should play each other on the
same machine. By this means the
variations in CPU and memory cycle time,
plus competition for the CPU with the

background load, can be equalized.
Recently one such experiment was performed
at the University of Alberta, on an IBM
360/67, with the programs talking to each
other via a special monitor. A complete
technical description of this execution
monitor and its capabilities is available
from the authors. In essence, the monitor
traps all i/o transfers, manages an
alterable communication buffer, and
maintains independent CPU and elapsed time
clocks for all three programs. The main
advantage of this approach is that the
various programs can be written in any
language. For instance, the CPU
utilization for parts of two games between
COKO (March 1972 version, written in
Fortran) and an Algolw version of WITA is
presented in Figures I and 2. Only a few
minor modifications were necessary to the
programs in order to make their move
descriptions compatible.

A series of experiments is planned in
which these programs will play each other.
Starting from a set of initial board
positions, each program will play both
sides in all their different modes of
operation. Because of the wide variety of
tree building structures and heuristics it
is too much to expect that programs will
have any equivalent modes of operation.
However, by allowing them to play both
sides of the same game, some relative
assessment of the CPU efficiency of the
programs is possible. For instance,
Figure I shows the cumulative CPU
consumption for part of a game in which
WITA played without lookahead and COKO
also used its fastest mode (Blitz, at
about I secs./move). Figure 2 is a
similar graph, but in this case WITA and
COKO have changed sides, and also COKO is
in fast mode (10 secs./move), while WITA
is using a fixed 3-ply tree (without
extensions for checking and captures). It
should be noted that the CPU times include
the overhead associated with our
multiprogrammed, paging operating system
(the Michigan Terminal System).

Because this series of experiments is
not complete it is premature to draw any
conclusions. It is suspected however,

ZOZ

that our version of COKO was having some
problem anticipating the consequences of a
promotion, for in the 15 moves of the
first game it lost the pawn it promoted
while in the second 10 move sequence (in
which the colours were reversed) it was
unable to stop the promotion. There is
also a possibility that COKO's attempts to
meet its timing constraints interfered
with its tree building mechanism.

In terms of resource utilization, the
combined programs required some 146 pages
(584K bytes} of virtual memory, of which
COKO needed 75 pages. Although both
programs are CPU bound, since neither does
any explicit i/o while generating a move,
and do not compete with each other for the
CPU, they only received about 25~ of the
available CPU time (the balance going to
the background load) . The data for
Figures I and 2 was generated on the same
evening in consecutive experiments.

Common G ~ m ~ ~Rm_~ris~.~on

For those programs which can execute
only on a single machine, direct
comparison should be made on a basis of
their analysis of a standard set of games.
In part of another paper an attempt to
optimize some of the coefficients in
WITA's scoring function is described, and
a graph showing the improvements is
presented 3. To obtain those results a
subset from about 760 positions in 32
games was used, taken from the 1924
International Tournament in New York, and
is available from the authors. Figure 3
shows the improvement of WITA's fixed
depth 3-ply tree over its basic scoring
function. For reasons of economy, the
relative positions of the moves selected
by the masters is plotted for only the
first half of the NY1924 set. A series of
experiments is planned in which WITA's
tree building parameters, such as width,
depth, selection threshold and others, are
to be altered to determine in a
statistical way how they affect the
performance.

A lower bound on the performance of a
chess program is given by that of a random
player, such a bound is shown in Figure 3
over the same set of positions as
considered by WITA. If we have H
positions, with Ni moves per position,
then the fraction of the time that the
master's move is found in a random window
of size K is given by:-

K H
(> > (D_iij))IS,

j=1 i=1 Ni

where DiJ = 0 if Ni < K, otherwise Dij =I.
Although this bound takes into account
those positions in which there are very
few legal variations, it does not account
for the cases in which there are only a
few meaningful continuations. Such cases

ari~ most commonly in capture sequences,
and constitute about 15~ of the moves.

These results suggest that WITA is now
an adequate player, but clearly has no
potential for superior chess. The results
have also helped us to gain some insight
into the deficiencies of current
techniques and leads us to believe that a
goal seeking approach is needed 3. It is
clear that in order to play superior chess
all of the master calibre moves must be
within the window of prefered moves that
are examined during the tree building
process. This criterion is most easily
met by the TECH-type approach 3 4. Whether
the window size is static or dynamically
variable during the course of a game is of
no consequence. What is important is that
after the tree search the scores for the
master-calibre variations place them
within the top three continuations. De
Groot* has indicated that on the average
there are only 1.5 master calibre moves in
any given position, so even our
requirement for generating master moves
with one of the top three scores is rather
weak.

By using a standard set of consecutive
positions from master games, programs can
be compared by observing the relative
assignments given to moves played by
masters. These standard positions have
been carefully chosen to cover only the
middle game play(the average number of
moves per position is 36), so that the
opening and endgame transitions can be
avoided.

For the experiment whose results are
presented in Figure 3, the basic window
size was set at 7, because earlier results
had indicated that only about 20% of the
master moves would lie outside that
window. Of those, about half were not
being selected by the primary scoring
function, whose job it is to trim the move
list to about two thirds of its length and
thus reduce the execution time of the non-
linear scoring function. Without the
primary function a further 104 of the
moves might be within the window, but only
at the expense of doubling the CPU cost of
the secondary function.

Although the customary benchmark methods
for comparing chess programs exist, they
are not yet being used effectively. The
possibilities for two programs to play
each other on the same machine are
extremely limited, and communication
problems are not necessarily trivial. The
main weakness in the annual computer-chess
tournament is that no handicapping of the
various programs is performed, giving
advantage to the user of the fastest, most
lightly loaded computer. However, the
event is certainly not sterile, since it

203

captures the imagination and permits the
rapid dissemination of new ideas and
concepts.

bc_~now__l~s~ment~

The assistance of Grant Crawford in
developing the execution monitor and its
associated documentation is gratefully
a c k n o w l e d g e d . In addition, these
experiments could not have been performed
without the computing funds provided by
both Dr. J.D. Dale and the National
Research Council of Canada.

R e f e r e n c e s

1 . i . D . de Groot , ZJZ u99.q_~_t Ln~ Ch_9oi_.~ ~_~
C_he__sss, Mouton 1965.

2 . E . g . K o z d r o e i c k i and D;W. Cooper ,
"blgorithms for a minimal chess
player: A blitz player", ~ J~
m_ach~ne S~tud~s, vol 31, 1971, p. 141.

3. T. &. Marsland and P.G. Rushton, "~
study of techniques in game- playing
programs", E~oc_~ World or.q~ p_f
Gen.. _SXs_~ a~d CX~, Oxford Univ., Aug
1972.

4. M. Newborn (editor), Proceedings of the
third annual computer chess
tournament, available from M. Newborn,
Elec. Eng. Dept., Columbia Univ., N.Y.

5. P.G. Rushton and T.A. Marsland#
"Current chess programs: I summary of
their potential and limitations",
~.N~OR, vol 11, Peb 1973.

204

T s0
o ~ 60-
O

.,4

0~
R • ,~ 40-

-I=

r O

20-

COKO (~itz)
CPU:elapsed = 1:6

lu,

'IL

I

Figure 1,

• WITA (1 - p l y)
CPU:elapsed = 1 : 1 1 . 4

@ •
g

16 15
m o v e s

250-

200-

150.
0

.~ 100.

50.

@

WITA (3-ply)
CPU:elapsed
I : 3.87

COKO (fast)
CPU: elapsed
I : 4.44

5 16 1~
moves

FiGure 2.

O~
.,4

60

T 40
.,4

W

0 m
~ 2 0

4.=
m

El

WITA 13-ply)
..... ---- WITA l-ply)

........... Random player
--....

3 4 5 6 7
w i n d o w s i z e o f p r e f e r r e d m o v e l i s t •

F i g u r e 3 . C u m u l a t i v e d i s t r i b u t i o n o f m a s t e r m o v e s •

205

