
TECHNICAL PAPERS

DETECTION OF DEADLOCKS IN DISTRIBUTED DATABASE
SYSTEMS*!

T. ANTHONY MARSLAND AND S R E E K A A N T H S. I S L O O R

Department of Computing Science, University of Alberta

ABSTRACT

Designers of DBMS have faced many problems with concurrent access and update of
information. V/hen a database is distributed over several dissimilar computer systems,
such problems as detection and avoidance of process deadlock are compounded. Addi-
tional communications may be necessary between the computers to determine the
relationships between the data resources and processes.

In this paper a thorough discussion of the drawbacks of, and the problems iavolved in,
previous proposals to handle deadlocks in distributed DBMS is provided. Earlier al-
gorithms have required substantial communication and coordination betv^een com-
puters should a deadlock arise, thus delaying corrective action. The concept of "on-line"
deadlock detection is introduced here; using a graph-theoretic model to represent the
process interactions, a new algorithm for the immediate detection of deadlocks in
distributed databases is proposed. The theorems upon which our algorithms are based
are presented without formal proof. A tutorial approach is taken and application of the
theorems is illustrated through a set of examples. Several highlights of our proposals are
emphasized.

Les dessinateurs du DBMS (systfeme de gestion de banques de donn^es) ont rencontre
plusieurs problfernes avec la modification et l'acces concurrents de l'information. Quand
une banque de donnees dessert plusieurs systfemes d'ordinateurs dissimilaires, des
problfemes tels que la detection et l'evitement des situations de "cadenas" dans le
processus sont multiplife. Des communications supplementaires entre les ordinateurs
peuvent devinir n&essaires afin de determiner le rapport entre les ressources des donnees
et leur manipulation.

Cet 6cTit discute minutieusement les inconvenients et les problfemes impliquds par des
propositions prealables sur la manipulation des situations de "cadenas" dans les DBMS
distribues. La situation de "cadenas" &heant, les algorithmes anterieurs n&dssitaient
une communication et une coordination substantielle entre les ordinateurs, ce qui
retardait une action corrective. Le concept de la detection directe ("on-line") des
situations de "cadenas" est presente; utilisant un module bas^ sur les graphes pour
reprdsenter les interactions des processus, nous proposons un nouvel algorithme pour
dteouvrir immediatement les situations de "cadenas" chez les banques de donnte
distributes. Les thdoremfes sur lesquels sont bases nos algorithmes soBt presentes sans
preuve formel. Nous avons pris une approche didactique et nous avons illustr^ les
applications des theoremfes par des exemples.

*This research is supported in part by a grant from the Canadian Natural Sciences
and Engineering Research CounciL

fReceived 2 November 1978; revised 27 March 1979 and 22 June 1979.

iNFOR vol. 18, no. 1, February 1980

2 T. ANTHONY MARSLAND AND SREEKAANTH S. ISLOOR

1 INTRODUCTION

With the increases in database size, complexity, diversity of use, and
users' strong preference for interactive computer systems, the necessity
for additional computing resources grows rapidly. Replacement by higher
performance components is an expensive way of growing. Distributing
several system functions over a network of computers has been projected
as an economic panacea to the expansion problem which will provide
improved performance, as well as enhanced accessibility of resources.^''^'
A database management system is said to be "distributed" if hardware or
processing logic, data, the processing actions, and the operating system
components are dispersed on multiple computers which are logically and
physically interconnected. In such a system, data may be replicated at
several sites or on separate storage devices; the processing logic co-
operates and interacts through a communication network under de-
centralized system-wide control.

Major advantages offered by a distributed database over a centralized
system are as follows.
(a) Reliability: With data redundantly stored on multiple computers, the

system is not susceptible to total failure when a single computer
component breaks down.

(b) Responsiveness: The close proximity of the data enhances accessibility
of resources and improves system performance.

(c) Expansion: The system lends itself to incremental upward scaling.
From the viewpoint of system implementation, the degree of distribution
of system functions is indicated by the amount of decentralization in
hardware, control point, and database organization. Their overall
operations, although autonomous, are characterized by cooperative inter-
actions. A taxonomy of distributed processing systems characteristics has
been provided by Chang,< '̂ Eckhouse et al.,̂ *' Lientz and Weiss,̂ *' and
Marsland and Sutphen.^^'

Distributed data management is a product of the "marriage" between
database management systems (DBMS) and computer networks. As
emphasized earlier such information networks offer many potential
advantages, but the realization of generalized systems is slowed by
formidable obstacles. As pointed out by Fry and Sibley,'̂ ^ dispersed
information systeins share numerous design problems with both DBMS and
computer networks. In addition, they produce several other difficulties,
such as that of locating and updating redundant data. Peebles and
Manning'*^ and Maryanski''^ have listed major problems in the area of
distributed databases.

The designers of distributed databases are also haunted by conven-

DETECTION OF DEADLOCKS 3

tional problems, such as deadlock, data integrity, and security, which are
intensified in a network environment. Deadlock is an unfortunate side
effect that arises because of the necessity for processes to establish
exclusive control over data resources while modifying them. When two or
more processes request exclusive access to data resources held by each
other, they reach a state in which each one perpetually blocks the
other(s) from execution. The probability of deadlock in large integraited
databases (with a high degree of concurrent access and update) grows
with increas;ed usage, making a re-examination of the problem important.

Considerable research has been done on this problem in operating
systems. It has been shown that, even though a resource is allocated to a
process, it may be possible to suspend the process and pre-empt the
resource, while preserving the current state of the process and that
resource for a later resumption. For instance, if a CPU is the resource held
by a process, then the information that must be preserved in case of pre-
emption consists typically of the contents of the CPU registers and the
current "program status word." Briefly, three broad categories of
algorithms have been proposed:^-"" (i) detection, (ii) avoidance, and (iii)
prevention.

In DBMS the problems are somewhat different. Typically, preemption
of a data resource entails abortion, rollback, and restart of one or more
processes, and must be done in such a way as to maintain the correctness
and consistency of the database. This is generally expensive and signifi-
cantly complicates the problem. A score of research papers have reported
on different aspects of the deadlock problem in DBMS, most notable being
the works of Shoshani and Bernstein,<"' King and Collmeyer,'̂ '̂*̂ Cham-
berlin et al.,'^'' Schlageter,<i*' Stearns et al.,('« and Eswaran et al.(i« For
all practical purposes these researchers have restricted themselves to
centralized DBMS. Relatively little work has been reported in distributed
systems.

The fact that all information needed to detect deadlocks in geographi-
cally distributed databases is not necessarily available at any single
installation makes their timely detection difficult. Communication delays
may further complicate the problem of obtaining an accurate view of the
status of the computer network. Rollback and recovery in distributed
DBMS also become very involved and may incur a heavy communication
overhead. Our detection algorithm reduces the difficulties associated with
these communication delays by ensuring that each site can determine
independently, and at the time of allocation, whether or not a particular
resource allocation will lead to a deadlock. An "on-line" detection scheme
may be defined as one which invokes this mechanism for every allocation
request. Isloor and Marsland^''^ provide a discussion of different ap-

4 T. ANTHONY MARSLAND AND SREEKAANTH S. ISLOOR

proaches to the problem, and their relative advantages/disadvantages.
To maintain the operational fidelity of any distributed system with
respect to the problem of deadlock, it has been argued that detection
techniques may be more advantageous than avoidance or prevention
methods.(1'^ Supporting arguments are provided by Peebles and Man-
ning''^ and Le Lann,'^^' as paraphrased in Section 5.

In Section 2 we identify the shortcomings of some alternative proposals
to detect and prevent deadlocks in distributed DBMS. A graph-theoretic
model is presented in Section 3 to represent process interactions and is
used to establish necessary and sufficient conditions for the existence of
deadlocks. A network configuration is shown which is used as a running
example. Section 4 provides an intuitive insight into our approach to
detection in distributed DBMS. In Section 5 the idea of on-line deadlock
detection is introduced, and a detection technique is suggested. Finally
the two remaining sections summarize several highlights of our proposal
and indicate further research possibilities.

2 SURVEY OF PREVIOUS APPROACHES

Prevention of deadlocks in distributed DBMS has been the subject of
papers by Chu and Ohlmacher'^^' and Maryanski.'^'' In their first
approach Chu and Ohlmacher require that all data resources be allocated
to the processes before initiation, which may thus be needlessly delayed.
Their second technique is based on the concept of a process set, which is a
collection of processes with access to common data resources. A process is
allowed to proceed only if all data resources required by the process and
the members of its process set are available. In Maryanski's proposal each
process has to communicate its shared data resources list (conceptually
similar to a process set) to all other processes before it can proceed. This
shared data resources list is determined by using what is called a process
profile, which contains a list of data resources that can be updated by the
process. The communication and computation of process sets (or the
shared data resources list), which are performed continually as processes
enter and leave the system, make heavy demands on the system.

Chandra et al.,̂ '̂') Mahmoud and Riordon,'2i'22) and Goldman^^s) have
proposed techniques for deadlock detection in a network environment.
At each installation, Chandra et al. require the maintenance of a resource
table which contains information pertaining to local resources allocated to
processes, processes waiting for access to local resources, remote resources
allocated to local processes, and local processes waiting for access to
remote resources. The type of access requested by the process is also
stored. They hypothesize that by using such tables, well-known al-
gorithms for detecting deadlocks in a single system can be extended to

DETECTION OF DEADLOCKS 5

detect them in the computer network by communication between instal-
lations and appropriate expansion of resource tables. Schemes to expand
resource tables in a network environment are included. Goldman, how-
ever, has shown an example in which a deadlock is not detected by their
proposed scheme.

The Centralized Control approach to deadlock detection in distributed
DBMS'̂ "̂ '̂ '̂ creates an overall picture of the global network status by
utilizing file queues and pre-test queues (a queue of requests which can
only be granted at a future time) received from all installations in the
network. As the identifiable unit of object-data becomes smaller in size,
message congestion at the control node increaises to degrade the network
performance. The authors'^''^^' also propose a Distributed Control
approach in which, in a network of n computers, each installation trans-
mits {n — 1) identical messages containing status and queues of files.
Each installation thus receives {n — 1) different messages. As shown by
Goldman this approach also has a flaw in which a certain deadlock goes
undetected. In any case, all proposals'^°~^'' require the communication of
large tables between installations.

The detection schemes of Goldman*^ '̂' are based on the creation and
expansion of an Ordered Blocked Process List (OBPL) . An OBPL is a list of
processes each member of which (except the last) is waiting for a data
resource held by the next process in the list. Whenever an OBPL is trans-
mitted between installations, a data resource name is inserted into the
"single data resource identification part" of the OBPL. The last process in
the list either has access to, or is waiting for, that resource. In the former
case the state (blocked or active) of the last process in the OBPL must be
determined, while in the latter case one needs to know the state of the
process which holds the data resource. Goldman proposes techniques to
identify these states and to ascertain the inevitability of deadlock.

Even though Goldman's method is sound, it does have some short-
comings. For instance, no process may have more than one outstanding
resource request, which is not generally the case in real world situations as
illustrated in the Appendix to this paper. Also, when several readers share
access to a data resource, Goldman requires that each reader make a copy
of the original OBPL for its own use (since if one of the readers is dead-
locked, then so is any process which requests access to its shared resource).
It is possible that OBFL S, while undergoing expansion, could be trans-
ferred (sequentially) among several installations (or several times be-
tween the same two .installations) before a deadlock is detected. Further-
more, OBPL s could become large, leading to substantial overhead,
especially when records or entities are considered as data resources
instead of files.

The primary disadvantage of all the existing methods is that they

6 T. ANTHONY MARSLAND AND SREEKAANTH S. ISLOOR

cannot recognize that deadlock is imminent without substantial com-
munications between the other computers in the network. Thus, the
algorithms described above cannot be used effectively for on-line detec-
tion since they are susceptible to "synchronization error," in which either
a deadlock is indicated where one no longer exists or a deadlock occurs and
is not recognized - when two autonomous computers concurrently
allocate resources before advising each other of their actions.

3 PRELIMINARY NOTIONS AND CONDITIONS FOR DEADLOCK

Certain important notions with direct relevance to our techniques are
introduced and illustrated in this section with a running example, which
is used to provide an intuitive insight into our approach. For several
other aspects of deadlock the reader is referred to the papers by Coffman
et al.'^*' and Holt-'^"' We choose Holt's graph-theoretic deadlock model,
proposed for operating systems, and extend it to represent process
interactions in a distributed database.

The set of data resources (typically files, fields, records, or entities),
represented by i? = {Di, D2, ..., D^], is held by a set of processes denoted
by P = {Pi, P2, ..., PB }, running concurrently in a network of computers.
A directed graph with nodes corresponding to either a process or a data
resource in these sets, and with edges between nodes representing process
interactions in the system, can be used to depict system status.

We state this formally, as follows: A system graph G^ = (N, E) is a
directed bipartite graph* whose disjoint sets of nodes are those corre-
sponding to P and D, respectively called process nodes and data resource
nodes, such that N = P {J D. An edge from a data resource Di to a,
process node Pj, denoted (Pj, Pj), is called a resource-process access (RPA)
edge which specifies that the data resource Di is held by process Pj.
Similarly, a/directed edge from a process node PT to a data resource node
Ds, denoted {Pr,Ds), is called a process-resource wait (PRW) edge, and
indicates that the process P, is waiting for access to the data resource Ds.
E is the union of the sets of RPA edges and PRW edges. The type of access
granted to an RPA edge, or requested by a PRW edge, is indicated by the
letter e or s for exclusive or shared access.

Remarks
A process cannot hold a data resource and be simultaneously waiting for
access to it (i.e., cannot be self-blocking). It is, thus, necessary for the

*For the definitions and understanding of graph-theoretic terms, see: N. Deo, Graph
theory with applications to engineering and computer science. Englewood Cliffs, NJ:
Prentice Hall, Inc., 1974.

DETECTION OF DEADLOCKS 7

process to declare its most restrictive use of a data resource, in order to
prevent the process from getting blocked waiting for exclusive access
when it already has shared access.

The reachable set of a node Nj of the system graph Gs, denoted by R^Nj),
is the set of all nodes in Gs such that there exists a path directed from Nj to
all nodes in R{Nj). The notion of a reachable set, first introduced by
Holt,̂ ^°^ facilitates the design of algorithms which do not need the
transmission of large tables in order to detect deadlocks. Reachable sets
can also be used in on-line deadlock detection, as proposed in this paper.

A deadlock situation may arise when the following necessary conditions
hold: (a) the processes request exclusive control of data resources (for
updating); (b) the processes are holding data resources allocated to them,
and are waiting for additional ones (all acquired data resources should be
held until process completion for consistency reasons'^*'); and (c) the pre-
emption of data resources from processes is not permitted.

(Pre-emption is the reclaiming of a resource by the system, and re-
quires the support of a rollback and recovery mechanism.) Characteris-
tically, a state of deadlock in a "circular wait" condition exists when, in a
circular chain of processes, each process holds one or more data resources
and has requested access to at least one data resource held by the next
process in the chain.

Example 3.1
In figure 1, {Po,Pi,P2}, {^8,^4}, {Ps, Pel, {P7, Ps} are subsets of pro-
cesses that exist in computers Ci, C2, C3, and C4 respectively. Data
resources {Do, Di, D2], [Ds, D4, D5], {D^, 1)7}, {Ds, Dg, Dio\ reside at
Ci, C2, C3, Ci. The RPA edges are shown by solid lines, the PRW edges by
dashed lines. The closely dotted and the sparsely dotted lines represent
RPA and PRW edges that have not yet been introduced into the system.
These future requests are included to illustrate the various aspects
involved in on-line detection. At computer C2 of the network, P3 holds
1)3, Di, and D^, and is active. P4 holds Da and is waiting for access to Di
and Di, and hence is blocked. Processes Pi, P4, Ps, P^, and P7 are
blocked, and P2, P3, and Ps are active. The reachable sets of nodes D^, Pi,
and P2, for instance, are fPs}, {-D4, P3, D^, P2}, and f̂ } respectively.
Since P^ holds D^ for shared access, a request by Pe for shared access to D-j
(which results in the introduction of the RPA edge {DT, PS)) may cause P5
and P7 to be deadlocked.

3.1 Necessary and sufficient conditions for deadlock
A process is blocked if it waits for a data resource held by another process.
This implies the existence of a path in the system graph from this process

T. ANTHONY MARSLAND AND SREEKAANTH S. ISLOOR

Key:
PRW Edge
RPA Edge

FIG. 1. A system graph for a network configuration with four computers, Ci, C2, Cz, and
d, a set of concurrent processes {Pi}o<i<8 and a set of data resources {Dj}o:^j^io.

to the other. In a circular chain of waiting processes, it is possible to
reach the starting process node by traversing the system graph which in
turn means that the process node belongs to its own reachable set.
Conversely, if a process node belongs to its own reachable set, the process
is involved in a circular blockage. This is a necessary and sufficient
condition for the existence of deadlock. For instance, in figure 1, the
introduction of the PRW edge (Pg,Ds), consequent to Ps requesting
access to Dg, forms a circular chain of waiting processes Ps, Pi, PT, and
Pg. It is evident that there is a directed path starting and terminating at
Ps traversing Ds, Ps, -Dg, PT, DT, Pe, and Dio (in that order). In other
words, all the process nodes P5, Pe, Pi, and Ps share the same reachable
set. We state these necessary and sufficient conditions in Theorem 1 and
Corollary 1, the formal treatment and proofs of which appear in refer-
ence (17).

DETECTION OF DEADLOCKS 9

Theorem 1
A process is deadlocked in a circular wait condition if and only if
the reachable set of the corresponding process node contains the node
itself, n

Corollary 1
A set of processes is deadlocked in a circular wait condition if and only if
each process node belongs to its own reachable set and the reachable sets
of all nodes are the same. Q

It is possible to find a process blocked forever, but not deadlocked, if it
is waiting for a process which is involved in a deadlock. For example, in
the system graph of figure 1, introduction of the PRW edge (P3, D^), con-
sequent to P3 requesting access to D^, causes P3 and Pi to be deadlocked.
Thus Pi which waits for P3 to release D3 and -D4, is blocked forever. It can
be shown that the seti?(Pi) = {Di, -D3, Di, D^,, Pj, P3, Pi} contains the
sets .R{Pz) and R{P4). We state a sufficient condition for such a situation
in Corollary 2, which is treated formally elsewhere.'^''

Corollary 2
A process not necessarily deadlocked in a circular wait condition is
blocked forever if its reachable set contains that of a process which is
deadlocked. •

4 DEADLOCKED DETECTION IN DISTRIBUTED DBMS

For the algorithms proposed in this paper, all the necessary information to
detect deadlocks is made available through a system graph at each
installation. Maintaining the system graph is trivial, and requires com-
munication only for processes and resources that are global in nature.
For processes that are local, accessing only those local resources which
have no global interactions of any kind, communication is not necessary.
It is believed that for transaction processing systems over 95-99% of
processes fall into this category.* However, to maintain a system graph
for global processes, or for those that interact with one, communication is
required. This communication provides little impact on the network,
unlike the earlier schemes which make very heavy demands in order to
determine the true network status. Processes which are local at a par-

*See P.A. Biernstein et al., "The concurrency control mechanism of SDD-1: a system for
distributed databases (the fully redundant case)," IEEE Trans, on Software Engg.,
SE-4(Z), May 1978, pp. 154-168, and M.R. Stonebraker, "Concurrency control and
consistency of multiple copies of data in distributed INGRES," IEEE Trans, on Software
Engg., SE-5i3), May 1979, pp. 188-194.

10 T. ANTHONY MARSLAND AND SREEKAANTH S. ISLOOR

ticular instant could become global at a later time, necessitating the
transmission of a collection of accumulated resource allocations to the
various installations. Transition of a local process to global status leads to
a small incremental change in the size of the global system graph. The
ensuing communication is still modest. Communication activity in our
approach is modest in the sense that it is incremental and is dispersed
over a period of time. Other approaches rely on simultaneous exchange of
status for each site in the network. The transmission delays due to huge
message traffic can lead to synchronization problems, which our more
responsive method minimizes. Our approach also avoids the message
congestion caused by simultaneous transfer of large tables from every
installation. The advantage of this method lies in its utility for on-line
deadlock detection in distributed DBMS, which in turn means the correc-
tive action can be taken earlier.

Given the system graph Gs, the two significant steps in the detection of
deadlocks are: (i) to determine the reachable sets of all the nodes (main-
tained by continual and incremental updating); and (ii) to find out if the
necessary and sufficient conditions for the existence of a deadlock are
fulfilled, by utilizing the reachable sets. These steps can be illustrated by
an example. Assuming that Pg requests access to I? g in the configuration
of figure 1, the PRW edge (Ps, Ds) is introduced. The inclusion of this edge
causes Pg, Ps, P-i, and P^ to be deadlocked. To detect such a deadlock,
our mechanism determines reachable sets of all nodes in G,. In the example
considered, the reachable sets of Ps through Ps are the same and equal
{Ds, Ps,Ds, PI,DT, Pi,Dio, Ps}. The existence of deadlock is detected by
noting that each process in {Ps, Ps, Pi, Ps} belongs to its own reachable
set.

5 "ON-LINK" DETECTION OF DEADLOCKS IN DISTRIBUTED DBMS

When dealing with concurrent database accesses, little is known about
the probability of interference or deadlock. For transaction processing
systems, Peebles and Manning'*' firmly believe that interference is rare,
and that elaborate avoidance or prevention mechanisms would not be
economical. We agree and advocate the use of deadlock detection in
distributed systems. Further, to quote Le Lann,*̂ ^̂ ' "our conclusion will be
that for systems which include a partitioned database and which provide
for storage of pending requests, maintenance of internal integrity boils
down to a problem of deadlock avoidance or detection with distributed
control." As a consequence, and in view of the present-day trend towards
increased concurrent access in systems, we recommend the use of on-line
deadlock detection in distributed systems. It is our belief that such a
method contributes substantially to increasing concurrency.

DETECTION OF DEADLOCKS 11

In our view, deadlock prevention schemes are not justifiable for use in
distributed systems. Processes that are not known to be nonconflicting
need extensive coordination and, in general, substantial communication
among installations is necessary before process initiation. This affects
system performance by lowering the degree of concurrency. The past use
of prevention principles was acceptable because of low levels of con-
currency in systems rather than any inherent superiority.

In on-line detection, every installation can determine whether or not
allocating one of its data resources to a process residing on another com-
puter will lead to deadlock. This is facilitated by the ready availability at
each installation of the system graph and the reachable sets, which are
continualhi^ updated as edges are added or deleted. The data resoiurce
allocation decision is transmitted by the access controller at the installa-
tion concerned to all others in the network. Thus, maintaining and up-
dating the system graph for global interactions, at each installation,
requires a low level of continual communication.

The on-line detection of deadlocks need be considered only for the
following complete set of process-resource interactions: (a) a new process
enters the system; (b) a new data resource is accessed; (c) a process runs
to completion and releases data resources held;* (d) a process in the
system requests access to a data resource held by another process; and
(e) a data resource held by a process is pre-empted from it.

6.1 Resolution of Process-resource interactions
(a) A new process enters the system and/or (b) a new data resource is
accessed: a new process and/or data resource entry into the system in-
troduces the respective nodes into Gj. An RPA edge is added to G, whenever
a new data resource is accessed either by an entering process or by one in
the system. The request by an entering process for a data resource in the
system may not be granted, thus introducing a PRW edge. In either case,
a deadlock-free system continues to be so.

Assertion 1
If the system in a network configuration is deadlock-free, a new process
entry into the system does not lead to deadlock in a circular wait condi-
tion. Q

*In order to retain the strong consistency result of Eswaran et al., (16) which requires
that the processes be "well-formed" and "two-phase," a process is required to be divided
into growing and shrinking phases. The first unlock action signals the beginning of the
shrinking phase, after which a process cannot issue a lock request on any entity in the
database until all entities have been released. The actual implementation of a two-phase
protocol (as in SYSTEM R) is to release all data resources held, at the completion of the
process. (Private Communication from J.N. Gray, IBM Research Laboratory, San Jose,
Calif., USA).

12 T. ANTHONY MARSLAND AND SREEKAANTH S. ISLOOR

Assertion 2
If the system in a network configuration is deadlock-free, accessing a new
data resource does not lead to deadlock in a circular wait condition. Q]

(c) A process in the system runs to completion and releases all data
resources held: the process node, and all released data resource nodes
which have no requests, are deleted from Gs. A released data resource
being waited for by a single process is allocated to the corresponding
process. However, an allocation decision for a released data resource with
multiple waiting-access requests is done in a manner indicated in
Example 5.1. Allocation is done according to the condition shown in
Lemma 1 to avoid a potential deadlock.

Assertion 3
If the system in a network configuration is deadlock-free, then neither
releasing the data resources held by a completed process for which there
are no requests, nor allocating the released data resources for which there
is a single waiting-access request leads to deadlock in a circular wait
condition. Q

Example S.I
For the configuration of figure 1, let us assume that Pi requests access to
Di held by P], thus introducing the PRW edge (P2, -Di) in Gs. Let P3, which
holds I?3, P4, and D^, run to completion. D% has no requests and hence is
deleted from the system graph. Dz is being waited for by Pi and is
allocated to Pi, whereas Di has two waiting-access requests from Pi and
Pi. Assume that P4 issued its request before Pi did. If the allocation of Di
to Pi is done in a FIFO manner, then processes Pi, P2, and P4 will be
deadlocked. It is obviously more advantageous to make the allocation of
Di to Pi and let Pi proceed than to make the allocation of Di to P4 and be
deadlocked. This is crucial, especially when rollback and recovery in a
network environment are expensive. Therefore, in Lemma 1, we give a
necessary and sufficient condition to recognize such a situation and to
avoid deadlock accordingly. Corollary 3 to Lemma 1 states that in the
case of a deadlock-free system with multiple processes waiting for access
to a released data resource, there exists at least one process such that an
allocation made to this process maintains the system deadlock-free. In the
case of multiple processes waiting in a FIFO manner for access to a released
data resource, the allocation is made to the first process which maintains
the system deadlock-free. Further improvement may be possible by
allocating the resource to the first process which not only maintains the
system deadlock-free, but also has minimum waiting-access requests on
other data resources.

DETECTION OF DEADLOCKS 13

Lemma 1
Let Pi and Pj be any two processes in a deadlock-free system with waiting-
access requests to the data resource Dj. The allocation of the data re-
source Di to Pi causes deadlock in a circular wait condition if and only if
Pj belongs to the reachable set of Pi before the allocation. Q

Corollary 3
Let {Pi}i<Kn be the processes in a deadlock-free system with waiting-
access requests to the data resource Uj;. There exists at least one process
Pj (1 < 5 < n) such that P, does not belong to the reachable set of Ps
for all i = 1, 2, ..., n. D

The situation in Example 5.1 arises because process P4 has waiting-
access requests for both Di and Di. In this case our scheme detects a
potential deadlock and avoids it accordingly, by virtue of Lemma 1. The
potential for a query to be waiting for access to two data resources is
illustrated in the Appendix. It is unrealistic to restrict a process to have
only one outstanding request, yet this has been the case in approaches by
earlier authors - including the one by Goldman.^^'' Thus, our approach
combines detection and avoidance principles in deadlock handling, and
deals with multiple waiting requests in a realistic way.

(d) A process in the system requests access to a data resource held hy
another process: since the request cannot be granted,^he introduction of
the PRW edge can lead to a cycle in Gs and thus a deadlock. The reachable
sets are updated appropriately, and a test for deadlock is carried out.

(e) Pre-emption of data resources held hy a process: pre-empting data
resources is dorie when a process is aborted in an attempt to break a
system decLdlock. In such a case, the waiting-access requests of the aborted
process are dropped, and the data resources held by the process are
released.

Typical criteria for the selection of process(es) to be aborted are out-
lined below. However, the algorithms for selecting the process are non-
trivial, and are not dealt with here.

(i) Abort a process which holds a minimum number of data resources
for exclusive access (preferably none), since this can result in
reduced rollback costs,

(ii) Of all the deadlocked processes, abort the one which has used
minimum CPU time.

(iii) Abort a process which involves rollback at a single installation, in
preference to termination of one that leads to global rollback and
consequent communication overhead.

(iv) Abort a process which has modified as few data resources as
possible, and has interacted with other processes as little as possible,
to minimize the cost of rollback.

14 T. ANTHONY MARSLAND AND SREEKAANTH S. ISLOOR

5.2 "On-line" deadlock detection algorithms
Bayer'^^' has presented and analysed an on-line transitive closure
algorithm for deadlock discovery in databases. To our knowledge on-line
deadlock detection algorithms for distributed DBMS have not yet been
proposed. In this section, we present procedures for updating reachable
sets as interactions go on in the system. Further, these procedures are
used in developing an on-line deadlock detection technique.

Procedure ADD, presented below, updates the reachable sets and the
system graph when a new edge from Ni to Nj is added to the system.

Procedure ADD (Nt, Nj): (1) for any new node in {Nt, Nj}, assign its
reachable set to null; (2) Assign the reachable set of iV̂ to the UNION of
{Nj}, and the reachable sets of Nt and N^; (3) if iV̂ is not a new node,
then for every node N in Gs whose reachable set contains Nt, assign the
reachable set of iV to the UNION of the reachable sets of N and N{;
(4) update Gs by including new nodes (if any), and the edge from Nt to Nj.

Although it is uncomplicated to update the reachable sets when an
arbitrary edge is added to Gs, it seems almost impossible to do so when an
arbitrary edge is deleted from (?«. No better method than recalculating the
reachable sets seems feasible. On close examination, however, it becomes
apparent that the only times when edges are deleted from Gs are: (i) when
a process runs to completion and releases data resources; and (ii) when a
deadlock is discovered and at least one of the processes involved must be
aborted, implying that all data resources held by aborted process(es) will
be released, and that all access requests from the process(es) are to be
dropped. In case (i) the process is obviously not blocked and hence the
corresponding process node in Gs is a sink. Thus, the edges dropped are
only those that are directed to a sink. This is a very simple case, and an
algorithm can be devised to update the reachable sets. In the deadlock
situation of case (ii), however, the processes involved are not sinks in Gs.
Therefore, aborting a process and rolling it back requires recalculation of
the reachable sets. Maintenance of these sets by incremental updates
considerably decreases the chances of synchronization error and that of
the problem of system graph becoming obsolete in all the interactions
(a) to (d) discussed in Section 5.1. However, the reconstruction of reach-
able sets for interaction (e) does increase the probability of synchroniza-
tion error due to system graph obsoleteness.

We present Procedure DELETE to update the reachable sets of all nodes,
given that an edge from N^ to N^ is deleted, where N^ is a sink. In
updating G^ the edge is deleted, but the appropriate node deletions are
done elsewhere (in Procedure ON-LINE_DETECT).

Procedure DELETE (N^, NJ: (1) for every node N in Gs whose
reachable set contains N^, delete N^ from the reachable set of N;
(2) update the set of edges of Gs by deleting the edge from iVs to .Â .̂

DETECTION OF DEADLOCKS 15

We now propose Procedure ON-LINE_DETECT to handle all dead-
lock cases discussed in Section 5.1. Procedures ADD and DELETE are exten-
sively used in Procedure ON-LINE DETECT. Step SI of the procedure
updates reachable sets for a new process and/or data resource entry.
Step S2 deals with the case in which a process runs to completion and
releases all data resources held. In S2a, the reachable sets are updated by
deleting edges corresponding to the release of data resources. Step S2b
deletes the nodes in the system graph for released data resources without
any requests. Allocation of released data resources with single waiting-
access requests is done in S2c. In step S2d, for a set of processes {Pic}
waiting for a released data resource, the condition in Lemma 1 is tested
successively between pairs of processes until a process is found whose
reachable set contains no other process in {P*}. The data resource should
be allocated to such a process to avoid a potential deadlock. In step S3,
the case of a process requesting access to a data resource held by another
process is dealt with. Step S4 handles the case in which a process is
aborted to break a deadlock. In step S5 we carry out a test for the exis-
tence of deadlock, for the cases dealt with in steps S3 and S4.

The formal presentation of the technique is provided in reference (17).
For the purpose of this paper, on-line deadlock detection is illustrated by
utilizing the network configuration of figure 1. We assume the introduc-
tion of the PRW edge {Pi, D\), consequent to P^ requesting access to Di,
and the RPA edge (DT, PJ) as a result of Ps requesting shared access to Z>7
(which is also held for shared access by Pe).

Illustration of procedure ON-LINE_DETECT

51 [A process enters the system, or a new data resource is accessed or
both]. Let the new edge added be: (Po, D\) (new process entry), or
{Do, Pi) (new data resource entry), or (Do, Po) (both). Call Proce-
dure ADD (Po, Dl), or ADD (Do, Pi), or ADD (DO, PD) as appropriate.
STOP.

52 [A process in the system runs to completion and releases all data
resources held]. Let the process which runs to completion be P3, and
the data resources released be De, Ds, D4.
S2a [Update reachable sets by deleting each edge]. Invoke Proce-

dures DELETE (De, P3), DELETE (Di, Pi), DELETE (D4, Ps) ; and
remove Ps from Gs-

S2b [Update Gs by removing released data resource node^ without
any waiting-access requests]. Remove De from Gj.

S2c [Allocate released data resources with a single waiting-access
request]. Call Procedures DELETE (PI , DS), and ADD {DS, P I) .

S2d [Allocate released data resources with multiple waiting-access
requests]. For the released data resource D4 the condition in

16 T. ANTHONY MARSLAND AND SREEKAANTH S. ISLOOR

Lemma 1 dictates its allocation to Pi rather than to P4. Call
Procedures DELETE (PI , Di),* ADD (P4, Di), and ADD (Di, Pi).
STOP.

53 [A process in the system requests access to a data resource held
by another process]. Let the process be Ps, and the data
resource be Ds- Call Procedure ADD (PS, Dg). GO TO STEP S5 .

54 [A data resource held by a process is pre-empted from it, to
break a deadlock]. Let the aborted process be P5. Remove from
Ge the edges {Ds, Ps), (I>7, Ps), and (P5, A) . Calculate the
reachable sets of all nodes of Gs. GO TO STEP S5 .

55 [Detect deadlock]. Apply second step of the method outlined in
Section 4 to detect deadlocks (if any). If deadlocked, then
determine which process is to be aborted and apply Step S4,
else STOP.

6 HIGHLIGHTS OF OUR PROPOSAL

It is difficult to estimate the performance effects of deadlock detection or
deadlock prevention in distributed DBMS, since communication time is
critical. Because of the complexity of distributed DBMS a significant factor
in handling deadlocks would be operational efficiency. But the communi-
cation aspects make it impractical to estimate the performance of such
algorithms analytically. Once distributed DBMS becomes a commercial
reality, experimental data can be gathered to measure the performance.
Nevertheless, our proposal has several advantages elaborated below:
- In the deadlock detection approach proposed in this paper, the

communication needs are quite modest. Every time a data resource is
allocated to a process, or the process is made to wait, or when a
process releases a data resource, the access controller at the concerned
installation sends that information to all other installations in the
network. Thus, maintaining and updating the system graph at each
installation as global interactions go on in the system is relatively easy,
compared to the necessity of transmitting large tables among installa-
tions - as was the case in the approaches by Chu and Ohlmacher,i*
Maryanski,'!^) Chandra et al.,'^'') Mahmoud and Riordon,(2i.2» and
Goldman. (23)

- The technique of deadlock detection suggested in this paper (Section 4)
identifies the processes directly responsible for the deadlock (Corol-

*This has the effect of deleting Di from the reachable set of Pi, and those of the nodes
from which Di was accessible. Thus, the procedure ADD {Pi, Di) is mainly called to
correct the reachable sets, even though the edge {Pi, Di) is already present in the system
graph.

DETECTION OF DEADLOCKS 17

lary 1). It is also possible for our method to identify a process blocked
forever but not deadlocked, by virtue of its waiting for a process which
is involved in a deadlock (Corollary 2).

- Processes aire never delayed by our technique, because a process whose
request for a data resource can be granted may proceed without waiting
for the deadlock detection mechanism. The database administrator can
design a scheme to invoke the detection mechanism for every X units
of time, or for every Y accesses granted, or for every Z accesses not
granted, or any combination of these.

- In our approach, a process may have any number of outstanding
requests simultaneously. For most others, including that of King and
Collme3 êr<î ' and Goldman,(2 '̂ a process is restricted to having at most
one outstanding request. In real-world applications this restriction is
not practical.

- In the case of a number of readers sharing a data resource, our al-
gorithm does not require any special scheme like that of Goldman in
which one different copy of the OBPL is formed for each such reader. In
the case of shared access his approach leads to a heavy overhead in
computation and in communication.

- Our proposal deals with every request in the same manner, and can be
considered a unified approach, since the detection technique does not
classify requests according to the relationship between the origin of the
process and the installation of residence of the data resource accessed.
Whereas, in all other approaches,'^""^'' the algorithms deal with each
access request according to the classification of the request.

7 CONCLUSIONS

Today, distributed DBMS is the centre of intense research and development
activity in both the academic and the industrial worlds, as reported
recently by Ziegler,^"' a special issue of IEEE Computer^^^\ and Rothnie
et al.(29>

To accelerate the implementation of distributed DBMS, it is necessary to
instill in users confidence that their application jobs will not be held up at
remote locations indefinitely due to deadlock. Without such confidence,
there may be a lack of acceptance of distributed DBMS in a data processing
environment, which in turn will impede further progress. The on-line
deadlock detection technique proposed in this paper is a step towards
increasing that user confidence.

If a deadlock is detected, it must be broken by aborting and rolling
back at least one process. An effective and efficient rollback and recovery
mechanism is of immense need in distributed DBMS. Such a mechanism can

18 T. ANTHONY MARSLAND AND SREEKAANTH S. ISLOOR

make our approach to deadlock detection much more attractive. Research
efforts are planned in this direction.

ACKNOWLEDGMENTS

We thank Anne Brindle for her numerous suggestions in improving the
comprehensibility of an earlier draft of this paper. Her generous help is
recorded with deep appreciation.

We also thank the referees and the editor for identifying possible mis-
interpretations and offering helpful clarifications.

APPENDIX

To show the possibility of more than one outstanding request per process,
we choose Chamberlin's "Presidential data base"*^̂ "' in Codd's relational
model of data.'^^' The relations in the database are in Codd's Third
Normal Form.^'^' A query to the database, which causes two simultaneous
requests, is expressed in Codd's Data Sub-Language ALPHA.'-^^^

The relations in the database and the query are:

RI ELECTIONS—WON (YEAR, WINNER—NAME,
WINNER—VOTES)

R2 PRESIDENTS {NAME, PARTY, HOME—STATE)
R3 ELECTIONS—LOST (YEAR, LOSER—NAME,

LOSER—VOTES)
R4 LOSERS {NAME, PARTY)

Query
(a) (In English) List the election years in which a Republican from
Illinois was elected.

The intent of this query is: Retrieve the YEAR attribute from the tuple
of relation ELECTIONS—WON, whose WINNER—NAME attribute
matches the NAME attribute of a tuple of relation PRESIDENTS, provided
the tuple of relation PRESIDENTS has a HOME STATE of ILLINOIS and a
PARTY equalling REPUBLICAN.
(b) (In DSL ALPHA)

RANGE PRESIDENTS P
RANGE ELECTIONS—WON E
GET W E. YEAR: 3 P (P. NAME = E. WINNER—NAME &

P. PARTY = 'REPUBLICAN' &
P. HOME—STATE = 'ILLINOIS')

For the execution of this query it is essential to gain access to the relations
R2 and RI at the same time, causing two potential outstanding requests.

DETECTION OF DEADLOCKS 19

REFERENCES

(1) G.M. Booth, "Distributed information systems," Proc. AFIPS National Computer
Conference, 45, June 1976, pp. 789-794.

(2) P.H. Enslow, Jr., "What is a 'distributed' data processing system?" IEEE Computer,
vol. 11, January 1978, 13-21.

(3) S.K. Chang, "A model for distributed computer system design," IEEE Transactions
on Systems, Man, and Cybernetics, SMC-S{Q), May 1976, pp. 344-359.

(4) R.H. Eckhouse, Jr., J.A. Stankovic, and A. van Dam, "Issues in distributed
processing - an overview of two workshops," IEEE Computer, vol. 11, January 1978,
22-26.

(5) B.P. Lientz and I.R. Weiss, "Trade-offs of secure processing in centralized versus
distributed networks," Computer Networks, vol. 2, February 1978, 35—43.

(6) T.A. Marsland and S.F. Sutphen, "Design and experience with a distributed com-
puting system," Proc. Canadian Computer Conference, CIPS Session 78, Edmonton,
Canada, May 1978, pp. 367-371.

(7) J.P. Fry and E.H. Sibley, "Evolution of data-base management systems," Com-
puting Surveys, vol. 8, March 1976, 7-42.

(8) R. Peebles and E. Manning, "System architecture for distributed data manage-
ment," IEEE Computer, vol. 11, January 1978, 40-47.

(9) F.J. Maryanski, "A survey of developments in distributed data base management
systems," IEEE Computer, vol. 11, February 1978, 28-38.

(10) R.C. Holt, "Some deadlock properties of computer systems," Computing Surveys,
vol. 4, September 1972, 179-196.

(11) A. Shoshani and A.J. Bernstein, "Synchronization ina parallel accessed data base,"
CACM, vol. 12, November 1969, 604-607.

(12) P.F. King and A.J. CoUmeyer, "Database sharing: an efficient mechanism for
supporting concurrent processes," Proc. AFIPS National Computer Conference, 42,
June 1973, pp. 271-275.

(13) D.D. Chamberlin, R.F. Boyce, and I.L. Traiger, "A deadlock-free scheme for
resource locking in a data-base environment," Information processing 74, Proc.
IFIP Congress. Amsterdam: North-Holland Publishing Co., August 1974, pp. 340-
343.

(14) G. Schlageter, "Access synchronization and deadlock analysis in database systems:
an implementation-oriented approach," Information Systems, vol. 1, 1975, 97-102.

(15) R.E. Stearns, P.M. Lewis, ii, and D.J. Rosenkrantz, "Concurrency control for
database S3'stems," Proc. IEEE 17th Annual Symposium on Foundations of Computer
Science, October 1976, pp. 19-32.

(16) K.P. Eswaran, J.N. Gray, R.A. Lorie, and I.L. Traiger, "The notions of consistency
and predicate locks in a data base system," CACM, vol. 19, November 1976,624-633.

(17) S.S. Isloor and T.A. Marsland, "Deadlock detection in databases distributed on a
network of computers," Tech. Rep. TR 78-3, Dept. of Computing Science, Uni-
versity of Alberta, Edmonton, Alberta, Canada, May 1978. (40 pages)

(18) W.W. Chu and G. Ohimacher, "Avoiding deadlock in distributed data bases,"
Proc. ACM National Conference, 1, November 1974, pp. 156-160.

(19) F.J. Maryanski, "A deadlock prevention algorithm for distributed data base
management systems," Technical Report cs 77-02, Computer Science Dept.,
Kansas State University, Manhattan, Kansas, February 1977. (24 pages)

(20) A.N. Chandra, W.G. Howe, and D.P. Karp, "Communication protocol for deadlock
detection in computer networks," IBM Technical Disclosure Bulletin, vol. 16,
March 1974, 3471-3481.

(21) S.A. Mahmoud and J.S. Riordon, "Protocol considerations for software controlled
access methods in distributed data bases," Proc. International Symposium on
Computer Performance Modeling, Measurement and Evaluation, Cambridge, Mass ,
March 29-31, 1976, pp. 241-264.

20 T. ANTHONY MARSLAND AND SREEKAANTH S. ISLOOR

(22) S.A. Mahmoud and J.S. Riordon, "Software controlled access to distributed data
bases," INFOR, vol. 15, February 1977, 22-36.

(23) B. Goldman, "Deadlock detection in computer networks," Technical Report
MIT/LCS/TR-185. Laboratory for Computer Science, M.I.T., Cambridge, Mass.,
September 1977. (180 pages)

(24) E.G. Coffman, Jr., M.J. Elphick, and A. Shoshani, "System deadlocks," Computing
Surveys, vol. 3, June 1971, 67-78.

(25) G. Le Lann, "Pseudo-dynamic resource allocation in distributed databases," Proc.
Fourth International Conf. on Computer Communications, ICCC-78, Kyoto, Japan,
September 1978, pp. 245-251.

(26) R. Bayer, "Integrity, concurrency, and recovery in databases," in Lecture notes in
computer science 44, Proc. ECI Conference 1976, K. Samelson (ed.). Berlin: Springer-
Verlag, 1976, pp. 79-106.

(27) K. Ziegler, Jr., "Distributed data base, where are you? - (a tutorial)," Information
processing 77, Proc. IFIP Congress. Amsterdam: North-Holland Publishing Co.,
August 1977, pp. 113-115.

(28) A. van Dam and J. Stankovic (Guest Editors), "Distributed processing" (special
issue), IEEE Computer, vol. 11, January 1978, 10-57.

(29) J.B. Rothnie, N. Goodman, and T. Marill, "Database management in distributed
networks" (Chapter 10), Protocols and techniques for data communication networks.
Franklin F. Kuo (ed.). Englewood Cliffs, NJ: 1979 (in press).

(30) D.D. Chamberlin, "Relational data-base management systems," Computing
Surveys, vol. 8, March 1976, 43-66.

(31) E.F. Codd, "A relational model of data for large shared data banks," CACM,
vol. 13, June 1970, 377-387.

(32) E.F. Codd, "Normalized data base structure: a brief tutorial," Proc. 1971 ACM-
SIGFIDET Workshop on Data Definition, Access, and Control, November 1971,
pp. 1-17.

(33) E.F. Codd, "Relational completeness of data-base sublanguages," Courant com-
puter science symposia 6, Data Base Systems. Englewood Cliffs, NJ: Prentice-Hall,
1971, pp. 65-98.

