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ABSTRACT

Through the design and construction of an emulator for DEC PDP-11 computers, the extent to
which the Nanodata QM-f can serve as a universal host is being explored. The principal results
show the extent to which emulation is possible without excessive sacrifices in speed. In addition
to insights into the construction of a complete emulator, the paper identifies important prob-
lems associated with concurrent emulation of different target hardware, and describes solutions
to some of them.

RESUME

Par le design et la construction d'un emulateur pour les ordinateurs PDP-11, les auteurs exami-
nent la possibilite de se servir du Nanodata QM-1 comme hSte universel. Les resultats de
l'etude indiquent jusqu'i quel point l'^mulation est possible sans trop sacrificier la rapidite.
En plus des details sur la construction d'un emulateur complet, quelques uns des problemes
importants associes a l'emulation simulantee de differents equipements sont identifies et des
solutions propoSees. • -

1 INTRODUCTION

With the diversity of computing equipment available, it is not practical to
acquire all the hardware necessary to execute a wide variety of software
packages. However, it may be feasible to construct emulators on which to run
selected software. According to R ôsin,̂ '̂ an emulator is "a complete set of
microprograms which, when embedded in a control store, define a machine."
Thus an emulator realizes a virtual or torge^machine, while a host is the one
which supports the microprograms. Our primary interest is in a universal
host,'^'^'^ one that is capable of simultaneously modelling several different
target architectures.

Through the design and construction of an emulator for DEC PDP-11 com-
puters,'^' the extent to which the Nanodata QM-l'*'̂ -̂ ' can serve as a universal
host is being explored. The principal results in this paper identify some neces-
sary properties of emulation hardware and show the extent to which complete
emulation is possible without excessive sacrifices in speed. By complete
emulation we mean the ability to load and execute on the host the object code
forms of the target machine software, and provide direct access to i/o devices.

Many other computer emulations have either been for outdated machines
with long memory access times, simple instruction formats, and limited i/o
capabilities,''•*' or have not simulated i/o instructions exactly, but simply
translated them into high-level requests to the host machine's operating
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system.'^•''" In contrast, the study reported here considers the emulation of a
contemporary computer, one with several instruction formats, addressing
modes, and a main memory cycle time comparable to that of the host machine.

Our goal is to provide multiple concurrent emulation of different computer
architectures/'-" typically minicomputers and microprocessors, within a single
host machine. For example, software for a variety of micro-processors can be
developed better on emulators which provide interrupt histories, performance
monitoring, and significant i/o support. Emulation therefore is appropriate
in the following situations:

• The configuration of the target machine is too small for software development. During such
development the emulator could provide extra assistance in the form of better debugging
aids, larger virtual machine, and access to the host's peripherals. ,

• The target machine does not (yet) exist.

• The application is needed too infrequently to warrant purchase of the target machine.

• An application exists which requires simultaneous use of software packages from different
computers, e.g. a network processing application.

In summary, emulation is practical in any low usage application. Multiple con-
current emulation applications are not yet well developed, but a necessary
prerequisite is the existence of complete emulators for contemporary machines.

This paper therefore is aimed at providing insight into the efficient emulation
of one contemporary computer on another. Before describing the basic struc-
ture of the emulator, a summary of the capabilities of the target and host
computers is given, with emphasis on those facilities which are difficult to
implement. The paper concludes with an evaluation of the QM-1 as a host
machine, especially of those features which are less than ideal.

1.1 The target and host machines
The PDP-11/10 target hardware is one of a well-known series of machines. '̂̂
Sufficient for our purposes is that it may have 28K words (16 bits) of byte
addressable memory, six general purpose registers, and two special ones-a
stack pointer and a program counter (Pc). Five different types of instruction
formats exist (fig. 1), and so a special table lookup scheme may be needed to
extract the various fields. Internal details of the architecture are given else-
where.'̂ ^̂ ^

No specific i/o instructions exist in the PDP-11; instead, i/o operations are
performed by reading/writing device registers located in an additional 4K
words of the address space. When an i/o interrupt is recognized by the CPU,
a trap occurs and a new Processor Status (ps) word and pc are loaded. Traps
also occur for the following conditions: attempted access of nonexistent
memory, stack overflow, invalid instruction detection, attempted access of a
word on an odd byte boundary, and execution of a trap instruction.

In contrast, the QM-1 is a word addressable 18-bit machine, with three
distinct address spaces: main store, control store, and nanostore. Note, however,
that nanostore is 360 bits wide, divided into five fields of equal size (Appendix
A). Figure 2 compares capacities of the host and target memories, and specifies
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FIG. 1. Major PDP-11 instruction formats.
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FIG. 2. Properties of user-accessible memory.

the cycle time of each type. Since most of the potential target hardwares have
an address space which is larger than our control store, all target machine
images are kept in main store.

Several QM-1 hardware features allow nanocode to interpret as instructions
information in control store. The opcode of each control store microinstruction
serves as the address of the nanoprogram which carries out the instruction.
Parameters may also be passed to the nanocode from the operand fields of the
microinstruction. In this way, a complete microinstruction set can be defined
dynamically depending on the contents of nanostore. In turn, microprograms
can be written, for example, to interpret main store data as the instruction
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set of an existing or hypothetical computer. Of course, nanoprograms can also
be written to interpret a main store instruction set directly, so both control
store and main store can serve simply as data areas to an executing nano-
program.

The QM-1 has two banks of thirty-two 18-bit registers, referred to as local
store and external store. The former are for general use, while the latter serve
primarily to interface the CPU with i/o channels and to hold interrupt addresses.
The machine has both an ALU and shifter which may be used to operate
on 18-bit, 36-bit, and 16-bit quantities. These and the special ALU s which
exist for index and mask operations are described fully elsewhere.'*' Major
data paths within the QM-1 are 18 bits wide (fig. 3). Included in the basic
architecture is a set of thirty-two 6-bit registers called F-store, most of which
are used to control bus connections. For example, if the value 2 is placed into
the F-register FAOD (j4rithmetic Output Data), then the output of the ALU is
logically connected to local store register 2. Several other F-registers (G-store)
are available for general use, while the remainder have specific machine control
and status functions.

Even when a bus connection exists, no data are transferred until requested
by a nanoprogram. The transfer of data does not affect the bus connection,
providing a measure of residual control'^^^'' since these connections are altered
only by the explicit loading of special F-registers. Several data transfers may
be established and performed at once, as shown in the sample nanoprogram of
Appendix A, figure A2.

2 THE EMULATOR

With the QM-1, the emulator builder may exercise the hardware at two levels
below main store programming: nanoprograms, for highly parallel operations
such as instruction field decode, and microprograms for sequential resource
usage such as i/o device control. Thus two distinct approaches are possible:*

• Design a special microinstruction set, and implement it in nanocode. The emulator may now
be built rapidly as a collection of microprograms.

• Implement the emulator's instruction set completely in nanocode. This is referred to as
direct emulation, and should provide faster execution.

Our emulator lies between these two extremes. The PDP-11 instruction set is
implemented in nanocode, while control store is used to hold tables for instruc-
tion decoding, a condition code bit map, and microroutines (written in the
MULTi'i*> instruction set) to handle i/o and control functions. These device
drivers make the host peripherals serve the emulator as their target counter-
parts. Naturally the microinstructions are themselves defined by nanocode, but
speed in processing the i/o is of lesser consequence.

Each main store instruction is decoded by using the high order nine bits of
the PDP-11 word as the index into a control store table. From there, a hierar-

*Alternatively one could model the PDP-11 microroutines themselves. This approach might
be quick to implement, but had unacceptably slow execution times for our purposes.
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FIG. 3. Host bus control structure.

chical lookup proceeds for those instructions whose decoding requires more
than nine bits. Each entry in this table has two fields :

• The first contains the address of a nanoroutine. In the case of single- and double-operand
instructions, a setup routine is called, whose purpose is to prepare source and destination
values. In the case of most other instructions, it is the address of the routine to carry out the
entire instruction.
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• The second field has different uses depending on the main store instruction. For single- and
double-operand instructions, it is the address of an execute routine, to carry out the desired
calculation. For a conditional branch, the field contains the address of a routine which
changes the program counter appropriately. If the instruction is TRAP or EMT, the second
field is a pointer to the main store location of the new PS and PC. In some cases, the second
field is unused.

If an i/o device register is accessed during instruction execution, control is
passed to a microroutine to initiate the i/o, before the execution of the next
instruction.

2.1 Instruction flow and routine descriptions
As PDP-11 instructions are decoded, different sequences of nanoroutines are
executed. After processing by the FETCH routine the basic flow follows that
shown in figure 4. Instructions with source or destination operands are first

I DW I

I
, , , _ . , I
I I—^ BRANCH hM
I I I I i

I SB I DB I

' ' RTSCC

I SINGLE I I DOUBLE | i SINGLE , j DOUBLE ,
1 OP I I OP I I OP I I OP I

FIG. 4. Basic flow of control in the emulator,

processed by one of the previously mentioned setup routines, before being
passed on to an execute routine such as SINGLE OP or DOUBLE OP. The
remaining branching and condition code manipulating instructions are exe-
cuted immediately. In the diagram the dotted lines represent conditional
incovations of CALL, a routine which gives control to a microprogram to
handle all i/o and the HALT, WAIT, and RESET instructions. A description of
these nanoroutines has appeared in an earlier report,'^^' but may be sum-
marized :
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• FETCH
Fetches the next instruction from main store and begins decoding it via a setup routine.

• MODE
A subroutine which calculates the effective address of a PDP-11 instruction operand, and re-
turns its value. MODE is not shown in figure 4 because it is called from many places. Error
checking is performed, with control conditionally passed to SCHANGE.

• SCHANGE
The state-change routine is used to perform TRAP, EMT, BPT, and IOT instructions; it also
handles l/o traps and error traps.

• CALL
The invocation of microsubroutines to handle i/o, HALT, RESET, WAIT, and logical interrupts
is made by this routine.

• RTSCC
Handles the group of instructions in the range 0002XX-0003XX, a mixture of condition code
operations, subroutine return, and the SWAB instruction.

• LOW
Instructions in the range OOOOXX-OOOIXX are the responsibility of LOW. In the case of
HALT, WAIT, and KESET, control is passed to CALL. In the case of BPT and IOT, SCHANGE
is used. In the case of RTi and RTT, the second part of SCHANGE is used to load a new PC and
PS. In the case of JMP, MODE is called to calculate the effective address indicated by the DST
field (bits 0-5) of the instruction. The PC is set to this address, and the next instruction is
fetched. In all other cases, an illegal instruction trap occurs.

• RETURNB
Re-constructs a word after a byte operation.

• RETURN
Places the result in the location specified by the DST field. If a device word was either read or
written during the instruction execution, control passes to CALL; otherwise, control passes
to FETCH.

2.2 Memory mapping and utilization
Figure 5 summarizes memory requirements for the host's three address spaces.
The nanostore and control store allocations are self-explanatory; however, the
use of main store may need some clarification. Since the target has a 16-bit
word and the host main store word is 18 bits wide, two bits are available as
tags.'̂ ^^ These tags are used to differentiate the target machine's device regis-
ters from the remaining existent and non-existent memory.

• Bit 17 is 1 if the word does not exist: referencing this location will cause a trap via ̂ CH^A^Gii.

• Bit 16 is 1 if the word is a device register, in which case RETURN will pass control to CALL
to perform the i/o function.

The Rotate, Mask and Index (RMI) unit is valuable here for determining tag
settings, but is not essential. In addition, a base-bound option maps main store
addresses, enabling concurrent residence of more than one emulator.

2.3 Complete emulation
The PDP-11 emulator successfully executes standard instruction diagnostics;
memory, tape, and disk exercisers; and also the DOS-11 and MINI-UNIX operating
systems. No changes whatever were made to these programs; indeed, for many
the source code was not available.
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FIG. 5. Memory allocation in the host.

The MINI-UNIX operating system is a small-processor version of the UNIX
operating system*^ '̂' developed at Bell Laboratories. It ran successfully on the
emulator the day it arrived, with no problems whatever. Since then the
emulator has been upgraded with the addition of the extended shift, exclnsive-
or, multiply, and divide instructions. Because the operating system can now
execute these instructions directly instead of fielding illegal instruction traps
and simulating the instructions in software, a marked increase in performance
has been achieved. For example, the execution time of a sample batch stream
benchmark (including a compilation, line printer i/o, and some repetitive
numerical calculations) decreased from over sixteen minutes to under six
minutes.
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The above results demonstrate that the emulator is functionally complete;
however, it does contain some deficiencies as the following details show:

• Odd PC values are ignored; in fact, no PC checking is done at all.

• Stack overflow checking is incomplete for JMP and jsR instructions. Also, the change-of-
state routine will not detect stack overflow.

Elimination of these shortcomings does not warrant the excessive space
overhead in the nanoprograms. In practice these details do not affect the
correct executjuon,of programs since odd PC values do not arise, and stack
overfiow is detected in a real PDP-11 only after the user's buffers have been
overwritten (fig. 5). The stack overflow problem stems from the fact that
main store is not accessed through a common nanoprogram. The difficulty is
a result of the limited subroutine nesting capabilities within nanostore, and
means that this emulator cannot be easily extended to handle the FDP-11/45
memory segmentation unit.

Finally, the trace trap debugging feature was not implemented. It can be
added to the microcode without modification to the nanoprogram portion of
the emulator. Since the QM-1 and the control program already provide com-
parable debugging facilities, no requirement exists for this feature, and its
implementation offered no new insight into emulation.

3 THE EMULATOR CONTROL PROGRAM

Although the instruction set of the target machine can be modelled in the host
without great difficulty, carrying out i/o operations and responding to inter-
rupts is not easily done by an emulator control program (ECP). Ideally the
control program should not impose any extra architectural restrictions on the
emulator, and it should be possible to write one without detailed knowledge
of the other. Our additional requirements for concurrent support of several
emulators further complicate the issue, since member emulators must be given
direct low-level access to i/o devices through the ECP and the device drivers.
Only by this means can the emulators be functionally equivalent to their
target counterparts, to the extent that existing software can be transported to
the emulator without change.

With the above ideals in mind, the following features were implemented in
our control program:

• The system includes task control blocks (TCB S) for emulator management, dynamically
modifiable device ownership, and a task switch capability.

• Low-level i/o support is provided, including a bi-level interrupt structure, device drivers,
and unit control blocks (uCB s) to standardize device management.

• Emulator support facilities include storage display and modification, front panel simulation,
and debug features such as register trace and single step.

The design and implementation of ECP was heavily influenced by a system
used by the Nanodata Corporation to manage its Nova emulator.

3.1 Emulator - ECP interaction
A few technical difficulties are still being resolved with the multiple emulation
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capability of the ECP, although some successful experiments have been per-
formed.* Control of a single emulator is now done without problem. For
example, each time the PDP-11 accesses a device register, control is passed to
the ECP. A table of address pairs is searched to match the device register
address; the second entry points to the device handler. Also passed to the i/o
routine is a read/write flag. This process could occur twice in one main store
instruction, if both source and destination are device registers. The device
handler responds to the request by accessing the i/o devices directly. At present
PDP-11 devices''^' which have been mapped onto comparable QM-1 hardware
include: an LA30 terminal, a pcll paper tape reader, an Lpll line printer,
RKO5 disks, TMII magnetic tape drives, a CRll card reader, and a KWIIL line
clock. Since no paper tape reader actually exists on our maichine, the pcll and
CRII share a real card reader!

ECP s interrupt handling mechanism has two stages. Interrupts are caught
first by the low level handler (with interrupts masked for only a short period),
which places the device's UCB into its present owner's priority-ordered queue
(fig. 6). A logical interrupt is signalled by setting a particular G-register, and
the physical interrupt is dismissed. When the emulator which owns the
interrupting device is restarted, this register is interrogated by the instruction
fetch routine, and control is conditionally passed to the second stage. Once
the logical interrupt routine gains control, a check is made first of the "com-
mand pending" word in the TCB, and if necessary the command handler is
invoked. The interrupt is then handled in a manner appropriate toi the type
of emulator. In the case of the PDP-11, the queue of UCB s is inspected, and if
the CPU priority is lower than the bus request priority of the first UCB on the
queue, a change of state in the emulator is forced via SCHANGE. Otherwise,
the emulator is restarted at the point of interruption.

This bi-level structure has two important features:

• No restrictions are placed on the way interrupts are handled by a member emulator's
device drivers. This is especiaUy important if virtual machines with different interrupt
structures are to be supported concurrently.

• The handling of an interrupt by a device driver is corhpletely independent of any emulator's
software interrupt handler. In particular, an interrupt from a device owned by an emulator
which is not currently active is not lost.

In a system with a small number of terminal devices, it may be desirable
to have an emulator console double as the system console. This is easily done
by providing a simple mechanism called console redirection to "point" key-
board interrupts at the appropriate handler, either the emulator's or the
system's. When the primary console is "owned" by the emulator, receipt of a
special control prefix passes the ownership to the ECP. Commands may then
be executed, even while the emulator is active. A command is provided to
return console ownership to the emulator. By this means, more than one
emulator may also use the same console device.

*During preparations for the Canadian Computer Chess Workshop (Sigart Newsletter,
Nov. 1976) held in June 1976, a dual emulator environment was implemented on the QM-1
allowing two chess programs written for the Nova minicomputer to play each other. The
environment included a manual task switch facility, and the sharing of the console terminal,
disk, and clock.
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FIG. 6. ECP control block structure (single emulator environment).

Typical of the instructions which the control program has to handle is
RESET, which invokes routines to re-initialize the devices that the emulator
currently owns. Other obvious problems are for example emulating the HALT
instruction, which should not stop the QM-1 (especially in a multi-emulator
environment). Similarly the WAIT instruction cannot be dealt with by simply
having an interruptible loop in nanocode, since the next interrupt need not
necessarily come from a device which the emulator owns. Rather, WAIT sets the
logical wait indicator in the TCB and decrements the PC so that the instruction
is re-executed until a device owned by the emulator causes an interrupt.
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Debug facilities in ECP include front panel simulation, single step, storage
display and modification (register, main store, and control store), register
tracing, and profiling. The profiling feature uses a 32K word buffer of QM-1
main store as an array of counters. When profiling is enabled, each line clock
interrupt causes the PC to be sampled and the appropriate word in the buffer
to be incremented. This allows maximum resolution with a minimum of inter-
ference (less than 0.05% overhead). With the aid of a specially microcoded
device to give the emulator access to the profile buffer, and slight modifica-
tions to the UNIX "prof" program, a very accurate histogram showing system
time utilization can be produced and analyzed. Preliminary measurements
show that the major bottlenecks are the register save and restore routines, and
the memory clearing section of the process swap routine: these code segments
will be the first ca4ididates for implementation directly in microcode or nano-
code.

The Emulator Control Program has proved useful in debugging and con-
trolling a single target machine, and in providing flexible low-level i/o which
is transparent to the main store programmer. These facilities will remain as
useful when multi-emulation capabilities are completed.

4 UNIVERSAL HOST EVALUATION

A number of architectural characteristics of the PDP-11 and of the QM-1 affect
the emulation of the former by the latter. An investigation into those com-
ponents of architecture which are appropriate for general purpose emulation
has been made"̂ ^̂ ;̂ the following statements may also be extended to emulation
in general.

Ideally a host machine should have significantly more registers than the
target. Of course, emulation of machines with a great many more registers, or
registers wider than 18 bits, can be handled by maintaining them in control
store. In our case the PDP-11 registers were easily accommodated in local store.

Fortunately, host main store is 2 bits wider than target memory, so data
transfer is simplified; these extra bits are used as tags to specify the existence
or purpose of each word of the virtual machine memory (fig. 5).

The PDP-11 emulator is fairly fast, executing instructions at better than one-
half the speed of a Model 10. A more accurate measure of the relative speed
can be obtained from a statistical analysis of the instruction times in Appendix
B. The simpler instructions, and instructions using the simpler addressing
modes, are relatively slower because of the rather long (2.5 microsecond) fetch
and decode routine. On the other hand, use of the RMI unit to extract the 3-bit
subfields in the operands reduces the instruction decode times by about 0.4
microseconds per operand.

4.1 Emulation problems
The large number of buses and the presence of residual control in the host
enhance its capabilities for parallelism. This is especially important in instruc-
tion fetch and decode, which is usually the most complicated part of instruc-
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tion execution. Parallelism, however, is not sufficiently great for the PDP-11
emulation to check stack overflow concurrently with effective address calcu-
lation. ' :

Although the QM-1 has a 2-way branching facility at the nanoprogram level,
a general N-way branch cannot readily be generated nor are arbitrary levels of
subroutine call provided. In practice this is not a serious problem, but suggests
the need for a hardware modification to provide, for instance, a 16-word stack
to facilitate a chain of subroutine calls.

To emulate the PDP-11 efficiently, operations on various data widths are
required. For example, the PDP-11 has byte operations which cannot be
handled directly by the QM-I'S shifter and ALU. There is no difficulty with
arithmetic operations on bytes, since these are stored in the upper part of the
word, but shifts and rotates require proper insertion of the carry bit - an
operation that is awkward to perform. Compare for example the relative times
for the ROR and INC instructions in Appendix B.* Although PDP-11 S execute
these instructions in the same time, in our emulator the ROR is much slower
for byte operations because of the complexity of bit insertion into the middle
of a QM-1 word. Clearly a desirable feature for a universal host machine is a
truly variable-width arithmetic and shifting capability, including correct
generation of conditions such as carry out and overflow. However, an ex-
tremely complicated (and almost unusable) structure might result. For
example, the FDP-11 includes the carry bit in its shifts; the IBM 360 does not.
To provide a parallel variable-width shifter with both capabilities is an un-
enviable task for any designer.

Condition codes generated by the host's hardware must undergo anon-
trivial-mapping to convert them to virtual machine condition codes. A power-
ful single-bit capability is required here, which the host does not have (table
lookup is employed in the emulator). A similar problem exists whenever a
signed conditional branch is needed, in order to take overflow into account.

The difference in unit of memory addressability between host and target
forces a good deal of time- and resource-consuming housekeeping on the
emulator. A PDP-11 byte address must be shifted right by one bit to produce
the corresponding QM-1 address. In the case of byte operations, the low-order
bit of the PDP-11 address is used as a byte selector, and the byte which is not
affected by the operation must be saved before the operation is carried out and
restored after its completion. An efficient variable-width memory access
capability would be an asset to a universal host machine.

4.2 Observations > • .
The QM-1 was more than capable of hosting the complete emulation of a

fairly complex machine, the PDP-11. Since the host could do many difficult
things easily, we were perhaps overcritical whenever some features were
awkward to implement. Nevertheless, the flnal emulation speed was within a
factor of two of the target machine, comparing favourably with simulation,

*A version of the Ajjpendix appears in the Micro 9 proceedings under "An insight into
PDP-11 emulation" by the authors.
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where a reduction factor of thirty is more realistic. In addition, the QM-1
supports a variety of other emulators: the Nova 1200, IBM 7094 and S360,
plus a number of lesser known machines.

Designing and implementing the PDP-11 emulator has required approxi-
mately nine man-months of work. Three months were taken up with the instruc-
tion set interpreter, and six were needed for the writing of the ECP and a full
complement of device drivers.

In the area of multiple emulation, the common device drivers and the bi-
level interrupt structure of the ECP provide uniform, low-level access to
shared peripherals without the need to inhibit interrupts for long periods of
time. It was our hope that this approach to i/o handling would spur thought
in such areas as dynamic device ownership, fundamental differences between
computer emulators and high-level language emulators, and even the question
of whether or not a computer should know how to perform low-level i/o!
Work is continuing on these topics, and also on the design of universal file
systems to simplify concurrent emulator support.
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APPENDIX A: NANOPEOGRAMMING

Some examples of direct controt programming for the QM-1 appear in the tech-
nical works.'*''*' For completeness, an illustrated example from our PDP-11
instruction fetch/decode nanoprogram is presented, along with a condensed
general description of nanoprograms. Fach nanoword is divided into five
72-bit fields: a K-vector, and four T-vectors. The K-vector has a number of
subfields which are used to hold such things as local constants, ALU and shifter
controls, interrupt masks, and a field (KN) for the address of an executable
nanoword. The T-vectors (named Tl , T2, T3, and T4) have subfields cor-
responding to fundamental actions (called nanoprimitives) which may occur.
When a new nanoword becomes active, the K-vector and Tl of the word gain
control of the machine. All of the primitives selected in Tl are executed, and
one T-period later control passes to the K-vector and T2. The cycle Tl , T2,
T3, T4, Tl, T2, ... continues until one of the primitives causes another word
to be read from nanostore and made active. The length of a T-period is 80 ns,
but it must be stretched to 160 ns if two interacting primitives occur in the
same T-vector.

The address used to locate the next nanoword receiving control can be taken
from three sources:

• the 10-bit KN field of the active K-vector;
one of 30 interrupt vectors in external store; or

• the nanoprogram counter (NPC).

In turn, the NPC can be loaded from:

• the KN field;

• the incremented NPC ; or

• a word on the data bus from control store.

Conditional branching can be performed, but since neither the KN field nor the
NPC may be inspected, only one level of subroutine call is possible. This in-
convenience can be overcome by doing procedure oriented work at the micro-
program level.

Some operations take more than one T-period to complete. For example,
neither the shifter nor the ALU are pipeline devices, so input lines must not be
altered until outputs are valid, usually two T-periods. Consider for example
the one word nanoprogram in figure Al, which is part of the PDP-11 emulator's
instruction fetch and decode routine. As indicated by the comments, the
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SPARE I!CM KA KB KS KX KT KALC KSEIC KSHA MASKS

301 31 21 20 04 10 00 05 01

10 6 12 bits

127

s..

. s .

The above K-vector contains the local constants needed in
the following four T-steps. The masks specify that
Interrupts are enabled for this sample.

GATE NS(NOT X)

LOAD N:PC(KN)

KB->FHIX

KB->FSOD

G(G.PC-20.), G->FSID

GATE SH

G(G KS), G->FMOD

KT->FEOA, G->FSID

READ NS

F i r s t T-step i s to be stretched (S)
to 160ns

Dsing KX as a mask on the specia l
condit ions , loop in Tl unt i l main
store i s idle

Load address of next nanoword to be
executed

Connect req 21 to MIX bus

Connect SOD bus to reg 21

Connect reg 7 (the PC) to SID bus

Convert PDP-11 address to QM-1 address
via right logical shift of length 1

Ready to send main store word to reg 20

Bus connections for future use

Read next nanoword, taking address from
E-store if interrupt pending, or from
the NPC if not

KA->FEOD, KA->FSOD
KA->FCIA

. .X. Third T-step is to be 80ns long (X)

More bus connections for future use

READ MS S t a r t f u l l c y c l e read froim main s t o r e

GATE NEl Pass c o n t r o l t o nanoword chosen by
p r e v i o u s READ NS

• . . X T - s t e p unused in t h i s nanoword.

F I G . A l . A sample nanoprogram.

machine stays in Tl until main store is idle. The byte address of the next
PDP-11 instruction is then taken from the PC (register 7) and converted into a
QM-1 word address via the shifter. Finally, a full-cycle read of main store is
initiated, and control passes to the next nanoword. A Îeanwhile, bus connec-
tions are being set up (flg. A2) to aid in the decoding process once the instruc-
tion has been read. Each time a new nanoword is loaded from nanostore, the
K-vector is reset to its assembly time value. However, some of the fields can be
altered during nanoword execution and used as local variables.
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(SID

FIG. A2. BUS connections made by sample nanoprogram.

APPENDIX B : INSTRUCTION TIMING

The instruction execution times of the PDP-11 emulator and of the PDP-11/10
(3, Appendix B) are compared in the tables below. All timing information is in
microseconds, unless otherwise noted.
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SOURCE AND DESTINATION ADDRESS TIMES

Mode

0
1
2

. 3
4
5
6
7

PDP-11/10
SRC Time^

0.0
0.9
0.9
2.4
0.9
2.4
2.4
3.4

PDP-11/10
DST Time^

0.0
2 .4
2.4
3.4
2 .4
3.4
3.4
4 .7

Emulator
SRC, DST Time^

0.16
3.60
4.08^
4.64
4.40=
4.64
4.08
4.96

Tor SRC Time, add 1.3 usec for Odd Byte addressing.
*For DST Time, and Odd Byte addressing: (1) add 1.3 usec

for a nonmodifying instruction (CMPB, BITB, TSTB).
(2) add 2.4 usec for a modifying instruction.

Îf stack overflow check is disabled, subtract 0.32 usec.
*If register is 6 or 7, subtract 0.08 usec. If increment is 1,

add 0.08 usec.
=If register is 6 or 7, subtract 0.08 usec. If decrement is 1

subtract 0.08 usec.

DOUBLE OPERAND INSTRUCTIONS

Instruction

ADD

SUB

BIC

BIS

CMP

BIT

MOV

XOR

PDP-11/10
Basic Time

3.7
3.7
3.7
3.7
2.5
2.5
3.72

4

Emulator
Basic Time'

6.08
6.56
6.08
6.08
6.32
6.16
6.08'
5.52

Îf Byte instruction, add 1.44 usec.
^3.1 usec if Word instruction and Mode 0.
Îf Byte instruction and DST Mode is 0, add 0.24

usec.
*Not available on the PDP-11/10.
Note: Instr Time = Basic Time -f SRC Time +

DST Time.
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SINGLE OPERAND INSTRUCTIONS

Instruction

CLR

COM

INC

DEC

NEG

ASH

ASL

ROR

ROL

ADC

SBC

TST

SWAU
SXT

PDP-11/10
Basic Time

3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
2.2
4 .3

3

Emulator
Basic Time'

5.44
5.44
5.44
5.52
5.68
6.482
6..562
6.562
6.562
5.68
5.84
5.44
6.72
5.68

'If Byte instruction, add 0.80 usec for odd
address, 0.72 usec for even address.

2If Byte instruction, add 0.80 usec.
'Not available on the PDP-11/10.
Note: Instr Time = Basic Time H- DST Time.

JUMP INSTRUCTIONS

PDP-11/10 Emulator
Instruction Basic Time Basic Time

JMP 1.0 3.60
JSR 3.8 3.84

Note: Instr Time = Basic Time + DST Time.

BRANCH INSTRUCTIONS

Instruction

BGE

BLT

BGT

BLE

BR

SOB

All others

PDP-11/10'
(branch)

2 .5
2 .5
2 .5
2.5
2.5

3

2.5

Emulator
(branch)

3.282
3.282
3.762
3.442
3.20
3.36
3.36

Emulator
(no branch)

2.482
2.482
2.162
2.162
—

2.96
2.08

'Subtract 0.6 usec if no branch.
^Depending on N and V settings, add 0.0 to 0.64 usec.
'Not available on the PDP-11/10.
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EXTENDED INSTRUCTIONS

PDP-11/40 Emulator
Instruction Basic Time^ Basic Time

MUL

DIV

ASH

ASHC

8.88
11.30

2.58^
3.26'

14.72
15.88
6.64"
6.72

available on the PDP-11/10. Basic times
given are for the PDP-11/40; 11/40 SRC times are
not given.

^Add 0.3 usec per shift, plus 0.2 usec for left shift.
^Subtract 0.48 usec if no shift. Add 0.3 usec per

shift.
'Add 0.24 usec for left shift.
Note: Instr Time = Basic Time + SRC Time.

CONTROL, TRAP, AND MISCELLANEOUS
INSTRUCTIONS

Instruction

RTS

RTI

CLR N, Z, V, C
SET N, Z, V, C
HALT
WAIT
RESET
EMT, TRAP
BPT, IOT

PDP-11/10
Instr. Time

3.8
4.4
2.5
2.5
1.8
1.8
100 msec
8.2
8.2

Emulator
Instr. Time

5.04
6.641
4.00
4.00
4.00>
4.401
4.961
8.401
9.441

invoke microroutine.






