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SUMMARY

Details of a computer-computer communication facility are presented. The primary feature
of the system is the use of a single terminal to monitor and control processes on different
machines simultaneously, working together on the solution of a common problem. Experience
with an application, error handling and maintenance of synchronization are described.
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INTRODUCTION

The linking of a local minicomputer system with a remote major computing facility is
an increasing widespread practice.! In most instances the local machine is used
primarily as a file transport and job entry station,? 3 with relatively little attention being
given to the investigation of the additional potential of such a combination. Our aim in
the present paper is to demonstrate, if one is prepared to look beyond the obvious basic
functions, one of the possibilities which occur: the design of a system which enables a
single terminal to control processes executing concurrently in both local and remote
computers. The two machines work together on a single problem, communicating and
maintaining synchronization by a direct exchange of messages.

One important aspect of this work is the use of existing computer communication
facilities, of a type generally available, to produce a network of diverse computers.
Some other studies of interprocessor communication have been based on special
networks of identical computers.* Although many of the problems discussed there are
relevant to our situation, for instance the partitioning of jobs for parallel processing, the
use of general networks (i.e. those containing a variety of computers) raises many
additional questions. The computers will probably have radically different architec-
tures, so certain design choices must be made, including the selection of an appropriate
device for communication.® Because the problems we faced are typical of those
encountered in the implementation of interprocess-communication, we have discussed
our choices in some detail. In recognition of practical realities, we have also placed an
extra constraint on our work, by requiring that all support software be installed on only
a few of the computers in the network.

Operating systems

For the purposes of this discussion we shall classify our machines as ‘local’ and
‘remote’ computers. These words are not necessarily intended to reflect their physical
location relative to the user’s terminal, but rather to the degree of control and access
level to the operating system residing on those machines. On the local machine full
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control is assumed, while low-level access to the remote computer may be impractical
for technical or priority reasons, since it will generally be part of some service bureau.
At other establishments full control may exist over both (all) systems and a distributed-
processing operating system may be feasible.’

The communication link between the two machines may be indirect through a
number of store-and-forward communication processors, which may or may not be
transparent to the data being exchanged, a rarely considered factor. The term
‘Communication Processor’ (CP) is used quite generally to encompass any machine
through which data must flow to its destination. This implies that a remote computer
may become a CP if it is commanded to make an external link (e.g.via DATAPACS to
another machine. More typically a CP is some sort of ‘front-end’ for a remote
computer, and provides special support for the interactive and other i/o devices
attached.

Reliability

In the fundamental file transport problem, error-free communication is more
important than speed. A user-level protocol, which exchanges packets of information,
can be constructed to achieve the necessary reliability. Where hardware support is
available a sophisticated protocol such as X.25 could be used, but it is not essential. For
specialized applications like ours, simpler protocols have been proposed, of which the
variation we are developing” is typical. Even so, the level of support is quite substantial.
Messages are bound by header and trailer records to form packets. Typically the header
includes packet sequence number and length fields, and the trailer contains a
redundancy check character for error detection. An acknowledgement scheme is
necessary in order that corrupted packets can be re-sent. Futhermore, to guard against
lost replies, the sender must receive an acknowledgement within some specified time
interval, otherwise the system may deadlock with both sender and receiver expecting
the other to respond.

The packet approach is very attractive but the overhead is fairly high because source
and destination addresses may be needed, together with some additional signals to
frame the packet. Thus in order to transmit ‘raw’ (binary) data it is better if these packet
delimiters and other control signals are non-standard. In bit-serial transmission, for
example, unique control signals can be generated by bit stuffing, thus keeping the
communication protocol isolated from the data being sent. In store-and-forward
networks extra error conditions can arise. A packet acknowledgement may be lost for
example, causing retransmission of a previously forwarded packet and the potential for
packet duplication. More seriously, safe arrival of a packet at an intervening node may
be acknowledged, but the node may be ‘overrun’ or malfunction before the packet is
forwarded. Unless there is also an end-to-end acknowledgement, the sender may
erroneously believe his packet reached its destination safely.

MINICOMPUTER SUPPORT

Having surveyed briefly some of the problems that are handled by protocols for packet
transmission, in which the network is conceived as a whole and consistent software is
developed for all the intervening CPs, let us look again at the more common case in
which extensions are made to an existing partial network to provide new capabilities.
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Typically, as at the University of Alberta (Figure 1), the existing facility consists of a
simple star network of local terminals using asynchronous character transmission, with
an external link to a commercial network to support file transfer and job execution
functions at other remote centers. With the passage of time, support for local
minicomputers has become necessary. This support can be provided in a variety of
ways, and at considerable cost depending on the expected quality of service. Ideally one
would like to use as much of the network’s existing capability as possible, but a protocol
providing asynchronous computer to computer communication is needed.
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Figure 1. Basic structure of distributed computing system

Despite the fact that packet protocol is well suited to computer—computer
communication needs, there is pressure to minimize costs and make use of the existing
support for interactive and passive devices, and do without a formal protocol. At our
installation two choices are offered. Either make your local computer behave like a
simple terminal, or use the support for a ‘local attached device’ (a LAD), wherein the
local mini behaves like a passive sequential device. Neither proposal is attractive,
although each has some positive features. The support for LADs, for instance, can be
used in such a way that the transmitted data is transparent to the intervening CP. Thus
executable code generated by cross compilers on the central computer can be
transmitted without incurring any transformations (such as EBCDIC-ASCII conver-
sion), and without the data being interpreted as a CP command. If set up properly the
L AD may also be able to accept all the data as input. Clearly a precise count must be
kept of the data being transferred, for no signal indicating ‘end-of-file’ can be
recognized. Similarly, no ‘end-of-line’ indicator is possible so fixed size blocks of data
must be moved. Despite the positive features of this approach a number of
disadvantages occurred to us. Should a transmission error actually occur some manual
intervention to reinitialize the LAD will be necessary, before an attempt to retransmit
the data is made. This is quite unacceptable. Furthermore, the approach requires two
independent communication lines to the remote center, one for the LAD and one for
the user’s console to initiate the transmissions. Since this approach is not well suited to
our dual interacting processor application it was rejected in favour of making the local
computer behave like a terminal, and will not be discussed further despite its utility in
other applications.
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File transport

What then are the problems with making the local computer behave like a terminal?
The COMLNK? and COM360? systems, both of which interconnected PDP11 and
S370 computers, avoided this issue in different ways. The former group used a high-
speed 16-bit parallel line directly onto the PDP11 unibus to achieve direct memory
transfers. The COM360 system, on the other hand, used a standard telecommuni-
cations interface and a modem. Both groups employed a kind of packet protocol and
relied on user mode programs executing simultaneously in the two machines to process
the file transfer, and both assumed that the preferred direction of transfer was from the
local PDP11 to the central machine. COMLNK handled everything on a file basis with
a rather massive header to open the i/o operation and a trailer to close. The data packets
were very large, often big enough to accommodate a whole file. A file basis protocol has
many advantages, including low overhead under error-free conditions, but may require
long periods of interrupt-free processing. Conversely, the COM360 scheme built user
level packets, one for each line of the file, and awaited a positive or negative
acknowledgement before deciding what to do next. The protocol consisted of a header
specifying the message type, followed by either a function code or the message plus a
sequence number and length. A positive acknowledgement was sent for every message,
and concurrent send/receive operations were not supported. Their telecommuni-
cations access method also posed some problems. Since it would accept only a subset of
the ASCII character set, input from the local computer was treated as a continuous bit
stream, broken into groups of six bits to form a transmittable pseudo-character. The
receiving station rebuilt the original message, as a consequence the effective transfer
rate was significantly reduced.

The methods used in these earlier systems are not readily applicable to the current
situation in which major computing centers front-end their machines with program-
mable CPs, to multiplex data from a ldrge number of terminals. Problems with control
of and interference from these CPs is made more difficult by our restriction that low-
level access exist only at the local computer. The situation is further complicated by the
fact that it may not be possible to identify the originator of such low-level directives as
Please signoff, disk failure imminent, and distinguish them from a variety of advisory
broadcasts.

Communication processors

CPs are usually contemporary 16-bit programmable minicomputers whose job it is
to keep track of the special characteristics of each individual terminal, such as physical
line length, speed of carriage return, line or character mode, tabbing positions,
translation required and so on. Our CP serves as a store-and-forward node and
supports up to 128 terminals over dial-up and dedicated lines (through a PACX) at
speeds to 4,800 baud. At peak traffic times unacceptably high error rates occur.
Although these errors are signalled as transmission errors it would seem that their
appearance is much more a consequence of overruns in the CP software. This means
that even if dedicated microprocessors are attached to both ends of the communication
line, to handle a packet protocol, a reduction in apparent transmission errors might not
occur. In many respects this is unfortunate since cheap hardware currently exists to
support serial-bit transmission with automatic cyclic redundancy check generation,
and bit insertion to provide control signals (e.g. Signetics Multi-Protocol
Communications Circuit 2652).
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Our experience has been that the quality of transmission over dedicated communi-
cation lines is excellent. Nevertheless, some flow control protocol to maintain
synchronization and prevent one computer from overrunning the other is necessary. In
our system the available mechanisms for flow control are rudimentary.® The CP
normally discards characters when it is not ready for them (as would be the case if the
remote host—M'TS—does not have a ‘read’ pending). A paper tape convention is
followed in which our CP informs the sender that it is ready to accept a new line of
characters by transmitting an XON. Reverse flow control is accomplished by setting
page mode on, with the page length set to a single line. In this mode the CP waits, after
sending each line, for a character from the receiver before it sends the next line. These
flow control mechanisms have been known to fail in our CP during peak periods
because the XON was sent prematurely. This has caused us to insert deadlock detection
and correction code in our device driver. The situation is not satisfactory as data could
be lost, but under our initial restriction that no direct control be exercised over the CP
software, we must be content to wait until our needs and the service bureau’s priorities
are equivalenced.

There are also problems in recognizing the sources of various advisory and warning
messages in the system. These include error messages such as {file) does not exist, enter
replacement or cancel, as a consequence of user program actions; CP messages like
Processor failure, DATAPAC reloaded; and user—user communications. CP error
messages are particularly troublesome, since subsequent restart procedures may
change the state of the CP and its view of the terminals it manages. Consequently, any
computer which is trying to model the responses of a user under these hostile
conditions is itself transformed into a questionable state with no clear course of action.
If it keeps a table of all the known CP error messages it must also be kept informed of
any revisions and extensions. No general solution to this problem is possible so long as
sotfware control cannot be exercised at all intervening CPs in the network. Normally
such control is infeasible.

DISTRIBUTED COMPUTING APPLICATIONS

With all these considerations in mind, and despite the fact that some of the established
techniques and hardware were not available to us, we have built and used a distributed
dual processor system which allows processes executing in two different computers to
work together on a common problem. The two systems in question are UNIX® on a
PDP11/45 and MTS'® on an Amdahl 470 V/6. The primary aim of our work is to
provide a system in which a single terminal simultaneously controls processes
executing on both local and remote computers. Thus the most desirable features of
both operating systems could be used in the solution of a single problem. Since input or
output for one computer may reside on the other, our normal mode of operation allows
simultaneous access to files on both machines. This achieved through a logical
extension of the communication pipe provided under UNIX. Naturally a file transfer
capability is available but, because of extreme differences between the UNIX and M'TS
file systems, some processing conventions have been established. For instance, UNIX
maintains only sequential files in which logical records are separated by a ‘new line’
character, and significant file compression is achieved through the use of TAB
characters. In some respects the M'T'S file system is more elaborate, supporting random
access line-oriented files. In such files each logical record is associated with a unique
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index and can be accessed independently. Because of our initial constraint that the
additional software to support this project be installed on a local computer, all the filters
to handle these mappings run under UNIX.

The system which handles the message exchange between the two computers is
represented by process ‘A’ of Figure 2. A detailed description of that process is given in
our report.® Physically the user’s terminal is attached to UNIX and has full access to
that machine. Once process ‘A’ is invoked and the link to the remote computer (M'T'S)
established, then the capabilities of that system can also be used. A special prefix
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Figure 2. Process and pipe diagram for local computer

character (!) enables an escape to UNIX, thus commands to the two systems can be
interlaced and overlapped. Details of our file transport mechanism, line connection
routine and device driver are given elsewhere,® as are the description of the timeout
mechanism to avoid deadlock, and the transmission error recognition scheme. Rather
than elaborating these techniques, which do not have broad appeal, experiences with an
application of our system are presented. In particular, process ‘A’ is used to establish
communication and exchange messages between processes executing on local and
remote computers, so that these two machines can work together on a common
problem. Input to, and control of, these machines is achieved from a single terminal,
which also receives a summary of the output produced.

Example

The six processes and logical connections necessary to support a sample
application—two computers playing chess—are illustrated in Figure 2. Of the four
components in the large box, the primary parent process, here designated the ‘route-
switch-filter’, supports three children—the virtual terminals ‘AT’, “T” and ‘B'T".
Processes ‘AT’ and ‘BT’ in turn are the parents of the M'TS interface process ‘A’, and
the UNIX application program ‘chess’ (process ‘B’) respectively. The routing function
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redirects the data transfers to the appropriate destination. All three virtual terminal
processes communicate with the parent in essentially the same way, by having the
parent use the ‘ptrace()’ function to catch the program interrupts of its children.
Typically a message comes from the remote computer via the DLI1E interface to
process ‘A’ and its virtual terminal ‘AT’. These input characters are placed into a pipe
directed to the switch and, upon logical termination of the input stream (carriage
return), ‘AT’ generates a program interrupt signal which awakens its parent process to
accept the data. This data is then filtered (reformatted) as required by the application
and routed to either the user terminal or forwarded to process ‘B’. The virtual terminals
are normally waiting on a ‘read()’ from their child process, while the parent hangs on a
‘wait()’ for a status change (program interrupt) of its children. By this means the system
incurs negligible overhead, is self-synchronizing and deadlock free.

Messages from the user’s terminal to the processes executing on M'TS and UNIX are
distinguished via a prefix character. More importantly attention interrupts to these
systems must be handled. M'T'S makes heavy use of this interrupt not only to suspend
execution of a task but also to allow one to return to M'T'S command mode for a while
before restarting. Under UNIX this interrupt (DEL) is used more commonly to
terminate a task. We have found it quite convenient to use a common key to initiate this
interrupt, even though the ultimate destination is apparently not clear. In practice the
bulk of the support processes execute with this interrupt disabled, while application
programs are specifically programmed to respond appropriately, as illustrated later.

In or chess example the two machines are working alternately, each computing and
preparing output destined as input for the other. This process models an execution
monitor developed earlier which was used to perform experiments with pairs of chess
programs that executed on the same computer.!! The current approach allows us to
generalize the earlier one, providing a facility in which the two machines may work
together each handling a different aspect of a common problem. Thus at negligible cost
a heterogeneous dual processor system has been produced.

Results

The tests on the system have been so successful that the two machines are routinely
controlled from a terminal communicating over a dial-up phone line, and physically
remote from both computers. The processes are initialized from the terminal and the
line from UNIX is opened automatically and attached to M'T'S as an i/o device. After
the initialization phase the transactions can be echoed at the terminal, and control can
be regained through the use of an attention interrupt. Since there is only one real
terminal this interrupt is caught by the virtual terminals which in turn alert the
application processes on MTS and UNIX. Therefore a simple convention routes
messages to either machine. This mechanism is vital in order to recover from situations
in which one process enters a CPU bound loop or produces excessive amounts of
output, or to re-establish message synchronization should a transient CP malfunction
occur.

Re-establishing the flow control protocol in any system is potentially troublesome,
and is very installation dependent. For example, the state variables which describe the
properties of our CPs may be sent and reset in three distinct ways. The commonest is by
issuing ‘device commands’ from the terminal to the CP; the easiest is indirectly
(through the back door) via a command from the remote computer; and lastly the CP
may restore itself to some default state after a malfunction or special condition. These
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special conditions include, for example, the receipt of an attention interrupt, which
causes message echoing to be re-enabled. This occurrence is for historical reasons so
that our CP can model an established M'TS practice. Our provisional solution is to
force the CP into a known state, since the mechanism to interrogate its state is awkward
to use. Clearly many of these problems can be handled more easily with a proper
host—host protocol.

Conclusion

Aside from experimenting with the computer—computer communication problem,
the initial use of our dual processor system is to develop a chess program which is
partitioned to reside on both machines. Each part can take advantage of local data bases
and work concurrently on different aspects of the problem. For example, one will select
goals which may be attainable, while the other will seek paths to attain those goals.
However, our distributed computing system is not application dependent, but clearly is
only appropriate for those problems which can be partitioned into parallel processes. It
does, however, serve the useful function of allowing a single terminal direct access to
two independent systems, so that one can switch quickly and easily between them.
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