
ACM '81, November 9-11, 1981 Reviewed Paper 

A SURVEY OF ENHANCEMENTS TO THE ALPHA-BETA ALGORITHM 

T.A. Marsland and M. Campbell 

Department of Computing Science 
University of Alberta 

Edmonton, Alberta T6G 2HI 
Canada 

ABSTRACT 

Current game-playing programs have 
developed numerous move ordering and 
search reduction techniques in order to 
improve the effectiveness of the alpha- 
beta algorithm. A c r i t i c a l  review of these 
search modifications is provided, and a 
recursive formula to estimate the search 
time is proposed, one which re f lec ts  the 
character ist ics of the strongly ordered 
trees produced through use of improved 
search enhancements. 

I .  THE ALPHA-BETA ALGORITHM 

With few exceptions [NEWB], much of 
the exist ing theoretical work on 
sequential game tree searching .has been 
rest r ic ted to random trees. However, in 
practice, t ru ly  random trees are quite 
uncommon. In addition, special techniques 
have been developed to improve the 
effectiveness of the principal searching 
method, the alpha-beta algorithm. Thus, we 
w i l l  assess these enhancements and show 
why s t r o n g l y  o rdered t rees  are more 
r e a l i s t i c ,  and possess p r o p e r t i e s  tha t  can 
be e x p l o i t e d  

A complete d e s c r i p t i o n  of  the a lpha-  
beta a l g o r i t h m  can be found elsewhere 
[KNUT]. Rather than d u p l i c a t e  tha t  work we 
w i l l  s imp ly  c l a r i f y  some r e l e v a n t  f a c t s  
and te rm ino logy  used in our paper.  A 
t y p i c a l  procedure heading might be 
a lphabeta (p ,  a lpha,  beta,  dep th ) ,  where p 
rep resen ts  a p o s i t i o n ,  (a lpha ,be ta )  the 
search window or range of values over 
which the search is to be made, and depth 
the intended length of the search path. 
The basic structure of the depth-l imited 
alpha-beta algorithm can be seen in the 
following procedure. 
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a lphabeta (p ,  a lpha,  beta,  depth) 
p o s i t i o n  p; 
i n t  a lpha,  beta ,  depth;  { 

i n t  w, m, i ,  t ;  

i f  (depth < O) r e t u r n ( e v a l u a t e ( p ) ) ;  
w = gene ra te (p ) ;  

/ *  determine successor p o s i t i o n s  * /  
/ *  p.1 . . .  p.w and r e t u r n  number * /  
/ *  o f  moves as f u n c t i o n  va lue  * /  

i f  (w == 0) / *  no legal moves * /  
return(evaluate(p)); 

m = alpha; 
for i = I to w do 
{ t = -alphabeta(p.i,-beta,-m,depth-1); 

i f  (t > m) m = t; 
i f  (m >= beta) /*  cutoff  * /  

return(m); } 
return(m); } 

For purposes o f  a n a l y s i s ,  i t  is  
convenient  to s tudy  the performance o f  the 
minimax and a lpha-be ta  a lgo r i t hms  on 
un i fo rm t rees  o f  depth D and cons tan t  
w id th  W. I t  i s  a lso  usual to measure the 
r e l a t i v e  e f f i c i e n c y  of  t r e e - s e a r c h i n g  
a lgo r i t hms  in terms of  the number o f  
te rmina l  nodes scored,  The minimax 
a l g o r i t h m  w i l l  always examine. 
M(W,D) = W**D te rmina l  nodes, w h i l e  under 
idea l  c o n d i t i o n s  the a lpha-be ta  a ]go r i t hm,  
under idea l  c o n d i t i o n s ,  scopes on l y  

= • W . * L D / 2  j - n o d e s .  

Thus the p o t e n t i a l  e f f i c i e n c y  o f  ~he 
a lpha-be ta  a l g o r i t h m  is  very  good, 
examining c lose  to the square roo t  o f  the 
maximum number of  nodes wh i l e  s t i l l  

v ene ra t i ng  the same s o l u t i o n  path 
p r i n c i p a l  v a r i a t i o n )  from the roo t  node. 

However, opt imal  performance is  achieved 
on l y  when the f i r s t  move cons idered at 
each node is  the best  one. Under more 
r e a l i s t i c  assumpt ions,  we can de f i ne  the 
f o l l o w i n g  q u a n t i t i e s .  
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D=3 B 

8 71 

16 271 

24 599 

A R M 

105 (21) 181 (36) 512 

405 (64) 786 114) 4096 

857 (115) 1752 250) 13824 

A R M 

281 (88) 690 153) 4096 

1286 (430) 4125 875) 65536 

2946 (1013) 10425 (1891) 331776 

D=4 

8 

16 

24 

B 

127 

511 

1151 

Table I: Expected search costs for trees 
of width W and depth D. 

R(W,D) = average number of terminal 
nodes scored in a random 
uniform game tree 

A(W,D) = average number of terminal 
nodes scored in a strongly 
ordered uniform game tree 

For the purposes of this paper, we 
w i l l  define a tree to be stronqIy ordered 
i f  the search finds (I)  the f i r s t  branch 
from each node best 70% of the time, and 
(2) the best move in the f i r s t  25% of the 
branches 90% of the time. Of course, this 
de f in i t i on  is t o t a l l y  arb i t ra ry ,  but i t  is 
meant to produce trees s imi lar  in 
character to those generated by 
contemporary chess programs using search 
enhancements. 

While the performance of alpha-beta on 
random trees has a sol id theoretical basis 
[FULL], at present only empirical evidence 
is avai lable for strongly ordered trees. 
Nevertheless, on a s t a t i s t i c a l  basis, i t  
seems clear that we have the re la t ion 
B(W,D) < A(W,D) << R(W,D) << M(W,D) = W**D 
Relative values for these terms can be 
seen from our Monte Carlo simulation 
results,  presented in Table I. The 
simulations were carried out on trees of 
depths up to 5 and width W, with scores in 
the range 0 - 127. To estimate R, the 
values were assigned randomly to the 
terminal nodes, while the calculat ion of A 
re l ied on branch-dependent scores. The 
bracketed numbers represent the standard 
deviation for 100 independent search 
t r i a l s .  Table I w i l l  be used later to 
support a proposed formula which estimates 
A(W,D). 

enclosed by (a lpha,  beta)  is  r e f e r r e d  to  
as the a lpha-be ta  window. For the a lpha-  
beta a l g o r i t h m  to  be e f f e c t i v e ,  the 
minimax score o f  the roo t  p o s i t i o n  must 
l i e  w i t h i n  the i n i t i a l  window. Gene ra l l y  
speaking,  however, the narrower the 
i n i t i a l  window, the b e t t e r  the a l g o r i t h m ' s  
per formance.  In many problem domains such 
as chess, there  are r e l i a b l e  methods to 
es t ima te  the score tha t  w i l l  be re tu rned  
by the search.  Thus, ins tead  o f  us ing an 
i n i t i a l  window o f  ( - INF,  +INF) (where INF 
is  a number l a rge r  than e v a l u a t e ( )  w i l l  
r e t u r n ) ,  one can use (V-e,V+e) ,  where V is  
the es t ima ted  score,  and e the expected 
e r r o r .  There are th ree  p o s s i b l e  outcomes 
o f  t h i s  s o - c a l l e d  a s p i r a t i o n  search,  
depending on S, the ac tua l  (minimax) score 
o f  a p o s i t i o n  p. 

I. i f  S <= V-e, 
alphabeta(p,V-e,V+e,D) <= V-e 

2. i f  S >= V+e, 
alphabeta(p,V-e,V+e,D) >= V+e 

3. i f  V-e < S < V+e, 
alphabeta(p,V-e,V+e,D) = S 

Cases I and 2 are referred to as 
f a i l i n q  low and f a i l i n q  hiqh respectively 
[FISH]. Only in case 3 is the true score 
of the posit ion p found, using a smaller 
search space -- bounded by B(W,D) and 
A(W,D). 

In the fa i led  low case, i t  is neces- 
sary for the search to show that each a l -  
ternat ive from the root is less than V-e. 
Assuming perfect ordering, 

w * *  /D /2 [  nodes must be examined. 

I I .  ENHANCEMENTS TO ALPHA-BETA SEARCHING 

Many o f  the f o l l o w i n g  techniques have 
been developed in e f f i c i e n c y - c o n s c i o u s  
f u l l - w i d t h  chess programs. The bas ic  
methods, however, are a p p | i c a b l e  to most 
programs that  use the a lpha-be ta  
algorithm. 

A. A s p i r a t i o n  search:  The i n t e r v a l  

In the f a i l e d  h igh case, i t  i s  s u f f i c i e n t  
fo r  the s e a r c h ' t o  show one a l t e r n a t i v e  
g r e a t e r  than V+e. Again under p e r f e c t  
o r d e r i n g  c o n d i t i o n s ,  on l y  

W **  /D/2|  nodes need be examined. 
L J 

E i t h e r  way the search must be repeated,  
fo r  example a lphabe ta (p ,V+e ,+ INF,D)  fo r  
the f a i l e d  h igh case. Emp i r i ca l  ev idence 
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has shown aspiration searches to be very 
ef fect ive;  in TECH 7, search time 
reductions averaging 23% were noted 
[GIL2]. This result  is confirmed by Baudet 
by adapting his results for paral lel  tree 
search to the sequential case [BAUD]. 

B. Transposition Table: In carrying 
out a search of a chess game tree, i t  is 
not uncommon for positions to recur in 
numerous places throughout the tree. 
Rather than rebuild the subtrees 
associated with the transposed positions, 
i t  may be possible to simply retr ieve the 
results stored in a table by a previous 
search. A transposition table is a large 
hash table, with each entry representing a 
posit ion. For game modelling nearly 
perfect hashing functions can be 
produced[ZOBR]. Although there are many 
table management problems which must be 
solved, the technique has very low 
overhead for the large potential gains. 

A typical hash index generation method 
is the one proposed by Zobrist[ZOBR], who 
observed that a chess posit ion constitutes 
placement of up to 12 d i f fe rent  piece 
types {K,Q,R,B,N,P,-K . . .  -P} onto a 64- 
square board. Thus a set of 12x64 integers 
(plus a few for enpassant and castl ing 
pr iv i leges) ,  {Ri}, may be used to 
represent a l l  the possible piece/square 
combinations. An index of the posit ion may 
be given by 

Pj = Ra xor Rb xor . . .  xor Rw 
where the Ra etc. are integers associated 
with the piece placements for the 
part icular posit ion under consideration. 
Movement of a piece from a squar.e 
associated with Rf to the piece/square 
associated with Rt yields a new index 

PK = (Pj xor Rf) xor Rt 
More importantly, i f  the Ri are uniformly 
d ist r ibuted in the interval [0,2**N], then 
so are the Pk. Typically N is 32 and so 
2**N is too large for d i rect  use of PK as 
an index into a transposition table, 
rather 
Hk = PK mod T is used, where T << 2*~N. 
Clearly, a l l  the possible chess positions 
cannot be represented uniquely by Hk, but 
even so this is quite su f f i c ien t  as a 
basis for a successful entry point. A 
minimal table entry could have the 
following format: 

I ,oc. I I so°re I I I 
l o c k  t o  e n s u r e  t h e  t a b l e  p o s i t i o n  

i s  i d e n t i c a l  t o  t h e  t r e e  
posit ion, 

move best move in the posit ion, 
determined from previous 
search,  

sco re  o f  s u b t r e e  computed 
p r e v i o u s  l y ,  

f lag indicating whether score is 
upper bound, lower bound or 
true score, 

len l eng th  o f  s u b t r e e  tha t  sco re  
is based on, 

p r i q  used in t a b l e  management, to  
s e l e c t  e n t r i e s  f o r  
d e l e t i o n .  

When a p o s i t i o n  reached d u r i n g  a 
search is  l o c a t e d  in the t a b l e  ( i . e .  the 
lock  matches) ,  t h e r e  are  a number o f  
p o s s i b l e  a c t i o n s :  
(1) I f  ]en i s  less  than rema in ing  l e n g t h  

to be searched,  score  is  i gno red  and 
the search  is  c a r r i e d  out  as usua l .  
However move i s  t r i e d  f i r s t  in  the 
p o s i t i o n .  The main advantage o f  t h i s  
i s  t ha t  i t  saves a move g e n e r a t i o n ,  
and a l s o ,  s i n c e  move has p r e v i o u s l y  
( i n  a s h a l l o w e r  search)  proven bes t ,  
i t  i s  l i k e l y  to  be so aga in .  
Fur thermore ,  move w i l l  d i r e c t  the 
search toward p o s i t i o n s  t ha t  have 
been seen b e f o r e ,  hence i n c r e a s i n g  
the e f f e c t i v e n e s s  o f  the t a b l e .  

(2) i f  ]en >= rema in ing  l eng th  to  be 
searched 
(a) i f  score  was the t r u e  sco re ,  t h i s  

v a l u e  i s  r e t u r n e d  w i t h o u t  
f u r t h e r  sea rch ing  

(b) o t h e r w i s e ,  score  is  used to  
a d j u s t  the c u r r e n t  a l p h a - b e t a  
bounds. Th is  cou ld  e i t h e r  cause 
an immediate cutof f ,  or allow 
the search to continue with a 
reduced window. I f  a search must 
be done, move w i l l  be t r ied 
f i r s t .  

There are also further enhancements 
possible. For example, DUCHESS s maintains 
both upper and lower bounds on the 
posit ion score, with separate |engths for 
each. 

Transposition tables are most 
e f fect ive in chess endgames, where there 
are fewer pieces and more reversible 
moves. Gains of a factor of 5 or more are 
typical,  and in certain types of king and 
pawn endings, experiments with BLITZ 3 and 
BELLE 2 have produced trees of more than 30 
ply, representing speedups of well over a 
hundred-fold. Even in complex midd]egames, 
however, s ign i f icant  performance 
improvement is observed. An implementation 
of alpha-beta employing a transposition 
table is presented in the Appendix. 

C. K i l l e r  Heuristics: The k i l l e r  
heur is t ic  is based on the premise that i f  
move My ' re fu tes '  move Mx, i t  is more 
l i ke ly  that My (the ' k i l l e r ' )  w i l l  be 
e f fec t ive  in other positions. Any move 
which causes a cutof f  at level N is said 
to have refuted the move at level N-I. 
There are many ways of using this 
information. For example, the program 
CHESS 4 maintains a short l i s t  of k i l l e r s  
at each level in the tree, and attempts to 
apply them early in the search in the hope 
of producing a quick cutof f .  A further 
advantage of the k i l l e r  heur is t ic  is that 
i t  tends to increase the usefulness of the 
transposition table. By cont inual ly 
suggesting the same moves, there is a 
greater poss ib i l i t y  of reaching a posi t ion 
already in the table. 

In i ts  fu l l  general i ty,  the k i l l e r  
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heur is t ic  can be used to dynamically 
reorder moves as the search progresses. 
For example, i f  a move My at level N 
refutes a move at: level N-I, and My 
remains to be searched at level N-2, i t  is 
worth considering next. An additional 
method, used by AWIT I, seeks out defensive 
moves at ply N-I which counteract k i l l e r s  
from level N. The idea behind the 
generalized k i l l e r  heur is t ic  mechanism is 
to allow information gathered deep in the 
tree to be redistr ibuted to shallower 
l e v e l s .  Th is  i s  not  u s u a l l y  done by the 
f u l l - w i d t h  programs, however,  s i n c e  i t  i s  
not  ye t  c l e a r  t ha t  the p o t e n t i a l  ga ins  
exceed the  overhead.  

The ac tua l  search r e d u c t i o n s  produced 
by the k i l l e r  h e u r i s t i c  a re  not  c l e a r .  In 
TECH ~ no improvement wps no ted ,  bu t  
CHESS ; ,  DUCHESS s and BLITZ 3 c o n t i n u e  to  
employ the  mechanism. 

D. I t e r a t i v e  DeepeninQ: I t e r a t i v e  
deepen ing  r e f e r s  to  the p rocedu re  o f  us i ng  
an N-1 p l y  search to  p repa re  f o r  an N p l y  
search .  The cos t  o f  such a search i s  g i v e n  
by an e q u a t i o n  o f  the form 

A(W,D) = A(W,D-I) + E(W,D), 
where E(W,D) is the expected cost of an 
alpha-beta search given the f i r s t  D-I 
moves of the principal var iat ion. This 
technique has certain immediately obvious 
advantages.  
(1) I t  can be used as a method f o r  

c o n t r o l l i n g  the  t ime spent  in  a 
search .  In t he  s i m p l e s t  case,  new 
i t e r a t i o n s  (:an be t r i e d  u n t i l  a 
p r e s e t  t i m e = t h r e s h o l d  i s  passed. 

(2) An N-1 p l y  s(.arch can p r o v i d e  a 
p r i n c i p a l  c o n t i n u a t i o n  wh ich ,  w i t h  
h igh  p r o b a b i l i t y ,  c o n t a i n s  a p r e f i x  
o f  the N p l y  p r i n c i p a l  c o n t i n u a t i o n .  
Th is  a l l o w s  the a l p h a - b e t a  search to  
p roceed more q u i c k l y .  

(3) The score  r e t u r n e d  from a N-1 p l y  
search can be used as the  c e n t e r  o f  
an a l p h a - b e t a  window fo r  the N p l y  
search .  I t  i s  p r o b a b l e  t ha t  t h i s  
window w i l l  c o n t a i n  the N p l y  sco re ,  
thus i n c r e a s i n g  search speed. 

These l a s t  two p o i n t s ,  though 
s i g n i f i c a n t ,  are not  r e a l l y  comple te  
j u s t i f i c a t i o n s  f o r  the use o f  i t e r a t i v e  
deepen ing  from a t r e e  sea rch ing  p o i n t  o f  
v iew.  In f a c t ,  i n  expe r imen ts  w i t h  
checkers  game t r e e s  [F ISH] ,  i t  was found 
t ha t  i t e r a t i v e  deepen ing  i nc reased  the  
number o f  nodes searched by 20% 
( a p p a r e n t l y  o n l y  us ing  p o i n t  (2 ) ,  
however ) .  In a d d i t i o n ,  s t u d i e s  w i t h  TECH ~ 
us ing  a g e n e r a l i z e d  v e r s i o n  o f  (2 ) ,  bu t  
not  ( 3 ) ,  no ted a 5% i nc rease  in  search 
t imes when i t e r a t i v e  deepen ing  was a p p l i e d  
[G IL2 ] .  I t  appears tha t  a s t r o n g  i n i t i a l  
move o r d e r i n g ,  t o g e t h e r  w i t h  a good a lpha -  
be ta  window e s t i m a t e ,  can a p p r o x i m a t e l y  
match i t e r a t i v e  deepen ing .  The rea l  
s e a r c h i n q  advantage o f  i t e r a t i v e  deepen ing  
i s :  
(4) The t r a n s p o s i t i o n  t a b l e  and k i l l e r  

l i s t s  a re  f i l l e d  w i t h  u s e f u l  va lues  
and moves. 

The importance of this fact is 
i l l us t ra ted  by the performance of the 
BELLE 2 chess machine. Typical chess 
middlegame positions have branching 
factors of 35-40. I t  has been found that 
in such positions, i t  normally costs BELLE 
a factor of 5 - 6 to go one further ply, 
i .e.  l ess  than the  expec ted  cos t  o f  
o p t i m a l  a l p h a - b e t a .  

A v a r i a t i o n  o f  t h i s  b a s i c  scheme, one 
which i s  e s p e c i a l l y  a p p r o p r i a t e  i f  
t r a n s p o s i t i o n  t a b l e s  are not  used, i s  
employed by L'EXCENTRIQUE 6. A 2 or  4 - p l y  
minimax search i s  f i r s t  pe r fo rmed to  
o b t a i n  W move-pa i r s  (moves and t h e i r  bes t  
r e f u t a t i o n ) .  These are then s o r t e d  and a 
6, 8, 10 e t c  - p l y  i t e r a t i v e  deepen ing  
c y c l e  i n i t i a t e d .  The r a t i o n a l e  beh ind  two 
p l y  inc rements  i s  to  p r e s e r v e  a c o n s i s t e n t  
theme between i t e r a t i o n s ,  so t h a t  the 
p r i n c i p a l  v a r i a t i o n  w i l l  not  f l i p - f l o p  
between a t t a c k i n g  and d e f e n s i v e  l i n e s .  To 
our knowledge,  no a n a l y t i c a l  compar ison 
between t h i s  and c o n v e n t i o n a l  i t e r a t i v e  
deepen ing  has been done. 

However, we do h y p o t h e s i z e  t ha t  the 
i nc remen ta l  cos t  i s  o f  the form 

E(W,D) = B(W,D) + (W-1) *F(W- I ,D-2 )  
A s tudy  o f  Table 1 leads us to  r e f i n e  the  
f u n c t i o n  F to  f i t  the a v a i l a b l e  da ta  and 
to p ropose tha t  the  r e c u r r e n c e  r e l a t i o n  
A(W,D) =:= A(W,D-1) + B(W,D) 

+ (W-1)*B(W- 1,D-2) 
be v a l i d  f o r  t r e e s  o f  the type  searched by 
chess programs, us ing  i t e r a t i v e  deepen ing  
in c o n j u n c t i o n  w i t h  t r a n s p o s i t i o n  t a b l e s .  
From the above e q u a t i o n ,  and the  da ta  in  
Tab le  1, the e s t i m a t e d  va lue  f o r  A(24 ,4 )  
i s  3066 w h i l e  the  e x p e r i m e n t a l  v a l u e  was 
2946. S i m i l a r l y ,  the  va lue  f o r  A(24 ,5 )  
f rom the  r e c u r r e n c e  r e l a t i o n s h i p  i s  30018 
and the e x p e r i m e n t a l  va lue  from f i f t y  
Monte Ca r l o  t r i a l s  was about 28500. For 
t y p i c a l  va lues  o f  W and D, 
(W-1) *B(W- I ,D-2)  i s  a p p r o x i m a t e l y  equal  to  
B(W,D) and A(W,D-1) is  smal l  in  
compar ison.  Hence we may say t ha t  

A(W,D) =:= 2*B(W,D) 
f o r  s t r o n g l y  o r d e r e d  t rees  w i t h  W > 20 and 
D > 4. 
I I I .  MODIFICATIONS TO THE ALPHA-BETA 
ALGOR I THM 

A number o f  m o d i f i c a t i o n s  to  the 
a l p h a - b e t a  a l g o r i t h m  have been proposed 
[F ISH] .  They a re  examined here  m a i n l y  f o r  
c o m p a t i b i l i t y  w i t h  the o t h e r  search  
enhancements d i s c u s s e d .  

Fa lphabe ta ,  f o r  ' f a i l - s o f t  a l p h a b e t a ' ,  
i s  u s e f u l  when a s p i r a t i o n  s e a r c h i n g  i s  
employed. Though always examin ing  the same 
nodes as a l p h a - b e t a ,  f a l p h a b e t a  can g i v e  a 
t i g h t e r  bound on the  t r u e  sco re  o f  the  
t r e e  when the  search  f a i l s  h igh  o r  low. 
A l though  f a l p h a b e t a  r e q u i r e s  a s l i g h t  
c o n s t a n t  overhead ,  any system which  uses 
a s p i r a t i o n  searches  shou ld  f i n d  the  
t echn ique  a p r a c t i c a l  one. The concept  o f  
a minimal window, an alpha-beta window of 
(-m-1,'~" where m is the best score so 
far, was introduced and used to search the 
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l as t  subt ree [FISH].  S l i g h t  search ing  
improvement was noted for  no cos t .  

Palphabeta is  an i n t e r e s t i n g  
m o d i f i c a t i o n  o f  a lpha-be ta  which operates 
o n l y  on nodes along the p r i n c i p a l  
v a r i a t i o n .  Once a cand ida te  p r i n c i p a l  
v a r i a t i o n  i s  ob ta ined ,  the balance o f  the 
t ree  is  searched w i t h  a minimal window. 
However, each subt ree tha t  i s  b e t t e r  than 
i t s  e lder  s i b l i n g s  must be searched tw ice,  
i f  the t ree  is  p o o r l y  ordered.  Hence there  
is  some r i s k  tha t  pa lphabeta w i l l  examine 
more nodes than a lpha-be ta .  I t e r a t i v e  
deepening p rov ides  a p r i n c i p a l  v a r i a t i o n  
w i t h  reasonable r e ] i a b i l i t y ,  and mares 
t h i s  techn ique more f e a s i b l e .  The f o l -  
lowing code has been adapted from [FISH].  

p a l p h a b e t a ( p o s i t i o n  p, i n t  depth)  
{ 

i n t  w, m, i ,  t ;  
i f  (depth < O) r e t u r n ( e v a l u a t e ( p ) ) ;  
w = gene ra te (p ) ;  
i f  (w == O) r e t u r n ( e v a l u a t e ( p ) ) ;  
m = -pa lphabe ta (p .1 ,  d e p t h - I ) ;  
fo r  i = 2 to w do 
{ t = - f a l p h a b e t a ( p . i , - m - 1 , - m , d e p t h - 1 ) ;  

i f  (t > m) 
m = -alphabeta(p.i,-INF,-t,depth-1); } 

return(m); } 

I t  could also be pointed out that i t  
is not necessary to carry palphabeta al l  
the way to the terminal nodes. In fact, 
since only the f i r s t  few moves of a 
principal continuation are usually 
rel iable, carrying palphabeta to, say, N-2 
ply on an N ply i terat ion may be 
suff ic ient.  Another objection could be 
made on the grounds that, for programs 
employing transposition tables, the values 
that w i l l  be stored in the table are 
rather loose bounds, and hence less l ike ly  
to cause later cutoffs. The effects of 
this are not clear. 

SCOUT [PEAR] is a further 
generalization of palphabeta, in which the 
call to alphabeta is replaced by 

m = -palphabeta(p.i, depth-l); 
In i ts  original form, SCOUT does not use 
the minimal window idea, but rather an 
equivalent test procedure. Our i n i t i a l  
simulation results indicate that 
palphabeta out-performs SCOUT on strongly 
ordered trees. 

IV. CONCLUSIONS 

A number of techniques for improving 
the searching performance of the alpha- 
beta algorithm have been discussed. The 
experiences of current game playing 
programs have demonstrated the 
effectiveness of aspiration searches, 
transposition tables, the k i l l e r  heurist ic 
and i terat ive deepening. Modifications 
like palphabeta and SCOUT deserve further 
attention in programs that search strongly 
ordered trees, part icu]ar ly to determine 

their interaction with the other searching 
enhancements. There is also growing 
interest in parallel implementations of 
alpha-beta [BAUD], [MARS], and i t  is 
important that these parallel methods 
retain the advantages obtained in the 
sequential case. 
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AB(position p, in t  alpha, in t  beta, in t  depth) 
{ in t  i ,  t ,  w, type, score, f lag;  

posi t ion p:opt; 
type = re t r ieve(p ,  depth, score, f lag ,  p.opt) ;  

/ *  type < 0 - pos i t ion not in table 
type == 0 - pos i t ion in table, but length < depth 
type > 0 - pos i t ion in table, length >= depth * /  

i f  (type > O) 
{ i f  ( f lag  == VALID) goto done; 

i f  ( f lag  == LBOUND) 
alpha = max(alpha, score); 

else /~ f lag == UBOUND * /  
beta = min(beta, score); 

i f  (score >= beta) goto done; 
} 

/~ Note benef ic ia l  update of alpha or beta 
bound assumes f u l l  width search. 
Score in table i n s u f f i c i e n t  to terminate search 
so continue as usual, but t r y  p.opt (from table) 
before generating other moves, i f  p is non-terminal. 

score = alpha; 
i f  (( type >= O) and (p.opt != NULL)) 
{ t = -AB(p .op t ,  - be ta ,  - sco re ,  d e p t h - I ) ;  

i f  ( t  > score) score = t ;  
i f  (score >= beta) goto done; 

} 
/~ no cu to f f .  Generate moves, put p.opt f i r s t .  

w = generate(p); 
i f  (w == O) / *  mate or stalemate ~/ 
{ p .op t  = NULL; 

score = e v a l u a t e ( p ) ;  
go to  done; } 

f o r  i = 2 to  w do { 
i f  (depth == O) 

t = e v a l u a t e ( p . i ) ;  
e l s e  

t = - A B ( p . i ,  - be ta ,  - sco re ,  d e p t h - I ) ;  
i f  ( t  > score) 
{ score = t ;  

p.opt = p . i ;  / -  note best successor . /  
i f  (score > beta) goto done; 

} 
} 

done : 
f l a g  = VALID; 
i f  ( s c o r e  <= a lpha)  f l a g  = UBOUND; 
i t  = (score  >= beta)  f l a g  = LBOUND; 
s t o r e ( p ,  depth ,  score ,  f l a g ,  p . o p t ) ;  
r e t u r n ( s c o r e ) ;  

Appendix:  A lpha -be ta  imp lemen ta t i on  us ing  t r a n s p o s i t i o n  t a b l e  
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