
 T.A. Marsland 1

 Name: T.A. MARSLAND

 Country: CANADA

 Affiliation: University of Alberta

 Address: Dr. T.A. Marsland,
 Computing Science Dept.,
 University of Alberta,
 EDMONTON T6G 2H1
 Alberta, Canada.

 Telephone: (403)-432-3971

 Technical Area: Computer Software.

 Neither this paper nor any version close to it has been or is
 being offered elsewhere for publication. If accepted, the
 paper will be presented personally at the 9th World Computer
 Congress by the author.

 T.A. Marsland 2

 A STUDY OF ENHANCEMENTS TO THE ALPHA-BETA ALGORITHM

 T.A. Marsland

 Computing Science Department
 University of Alberta
 EDMONTON

 08-26-12

 Draft: IFIP'83 Conference, Paris.

 ABSTRACT

 Data on the relative efficiency of various enhancements to the

 alpha-beta algorithm is scattered throughout the literature and the

 results are not always directly comparable. In the present study

 the performance of new and existing refinements is assessed on a

 uniform basis. Four enhancements to the alpha-beta algorithm--

 iterative deepening, aspiration search, memory tables and principal

 variation search--are compared separately and in various

 combinations to determine the most effective alpha-beta

 implementation. Rather than relying on simulation or searches of

 specially constructed trees, a recently specified data set was

 analysed by a simple working chess program.

 T.A. Marsland 3

 1. INTRODUCTION.

 Predicting the outcome of a two-person zero-sum game is

 equivalent to finding the best sequence of moves in a game tree ____ ____

 (i.e. a tree in which the nodes correspond to positions in the game

 and branches to moves). To determine the best move, the obvious

 approach is to perform a minimax search of the whole tree. For some _______

 complex games, like chess, an exhaustive search is not possible,

 and so the outcome of the game is approximated by tree searches of

 some fixed length. When the search algorithm reaches the depth

 specified, the nodes are considered as terminal, and are subjected ________

 to an evaluation function. This function first identifies the non- __________ ________ ____

 quiescent moves for special consideration. In the case of chess _________

 these are checking or capturing moves. Non-quiescent moves are

 examined further by building search trees that contain only

 capturing and checking moves (and their forced responses), until

 the position becomes quiescent or some maximum depth of search is

 reached. In contrast, the subtree from each quiescent move at a

 terminal node is discarded and its value estimated, possibly on a

 very simple basis of material difference.

 The alpha-beta algorithm achieves the same result as minimax, __________ _________

 but does so more efficiently. Its approach is to employ two bounds,

 which form a window. Typically, a call to the alpha-beta function ______

 is of the form:

 V = AB(p, alpha, beta, depth);

 where p is a pointer to a structure which represents a position,

 alpha and beta are the lower and upper bounds on the window, and

 depth is the specified length of search. The number returned by the

 function is called the minimax value of the tree, and measures the _______ _____

 T.A. Marsland 4

 potential success of the next player to move. A skeleton for the

 alpha-beta function, expressed in a negamax framework [KNUT75], is

 to be found in a recent survey paper [MARS81], where more details

 about certain alpha-beta refinements appear. Previous studies of

 alpha-beta efficiency have not always been complete, or have been

 done on a basis which does not allow for simple comparisons. To

 provide more consistency, this new quantitative study presents

 results from a simple working chess program¹, and may be compared

 with those from searches of specially constructed trees [CAMP82].

 2. ALPHA-BETA REFINEMENTS.

 The alpha-beta algorithm can take advantage of an iterative

 deepening mode, in which a sequence of successively deeper and

 deeper searches is carried out until some time limit is exceeded.

 Thus a search of depth D ply (moves) may be used to dynamically ___ ___________

 reorder (sort) the choices and thus prepare the way for a faster _______

 D+1 ply search than would be possible directly. My aim is to

 determine exactly how much a shallow search may improve a deeper

 one, and to compare the results with those for a direct full window ____ ______

 search. The methods considered are:

 (a). Simple iteration, in which the move list at the root node of ______ _________

 the tree is sorted after each iteration. By this means the

 best move found so far is tried first during the next

 iteration.

 (b). Aspiration search, in which the score returned by the best __________ ______

 move found so far is used as the centre of a narrow window

 ────────────────────
 1: A 'C' language version of Tinkerbelle [K. Thompson, BTL], a
 chess program which participated at the US Computer Chess
 Championship, ACM National Conference, San Diego, 1975.

 T.A. Marsland 5

 within which the score for the next iteration is expected to

 fall. It is possible for the search to fail, i.e., to return a

 value which is outside the window. In such a case this partial

 search may be wasted, although a new centre for the window may

 be found. Two failure modes are possible: 'low', in which all

 the moves at the first level (root node) are tried but no

 value reaches the lower limit of the window, and 'high', upon

 which the search stops as soon as a move is found which

 exceeds the upper expectation. A sample implementation of an

 aspiration search, expressed in the C language with Pascal-

 style declarations and loops, is shown in Figure 1.

 VAR V, e, alpha, beta, D : integer;
 p : position;
 /* Assume V = estimated value of position p, and
 e = expected error limit.
 Initialize p, depth and e.
 */
 V = 0;
 for D = 1 to depth do {
 alpha = V - e;
 beta = V + e;
 V = AB(p, alpha, beta, D);

 if (V ≥ beta) /* failing high */
 V = AB(p, V, +INF, D);
 else
 if (V ≤ alpha) /* failing low */
 V = AB(p, -INF, V, D);

 sort(p); /* best move so far is tried first
 on next iteration. */
 }

 Figure 1: Iterative deepening with aspiration search.

 Note that +INF corresponds to a value bigger than any that the

 terminal node evaluation function can produce (e.g., is maxint

 in Pascal), and that p, depth and e are all presumed to be

 initialized suitably.

 T.A. Marsland 6

 (c). Minimal window search, in which it is assumed that the first _______ ______ ______

 move to be tried is the start of the principal variation. This _________ _________

 line is then searched with a full width window, while all the

 alternate variations are searched with a zero width window, _________ __________ ____ _____

 under the assumption that they will fail-low in any case.

 Should one of the moves not fail this way then it becomes the

 start of a new principal variation and the search is repeated

 for this move with a window which covers the new range of

 possible values.

 function PVS(p : position; depth : integer) : integer;
 {
 VAR width, score, i, value : integer;

 if (depth ≤ 0) /* a terminal node? */
 return(evaluate(p));
 /* determine successors p.1 to p.w */
 width = generate(p); /* return number of successors */
 /* as a function value */
 if (width == 0) /* no legal moves? */
 return(evaluate(p));

 make(p.1);
 score = -PVS(p.1, depth-1); /* traverse the PV */
 undo(p.1);

 for i = 2 to width do {
 make(p.i); /* try remaining moves */
 value = -AB(p.i, -score-1, -score, depth-1);
 if (value > score) /* new Principal Variation? */
 score = -AB(p.i, -INF, -value, depth-1);
 undo(p.i);
 }
 return(score);
 }

 Figure 2: Minimal window search.

 This method, once referred to as Calphabeta [FISH81], will now __________

 be called principal variation search or PVS for short. It is ___

 more or less equivalent to SCOUT [PEAR81][CAMP82], as shown in

 Figure 2. Undefined in the program are functions # evaluate #

 (to assess the value of terminal nodes) # generate # (to list

 T.A. Marsland 7

 the moves for the current position) # make # (to actually play

 the move considered) and # undo # (to retract the current

 move).

 Both aspiration and minimal window searches can be improved by the

 introduction of memory tables. For this reason the use of

 refutation and transposition tables forms a part of the study.

 3. MEMORY TABLES.

 After a search to depth D on a tree of constant width W a

 refutation table will contain W*D entries. For each variation the __________ _____

 sequence of D moves which determined a sufficient value (cut off

 the search) for that variation is stored in the table. Prior to the

 next iteration the table is sorted so that the new candidate

 principal variation is tried first. Thus on an iteration to depth

 D+1 there exists a D-ply sequence that is tried immediately. The

 next ply is then added and the search continues. The candidate

 principal variation is fully searched, but for the alternate

 variations the moves in the refutation table may be sufficient to

 cut off the search again and thus save the move generation that

 would normally occur at each node. The storage overhead is very

 small, although a small triangular table is also needed to identify

 the refutations [AKL77].

 A transposition table may also be used to hold refutations _____________ _____

 but, because it has the capacity for including more information, it

 has other capabilities too. In Figure 3 a tree of constant width

 W = 3 and uniform depth D = 3 is represented. The positions

 actually stored in the table are shown by the solid lines. The

 branches with solid or double dot lines are actually searched by

 the alpha-beta algorithm, while those with single dots are not

 T.A. Marsland 8

 searched at all, i.e., are cut off.

 4|
 ┌───────────────────┼───────────────────┐
 | | |
 4| 2| 3|
 ┌─────┼─────┐ ┌─────┘────── ┌─────┼────── ─
 | | | | . . | | .
 7| 4| 2| 2| . . 5| 3| .
 ┌─┼── ┌─┼── ──┼── ┌─┼── ───── ───── ┌─┼── ──┼─┐ ─────
 | : : | : : : | . | : : | : : : : | . . .
 | : : | : : : | . | : : | : : : : | . . .
 7 5 3 4 1 2 2 5 9 2 1 0 6 8 7 4 9 7 5 3 1 1 0 3 3 2 6

 Figure 3: 3-ply tree showing transposition table entries.

 The numbers at the terminal nodes are produced by an evaluation

 function. The other numbers are the values of the individual

 subtrees, as passed back (backed up) to the root node by the alpha-

 beta process. From this one can see that the minimax value of the

 tree is 4 and that the results from 15 positions would be stored,

 rather than only 9 in the refutation table case. Thus the

 transposition table contains not only the main line of each

 variation but also the main subvariations. If the information

 stored in the entries contains at least the best move in the

 position and the value and length of the subtree emanating from

 that point, then the transposition table may also be used to extend

 the effective search depth [MARS81]. This is especially valuable in

 endgames when the number of possible alternatives is small. As in

 the other cases, a sorting operation between each iteration ensures

 that the moves at the first level will be tried in the best

 possible order. A typical transposition table might contain 10,000

 entries, each of 10 bytes [MARS81], for a 100,000 byte total

 storage overhead.

 T.A. Marsland 9

 4. BASIS FOR COMPARISON.

 In comparing algorithms which search game trees, two basic

 criteria are employed. One may either measure the amount of

 computer time used to search a tree, the method which consistently

 produces the expected result in least time being superior, or one

 may count the number of nodes visited in the tree. If the cost of a

 node is nearly constant, these two measures are effectively the

 same. However, the test program, and chess programs in general,

 perform significantly more calculation at terminal nodes than at

 interior nodes in the tree, since they carry out a check or capture

 analysis in the form of an extended tree search. Therefore the

 following results are based on the number of terminal nodes

 examined, especially since this provides a machine-independent

 measure for future comparisons.

 5. RESULTS.

 The algorithms were tested on a data set which was used to

 assess the performance of computer chess programs and human players

 [BRAT82]. That data set contained 24 chess positions [MARS82], of

 which one was deleted since it involved a simple sequence of

 forcing checks. All the remaining positions were searched with 3, 4

 and 5-ply trees, using a combination of alpha-beta refinements, and

 a 6-ply search was done with best method. The raw results have been

 condensed into two graphs. Because the number of terminal nodes is

 exponential with the depth of search, the average terminal node

 count per position is plotted on a log-linear graph, Figure 4. The

 results give a good indication of the relative merits of each

 alpha-beta refinement. However, the effectiveness of the various

 methods is perhaps better seen in Figure 5, which shows the ratio

 T.A. Marsland 10

 of the number of terminal nodes searched relative to a direct

 search. From the graphs one may also deduce that for our data the

 incremental cost, using iterative deepening, of an odd ply search

 after an even ply one is approximately twice as large as the

 incremental cost of an even ply search. This result agrees with the

 earlier ones of Gillogly [GILL72] and Slagle [SLAG69], even though

 those studies were for direct alpha-beta searches, that is to say,

 did not include transposition table and other enhancements.

 Since a transposition table is accessed like a hash table, its

 usage is most effective if the initial probes are uniformly

 distributed across all the table entries. If there is a conflict,

 that is, if the initial entry contains valid data but is not the

 one sought, then a sequence of secondary entries may be tried. The

 maximum acceptable length of this sequence is an important

 parameter. It is recognized that an exhaustive search of the whole

 table may be too time-consuming. So, for example, in BLITZ² a

 secondary sequence length of ten is used, while in BELLE³ only the

 initial entry is considered. The latter approach was adopted here

 because it is simpler, even though the 8192-entry transposition

 table was comparatively small. Our results indicate that

 determining the most effective way to use a transposition table is

 very important, since it is clear from Figure 4 that there is

 considerable scope for improvement in these algorithms, especially

 in the even ply cases.

 In order to provide a lower bound on the number of terminal

 nodes for our chosen data set, it is necessary to estimate the

 ────────────────────
 2: BLITZ, a master calibre chess program developed by R. Hyatt,
 Univ. of Southern Mississippi.
 3: BELLE, the current world champion chess program, developed by K.
 Thompson, Bell Laboratories.

 T.A. Marsland 11

 minimal tree that must be searched by the alpha-beta algorithm. If

 we assume that these game trees may be modelled by a uniform tree _______

 of constant width W, and that W may be estimated by computing the

 number of branches divided by the number of nodes in the actual

 game tree, then the average of these estimates may be taken as the

 constant width of a representative tree. On trees of constant width

 W and fixed depth D, there is a formula for the minimal size of the

 tree that must be searched by the alpha-beta algorithm, and it is

 given by the expression
 ┌ ┐
 W**|D/2| + W**|D/2| - 1 nodes [SLAG69],
 └ ┘
 ┌ ┐
 where |x| and |x| represent upper/lower integer bounds on x.
 └ ┘

 We have plotted the minimal search size under optimal conditions in

 Figures 4 & 5, and one can see that a factor of 1.2 reduction is

 possible on 3 and 5-ply trees and a factor of about 2.5 on 4 and 6-

 ply trees. The true reason for this difference is not clear,

 although factors of two between even and odd ply searches are

 common. On the other hand, perhaps the data set of 23 positions is

 too small or is biased in some way. In fact, one of the positions

 does influence the final results strongly. For example, in the case

 of board W a change occurred in the principal variation, thus the

 4-ply search was not a good predictor of the 5-ply result. Just how

 serious this can be is clear from Table 1 which shows that for

 board W all the iterative searches are more expensive than a direct

 search. This is reinforced in the 6-ply results when, for the case

 PVS with transposition table, 28% of the effort was expended on

 board W (Table 2).

 Although the efficiency of the various methods changed when

 done on a CPU basis, rather than on a terminal node count, the

 T.A. Marsland 12

 relative efficiency of the methods was not affected. While one may

 argue that the terminal node count does not reflect the true cost

 of a search, it does make possible a direct comparison with the

 expected minimal tree size (Figure 4).

 6. CONCLUSIONS.

 These results confirm that iterative deepening is an effective

 enhancement to the alpha-beta algorithm, provided it is used in

 conjunction with some form of aspiration or memory table search.

 For relatively shallow trees (depth ≤ 5) there is not much to

 choose between refutation and transposition memory tables. By its

 very nature, a transposition table is continually being filled with

 new positions, some of which may destroy entries that have not yet

 been reused. Thus it is not possible to guarantee that all the

 primary refutations will be retained. A refutation table does not

 suffer from this problem and, since it is small and easy to

 maintain, it is recommended that it always supplement a

 transposition table, thus guaranteeing retention of the primary

 refutations. In our experience, the combination memory function is,

 on average, measurably better than use of a transposition table

 alone. To support this combination we observed that, for the 5-ply

 PVS case an average 2 percentage point improvement occurred, while

 in the 6-ply case (Table 2) a more dramatic 31 percentage point

 improvement is shown. From this second result we conclude that a

 transposition table of 8192 entries is too small for 6-ply searches

 of complex positions, since it becomes seriously overcommitted and

 cannot perform as well as the simpler refutation table. On the

 other hand, the true power of a transposition table was not brought

 out by our data set, since there were only two endgames, boards F

 T.A. Marsland 13

 and H (Tables 1 & 2).

 Two interesting problems arose during this study. Computation

 of the (hash) transposition table key was based on the method

 described by Zobrist [ZOBR70]. During the 6-ply searches this was

 found to be inadequate, when two different positions generated the

 same hash-key code. The difficulty was eased by extending the

 codes, which represent placement of pieces on the board, from 32 to

 48 bits, thus decreasing the probability of such a conflict. A

 second problem arose from a subtle inconsistency between refutation

 table and transposition table usage. This was corrected by

 abandonning the refutation sequence as soon as the transposition

 table offered an alternative. It is easy for this problem to occur

 when enpassant captures exist, since the same position can arise

 from two different move sequences. A simpler way of maintaining

 consistency is to give the refutation table entries priority over

 those in the transposition table. Since replications of alternate

 variations occur infrequently, the only penalty is an insignificant

 loss of efficiency.

 Of the two principal refinements, narrow or minimal window

 aspiration search and memory tables, it was found that preservation

 and use of the refutations from a previous iteration was more

 important than aspiration searching. This point is clearly

 illustrated in Table 1, where a full window search with refutation

 table support is superior to a narrow window aspiration search

 without memory table. In general, although the data in Table 1

 appears to support that possibility, the combined effect of these

 two refinements is not additive, but improvement in performance

 occurs, especially for the deeper searches.

 Based on our experiments, as summarized by results presented

 T.A. Marsland 14

 in Figure 5, it is clear that PVS is potentially superior to narrow

 window aspiration searching, and avoids the need to determine the

 optimal window size. Note that this result is contrary to an

 earlier conclusion for the game of checkers [FISH81], where

 Calphabeta (that is, PVS) was described as being "disappointing"

 and "probably not to be recommended" [FISH81]. Thus for two

 different games contradictory results appear, illustrating how

 game-dependent these methods may be and the importance of strong

 move ordering [MARS81] in the efficiency of tree search algorithms.

 T.A. Marsland 15

 REFERENCES

 AKL77 S.G. Akl and M.M. Newborn, "The Principal Continuation
 and the Killer Heuristic", Proc. ACM National Conf.,
 Seattle 1977, 466-473.

 BRAT82 I. Bratko and D. Kopec, "A Test for Comparison of Human
 and Computer Performance in Chess", Advances in Computer ________ __ ________
 Chess 3, M.R.B. Clarke (editor), Pergamon Press, 1982. _____ _

 CAMP82 M.S. Campbell and T.A. Marsland, "A Comparison of Minimax
 Tree Search Algorithms", TR82-3, University of Alberta,
 (to appear in Artificial Intelligence--early 1983).

 FISH81 J. Fishburn, "Analysis of Speedup in Distributed
 Algorithms", TR #431, Computer Sciences Dept., University
 of Wisconsin-Madison, 1981.

 GILL72 J.J. Gillogly, "The Technology Chess Program", Artificial
 Intelligence 3 (1972), 145-163.

 KNUT75 D. Knuth and R. Moore, "An Analysis of Alpha-beta
 Pruning", Artificial Intelligence 6 (1975), 293-326.

 MARS81 T.A. Marsland and M. Campbell, "Parallel Search of
 Strongly Ordered Game Trees", TR81-9, University of
 Alberta, revised June 1982, (to appear ACM Computing
 Surveys, Dec. 1982).

 MARS82 T.A. Marsland, "A Quantitative Study of Refinements to
 the Alpha-beta Algorithm", TR82-6, Comp. Sci. Dept.,
 Univ. of Alberta, Aug. 1982.

 PEAR80 J. Pearl, "Asymptotic Properties of Minimax Trees and
 Game Searching Procedures", Artificial Intelligence 14
 (1980), 113-138.

 SLAG69 J.R. Slagle and J.K. Dixon, "Experiments with some
 Programs which Search Game Trees", JACM, Vol. 16, No. 2
 (1969), 189-207.

 ZOBR70 A.L. Zobrist, "A Hashing Method with Applications for
 Game Playing", TR 88, Computer Science Dept., Univ. of
 Wisconsin-Madison, 1970.

T.A. Marsland 16

__
| Number of Terminal Nodes Evaluated (5-ply) |
| |__
|board| full window | no table | refutation table | transposition table| move |
| | direct iterative| asp PVS | full asp PVS | asp PVS | |
| | | | | | |__
A	(forced mate)				d6d1
B	61773 68399	46732 50625	69198 46485 48196	44052 46810	e4e5
C	50861 57539	34332 41019	34208 28227 30484	27300 30275	e8d8
D	58622 59437	55549 54294	50398 49370 48410	47226 47151	e5e6
E	180659 196349	94730 97074	111465 88807 88125	84515 84068	a1d1
F	24645 27364	20285 14151	26162 19472 14020	12579 12413	g5g6
G	116933 136416	84855 75801	94992 65194 60817	62586 57342	a3b4
H	7612 9116	8253 6124	5481 5108 4706	4086 4107	a2a3
I	132306 144505	86565 80933	81554 66957 67822	62556 67150	a2a4
J	181883 192933	112237 104027	127312 80331 80974	84774 79273	f6d7
K	109371 119427	56635 62999	65390 52342 51954	48968 48772	g3f5
L	78580 82392	43260 53514	53708 38600 44420	35853 38661	d7f5
M	143048 152922	139816 92164	111316 107346 85779	89234 82629	a1c1
N	31812 31701	31418 29875	30573 30273 29834	29694 29664	d1d2
O	34092 27048	25084 23459	22788 22225 21550	21652 21528	g4g7
P	75841 56372	51801 42900	50007 48075 40102	40518 39647	g5e7
Q	85844 91284	72159 62378	51742 41842 37859	33933 33924	d7b8
R	188877 201361	188009 128565	142188 134292 97861	94138 87243	g7h8
S	65370 82351	47504 52128	71536 43645 43762	41197 41512	a6a5
T	264078 287118	224568 171356	97785 78942 74026	130266 92728	a2a4
U	257810 223869	152228 124901	138113 107773 96104	99303 94603	f5d4
V	54032 64938	51318 45695	49705 43818 41810	39644 39178	e7d8
W	142147 307806	275530 212299	222935 192615 186438	179855 159550	g7g6
X	68567 73174	68008 71768	69627 67835 67803	67514 67515	b4c5
Total	2414763 2693821	1970876 1698049	1778183 1459574 1362856	1381443 1305743	
Mean	104990 117122	85690 73828	77312 63459 59254	60062 56771	
%	100 111	82 70	74 60 56	57 54	

 Table 1: 5-ply terminal node count for alpha-beta variations.

T.A. Marsland 17

__
| Terminal node count and VAX/Unix@ CPU time (6-ply) |
| |__
	full window	transposition table	transposition and	move
			refutation table	
	direct minutes	PVS minutes	PVS minutes	
A	(forced mate)			d6d1
B	157843 44	118055 40	92776 37	e4e5
C	270258 110	578855 190	130859 52	e8d8
D	100498 23	151945 30	96232 15	e5e6
E	502855 181	367191 122	347057 112	a1d1
F	48980 5	30675 3	27743 2	g5g6
G	552347 251	499806 220	410734 207	h5f6
H	26314 2	10985 1	9236 1	a2a3
I	547563 456	316397 193	272255 174	c3b5
J	606872 206	579776 192	221923 83	d8d5
K	303384 107	193808 67	166732 58	g3f5
L	414277 82	283386 68	138463 31	d7f5
M	299146 96	275861 75	201496 55	a1c1
N	87188 13	73899 11	68442 10	d1e1
O	123317 25	44297 14	40912 12	g4g7
P	172337 60	151980 39	150085 38	d2e4
Q	519506 307	228934 163	173727 115	d7b8
R	833502 424	548380 240	362541 155	g7h8
S	366195 82	256142 68	201459 51	a6a5
T	1286679 435	695456 241	664082 235	c3b5
U	1019468 696	619352 378	327153 163	f5h6
V	237350 139	179015 76	269214 147	e7d8
W	1644898 421	3652276 1091	1268625 413	c8f5
X	106773 27	161748 35	161587 34	b4c5
Total	10227550 4194	10018219 3557	5803333 2201	
Mean	444676 182	435574 155	252318 96	
%	100 100	98 85	57 50	

 Table 2: 6-ply search data, node count and time.

