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     ABSTRACT

          Data on the relative efficiency of various enhancements to the

     alpha-beta algorithm is scattered throughout the literature and the

     results are not always directly comparable. In the present study

     the performance of new and existing refinements is assessed on a

     uniform basis. Four enhancements to the alpha-beta algorithm--

     iterative deepening, aspiration search, memory tables and principal

     variation search--are compared separately and in various

     combinations to determine the most effective alpha-beta

     implementation. Rather than relying on simulation or searches of

     specially constructed trees, a recently specified data set was

     analysed by a simple working chess program.
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     1. INTRODUCTION.

          Predicting the outcome of a two-person zero-sum game is

     equivalent to finding the best sequence of moves in a game tree                                                           ____ ____

     (i.e. a tree in which the nodes correspond to positions in the game

     and branches to moves). To determine the best move, the obvious

     approach is to perform a minimax search of the whole tree. For some                              _______

     complex games, like chess, an exhaustive search is not possible,

     and so the outcome of the game is approximated by tree searches of

     some fixed length. When the search algorithm reaches the depth

     specified, the nodes are considered as terminal, and are subjected                                            ________

     to an evaluation function. This function first identifies the non-           __________ ________                                     ____

     quiescent moves for special consideration. In the case of chess     _________

     these are checking or capturing moves. Non-quiescent moves are

     examined further by building search trees that contain only

     capturing and checking moves (and their forced responses), until

     the position becomes quiescent or some maximum depth of search is

     reached. In contrast, the subtree from each quiescent move at a

     terminal node is discarded and its value estimated, possibly on a

     very simple basis of material difference.

          The alpha-beta algorithm achieves the same result as minimax,              __________ _________

     but does so more efficiently. Its approach is to employ two bounds,

     which form a window. Typically, a call to the alpha-beta function                  ______

     is of the form:

              V = AB(p, alpha, beta, depth);

     where p is a pointer to a structure which represents a position,

     alpha and beta are the lower and upper bounds on the window, and

     depth is the specified length of search. The number returned by the

     function is called the minimax value of the tree, and measures the                            _______ _____
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     potential success of the next player to move. A skeleton for the

     alpha-beta function, expressed in a negamax framework [KNUT75], is

     to be found in a recent survey paper [MARS81], where more details

     about certain alpha-beta refinements appear. Previous studies of

     alpha-beta efficiency have not always been complete, or have been

     done on a basis which does not allow for simple comparisons. To

     provide more consistency, this new quantitative study presents

     results from a simple working chess program¹, and may be compared

     with those from searches of specially constructed trees [CAMP82].

     2. ALPHA-BETA REFINEMENTS.

          The alpha-beta algorithm can take advantage of an iterative

     deepening mode, in which a sequence of successively deeper and

     deeper searches is carried out until some time limit is exceeded.

     Thus a search of depth D ply (moves) may be used to dynamically                              ___                        ___________

     reorder (sort) the choices and thus prepare the way for a faster     _______

     D+1 ply search than would be possible directly. My aim is to

     determine exactly how much a shallow search may improve a deeper

     one, and to compare the results with those for a direct full window                                                             ____ ______

     search. The methods considered are:

     (a). Simple iteration, in which the move list at the root node of          ______ _________

          the tree is sorted after each iteration. By this means the

          best move found so far is tried first during the next

          iteration.

     (b). Aspiration search, in which the score returned by the best          __________ ______

          move found so far is used as the centre of a narrow window

     ────────────────────
     1: A 'C' language version of Tinkerbelle [K. Thompson, BTL], a
     chess program which participated at the US Computer Chess
     Championship, ACM National Conference, San Diego, 1975.
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          within which the score for the next iteration is expected to

          fall. It is possible for the search to fail, i.e., to return a

          value which is outside the window. In such a case this partial

          search may be wasted, although a new centre for the window may

          be found. Two failure modes are possible: 'low', in which all

          the moves at the first level (root node) are tried but no

          value reaches the lower limit of the window, and 'high', upon

          which the search stops as soon as a move is found which

          exceeds the upper expectation. A sample implementation of an

          aspiration search, expressed in the C language with Pascal-

          style declarations and loops, is shown in Figure 1.

        VAR V, e, alpha, beta, D : integer;
            p : position;
        /*    Assume V = estimated value of position p, and
                     e = expected error limit.
              Initialize p, depth and e.
        */
        V = 0;
        for D = 1 to depth do {
            alpha = V - e;
            beta  = V + e;
            V = AB(p, alpha, beta, D);

            if (V ≥ beta)                    /* failing high */
               V = AB(p, V, +INF, D);
            else
            if (V ≤ alpha)                   /* failing low  */
               V = AB(p, -INF, V, D);

            sort(p);     /* best move so far is tried first
                            on next iteration. */
        }

           Figure 1: Iterative deepening with aspiration search.

          Note that +INF corresponds to a value bigger than any that the

          terminal node evaluation function can produce (e.g., is maxint

          in Pascal), and that p, depth and e are all presumed to be

          initialized suitably.
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     (c). Minimal window search, in which it is assumed that the first          _______ ______ ______

          move to be tried is the start of the principal variation. This                                               _________ _________

          line is then searched with a full width window, while all the

          alternate variations are searched with a zero width window,          _________ __________                     ____ _____

          under the assumption that they will fail-low in any case.

          Should one of the moves not fail this way then it becomes the

          start of a new principal variation and the search is repeated

          for this move with a window which covers the new range of

          possible values.

     function PVS( p : position; depth : integer) : integer;
     {
       VAR width, score, i, value : integer;

       if (depth ≤ 0)                              /* a terminal node? */
          return(evaluate(p));
                                    /* determine successors p.1 to p.w */
       width = generate(p);         /* return number of successors     */
                                    /* as a function value             */
       if (width == 0)                              /* no legal moves? */
          return(evaluate(p));

       make(p.1);
       score = -PVS(p.1, depth-1);                  /* traverse the PV */
       undo(p.1);

       for i = 2 to width do {
          make(p.i);                            /* try remaining moves */
          value = -AB(p.i, -score-1, -score, depth-1);
          if (value > score)               /* new Principal Variation? */
             score = -AB(p.i, -INF, -value, depth-1);
          undo(p.i);
       }
       return(score);
     }

           Figure 2: Minimal window search.

          This method, once referred to as Calphabeta [FISH81], will now                                           __________

          be called principal variation search or PVS for short. It is                                                  ___

          more or less equivalent to SCOUT [PEAR81][CAMP82], as shown in

          Figure 2. Undefined in the program are functions # evaluate #

          (to assess the value of terminal nodes) # generate # (to list
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          the moves for the current position) # make # (to actually play

          the move considered) and # undo # (to retract the current

          move).

     Both aspiration and minimal window searches can be improved by the

     introduction of memory tables. For this reason the use of

     refutation and transposition tables forms a part of the study.

     3. MEMORY TABLES.

          After a search to depth D on a tree of constant width W a

     refutation table will contain W*D entries. For each variation the     __________ _____

     sequence of D moves which determined a sufficient value (cut off

     the search) for that variation is stored in the table. Prior to the

     next iteration the table is sorted so that the new candidate

     principal variation is tried first. Thus on an iteration to depth

     D+1 there exists a D-ply sequence that is tried immediately. The

     next ply is then added and the search continues. The candidate

     principal variation is fully searched, but for the alternate

     variations the moves in the refutation table may be sufficient to

     cut off the search again and thus save the move generation that

     would normally occur at each node. The storage overhead is very

     small, although a small triangular table is also needed to identify

     the refutations [AKL77].

          A transposition table may also be used to hold refutations            _____________ _____

     but, because it has the capacity for including more information, it

     has other capabilities too. In Figure 3 a tree of constant width

     W = 3 and uniform depth D = 3 is represented. The positions

     actually stored in the table are shown by the solid lines. The

     branches with solid or double dot lines are actually searched by

     the alpha-beta algorithm, while those with single dots are not
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     searched at all, i.e., are cut off.

                                     4|
                  ┌───────────────────┼───────────────────┐
                  |                   |                   |
                 4|                  2|                  3|
            ┌─────┼─────┐       ┌─────┘──────       ┌─────┼──────                                      ─
            |     |     |       |     .     .       |     |     .
           7|    4|    2|      2|     .     .      5|    3|     .
          ┌─┼── ┌─┼── ──┼──   ┌─┼── ───── ─────   ┌─┼── ──┼─┐ ─────
          | : : | : : : | .   | : : . . . . . .   | : : : : | . . .
          | : : | : : : | .   | : : . . . . . .   | : : : : | . . .
          7 5 3 4 1 2 2 5 9   2 1 0 6 8 7 4 9 7   5 3 1 1 0 3 3 2 6

     Figure 3: 3-ply tree showing transposition table entries.

     The numbers at the terminal nodes are produced by an evaluation

     function. The other numbers are the values of the individual

     subtrees, as passed back (backed up) to the root node by the alpha-

     beta process. From this one can see that the minimax value of the

     tree is 4 and that the results from 15 positions would be stored,

     rather than only 9 in the refutation table case. Thus the

     transposition table contains not only the main line of each

     variation but also the main subvariations. If the information

     stored in the entries contains at least the best move in the

     position and the value and length of the subtree emanating from

     that point, then the transposition table may also be used to extend

     the effective search depth [MARS81]. This is especially valuable in

     endgames when the number of possible alternatives is small. As in

     the other cases, a sorting operation between each iteration ensures

     that the moves at the first level will be tried in the best

     possible order. A typical transposition table might contain 10,000

     entries, each of 10 bytes [MARS81], for a 100,000 byte total

     storage overhead.
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     4. BASIS FOR COMPARISON.

          In comparing algorithms which search game trees, two basic

     criteria are employed. One may either measure the amount of

     computer time used to search a tree, the method which consistently

     produces the expected result in least time being superior, or one

     may count the number of nodes visited in the tree. If the cost of a

     node is nearly constant, these two measures are effectively the

     same. However, the test program, and chess programs in general,

     perform significantly more calculation at terminal nodes than at

     interior nodes in the tree, since they carry out a check or capture

     analysis in the form of an extended tree search. Therefore the

     following results are based on the number of terminal nodes

     examined, especially since this provides a machine-independent

     measure for future comparisons.

     5. RESULTS.

          The algorithms were tested on a data set which was used to

     assess the performance of computer chess programs and human players

     [BRAT82]. That data set contained 24 chess positions [MARS82], of

     which one was deleted since it involved a simple sequence of

     forcing checks. All the remaining positions were searched with 3, 4

     and 5-ply trees, using a combination of alpha-beta refinements, and

     a 6-ply search was done with best method. The raw results have been

     condensed into two graphs. Because the number of terminal nodes is

     exponential with the depth of search, the average terminal node

     count per position is plotted on a log-linear graph, Figure 4. The

     results give a good indication of the relative merits of each

     alpha-beta refinement. However, the effectiveness of the various

     methods is perhaps better seen in Figure 5, which shows the ratio
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     of the number of terminal nodes searched relative to a direct

     search. From the graphs one may also deduce that for our data the

     incremental cost, using iterative deepening, of an odd ply search

     after an even ply one is approximately twice as large as the

     incremental cost of an even ply search. This result agrees with the

     earlier ones of Gillogly [GILL72] and Slagle [SLAG69], even though

     those studies were for direct alpha-beta searches, that is to say,

     did not include transposition table and other enhancements.

          Since a transposition table is accessed like a hash table, its

     usage is most effective if the initial probes are uniformly

     distributed across all the table entries. If there is a conflict,

     that is, if the initial entry contains valid data but is not the

     one sought, then a sequence of secondary entries may be tried. The

     maximum acceptable length of this sequence is an important

     parameter. It is recognized that an exhaustive search of the whole

     table may be too time-consuming. So, for example, in BLITZ² a

     secondary sequence length of ten is used, while in BELLE³ only the

     initial entry is considered. The latter approach was adopted here

     because it is simpler, even though the 8192-entry transposition

     table was comparatively small. Our results indicate that

     determining the most effective way to use a transposition table is

     very important, since it is clear from Figure 4 that there is

     considerable scope for improvement in these algorithms, especially

     in the even ply cases.

          In order to provide a lower bound on the number of terminal

     nodes for our chosen data set, it is necessary to estimate the

     ────────────────────
     2: BLITZ, a master calibre chess program developed by R. Hyatt,
     Univ. of Southern Mississippi.
     3: BELLE, the current world champion chess program, developed by K.
     Thompson, Bell Laboratories.
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     minimal tree that must be searched by the alpha-beta algorithm. If

     we assume that these game trees may be modelled by a uniform tree                                                          _______

     of constant width W, and that W may be estimated by computing the

     number of branches divided by the number of nodes in the actual

     game tree, then the average of these estimates may be taken as the

     constant width of a representative tree. On trees of constant width

     W and fixed depth D, there is a formula for the minimal size of the

     tree that must be searched by the alpha-beta algorithm, and it is

     given by the expression
                        ┌   ┐
                     W**|D/2| + W**|D/2| - 1  nodes [SLAG69],
                                   └   ┘
           ┌ ┐
     where |x| and |x| represent upper/lower integer bounds on x.
                   └ ┘

     We have plotted the minimal search size under optimal conditions in

     Figures 4 & 5, and one can see that a factor of 1.2 reduction is

     possible on 3 and 5-ply trees and a factor of about 2.5 on 4 and 6-

     ply trees. The true reason for this difference is not clear,

     although factors of two between even and odd ply searches are

     common. On the other hand, perhaps the data set of 23 positions is

     too small or is biased in some way. In fact, one of the positions

     does influence the final results strongly. For example, in the case

     of board W a change occurred in the principal variation, thus the

     4-ply search was not a good predictor of the 5-ply result. Just how

     serious this can be is clear from Table 1 which shows that for

     board W all the iterative searches are more expensive than a direct

     search. This is reinforced in the 6-ply results when, for the case

     PVS with transposition table, 28% of the effort was expended on

     board W (Table 2).

          Although the efficiency of the various methods changed when

     done on a CPU basis, rather than on a terminal node count, the
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     relative efficiency of the methods was not affected. While one may

     argue that the terminal node count does not reflect the true cost

     of a search, it does make possible a direct comparison with the

     expected minimal tree size (Figure 4).

     6. CONCLUSIONS.

          These results confirm that iterative deepening is an effective

     enhancement to the alpha-beta algorithm, provided it is used in

     conjunction with some form of aspiration or memory table search.

     For relatively shallow trees (depth ≤ 5) there is not much to

     choose between refutation and transposition memory tables. By its

     very nature, a transposition table is continually being filled with

     new positions, some of which may destroy entries that have not yet

     been reused. Thus it is not possible to guarantee that all the

     primary refutations will be retained. A refutation table does not

     suffer from this problem and, since it is small and easy to

     maintain, it is recommended that it always supplement a

     transposition table, thus guaranteeing retention of the primary

     refutations. In our experience, the combination memory function is,

     on average, measurably better than use of a transposition table

     alone. To support this combination we observed that, for the 5-ply

     PVS case an average 2 percentage point improvement occurred, while

     in the 6-ply case (Table 2) a more dramatic 31 percentage point

     improvement is shown. From this second result we conclude that a

     transposition table of 8192 entries is too small for 6-ply searches

     of complex positions, since it becomes seriously overcommitted and

     cannot perform as well as the simpler refutation table. On the

     other hand, the true power of a transposition table was not brought

     out by our data set, since there were only two endgames, boards F
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     and H (Tables 1 & 2).

          Two interesting problems arose during this study. Computation

     of the (hash) transposition table key was based on the method

     described by Zobrist [ZOBR70]. During the 6-ply searches this was

     found to be inadequate, when two different positions generated the

     same hash-key code. The difficulty was eased by extending the

     codes, which represent placement of pieces on the board, from 32 to

     48 bits, thus decreasing the probability of such a conflict. A

     second problem arose from a subtle inconsistency between refutation

     table and transposition table usage. This was corrected by

     abandonning the refutation sequence as soon as the transposition

     table offered an alternative. It is easy for this problem to occur

     when enpassant captures exist, since the same position can arise

     from two different move sequences. A simpler way of maintaining

     consistency is to give the refutation table entries priority over

     those in the transposition table. Since replications of alternate

     variations occur infrequently, the only penalty is an insignificant

     loss of efficiency.

          Of the two principal refinements, narrow or minimal window

     aspiration search and memory tables, it was found that preservation

     and use of the refutations from a previous iteration was more

     important than aspiration searching. This point is clearly

     illustrated in Table 1, where a full window search with refutation

     table support is superior to a narrow window aspiration search

     without memory table. In general, although the data in Table 1

     appears to support that possibility, the combined effect of these

     two refinements is not additive, but improvement in performance

     occurs, especially for the deeper searches.

          Based on our experiments, as summarized by results presented
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     in Figure 5, it is clear that PVS is potentially superior to narrow

     window aspiration searching, and avoids the need to determine the

     optimal window size. Note that this result is contrary to an

     earlier conclusion for the game of checkers [FISH81], where

     Calphabeta (that is, PVS) was described as being "disappointing"

     and "probably not to be recommended" [FISH81]. Thus for two

     different games contradictory results appear, illustrating how

     game-dependent these methods may be and the importance of strong

     move ordering [MARS81] in the efficiency of tree search algorithms.
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______________________________________________________________________________________________________________
|                                 Number of Terminal Nodes Evaluated (5-ply)                                 |
|                                                                                                            |______________________________________________________________________________________________________________
|board|     full window     |      no table      |       refutation table       | transposition table|  move |
|     |  direct    iterative|    asp       PVS   |   full       asp       PVS   |    asp       PVS   |       |
|     |                     |                    |                              |                    |       |______________________________________________________________________________________________________________
|  A  |  (forced    mate)   |                    |                              |                    |  d6d1 |
|  B  |    61773      68399 |    46732     50625 |    69198     46485     48196 |    44052     46810 |  e4e5 |
|  C  |    50861      57539 |    34332     41019 |    34208     28227     30484 |    27300     30275 |  e8d8 |
|  D  |    58622      59437 |    55549     54294 |    50398     49370     48410 |    47226     47151 |  e5e6 |
|  E  |   180659     196349 |    94730     97074 |   111465     88807     88125 |    84515     84068 |  a1d1 |
|  F  |    24645      27364 |    20285     14151 |    26162     19472     14020 |    12579     12413 |  g5g6 |
|  G  |   116933     136416 |    84855     75801 |    94992     65194     60817 |    62586     57342 |  a3b4 |
|  H  |     7612       9116 |     8253      6124 |     5481      5108      4706 |     4086      4107 |  a2a3 |
|  I  |   132306     144505 |    86565     80933 |    81554     66957     67822 |    62556     67150 |  a2a4 |
|  J  |   181883     192933 |   112237    104027 |   127312     80331     80974 |    84774     79273 |  f6d7 |
|  K  |   109371     119427 |    56635     62999 |    65390     52342     51954 |    48968     48772 |  g3f5 |
|  L  |    78580      82392 |    43260     53514 |    53708     38600     44420 |    35853     38661 |  d7f5 |
|  M  |   143048     152922 |   139816     92164 |   111316    107346     85779 |    89234     82629 |  a1c1 |
|  N  |    31812      31701 |    31418     29875 |    30573     30273     29834 |    29694     29664 |  d1d2 |
|  O  |    34092      27048 |    25084     23459 |    22788     22225     21550 |    21652     21528 |  g4g7 |
|  P  |    75841      56372 |    51801     42900 |    50007     48075     40102 |    40518     39647 |  g5e7 |
|  Q  |    85844      91284 |    72159     62378 |    51742     41842     37859 |    33933     33924 |  d7b8 |
|  R  |   188877     201361 |   188009    128565 |   142188    134292     97861 |    94138     87243 |  g7h8 |
|  S  |    65370      82351 |    47504     52128 |    71536     43645     43762 |    41197     41512 |  a6a5 |
|  T  |   264078     287118 |   224568    171356 |    97785     78942     74026 |   130266     92728 |  a2a4 |
|  U  |   257810     223869 |   152228    124901 |   138113    107773     96104 |    99303     94603 |  f5d4 |
|  V  |    54032      64938 |    51318     45695 |    49705     43818     41810 |    39644     39178 |  e7d8 |
|  W  |   142147     307806 |   275530    212299 |   222935    192615    186438 |   179855    159550 |  g7g6 |
|  X  |    68567      73174 |    68008     71768 |    69627     67835     67803 |    67514     67515 |  b4c5 |
|Total|  2414763    2693821 |  1970876   1698049 |  1778183   1459574   1362856 |  1381443   1305743 |       |
| Mean|   104990     117122 |    85690     73828 |    77312     63459     59254 |    60062     56771 |       |
|  %  |      100        111 |       82        70 |       74        60        56 |       57        54 |       |
|     |                     |                    |                              |                    |       |______________________________________________________________________________________________________________

   Table 1: 5-ply terminal node count for alpha-beta variations.
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__________________________________________________________________________________
|               Terminal node count and VAX/Unix@ CPU time (6-ply)               |
|                                                                                |__________________________________________________________________________________
|     |    full window      |  transposition table |  transposition and  |  move |
|     |                     |                      |   refutation table  |       |
|     |   direct    minutes |    PVS      minutes  |   PVS       minutes |       |
|     |                     |                      |                     |       |__________________________________________________________________________________
|  A  |  (forced     mate)  |                      |                     |  d6d1 |
|  B  |    157843       44  |    118055       40   |    92776       37   |  e4e5 |
|  C  |    270258      110  |    578855      190   |   130859       52   |  e8d8 |
|  D  |    100498       23  |    151945       30   |    96232       15   |  e5e6 |
|  E  |    502855      181  |    367191      122   |   347057      112   |  a1d1 |
|  F  |     48980        5  |     30675        3   |    27743        2   |  g5g6 |
|  G  |    552347      251  |    499806      220   |   410734      207   |  h5f6 |
|  H  |     26314        2  |     10985        1   |     9236        1   |  a2a3 |
|  I  |    547563      456  |    316397      193   |   272255      174   |  c3b5 |
|  J  |    606872      206  |    579776      192   |   221923       83   |  d8d5 |
|  K  |    303384      107  |    193808       67   |   166732       58   |  g3f5 |
|  L  |    414277       82  |    283386       68   |   138463       31   |  d7f5 |
|  M  |    299146       96  |    275861       75   |   201496       55   |  a1c1 |
|  N  |     87188       13  |     73899       11   |    68442       10   |  d1e1 |
|  O  |    123317       25  |     44297       14   |    40912       12   |  g4g7 |
|  P  |    172337       60  |    151980       39   |   150085       38   |  d2e4 |
|  Q  |    519506      307  |    228934      163   |   173727      115   |  d7b8 |
|  R  |    833502      424  |    548380      240   |   362541      155   |  g7h8 |
|  S  |    366195       82  |    256142       68   |   201459       51   |  a6a5 |
|  T  |   1286679      435  |    695456      241   |   664082      235   |  c3b5 |
|  U  |   1019468      696  |    619352      378   |   327153      163   |  f5h6 |
|  V  |    237350      139  |    179015       76   |   269214      147   |  e7d8 |
|  W  |   1644898      421  |   3652276     1091   |  1268625      413   |  c8f5 |
|  X  |    106773       27  |    161748       35   |   161587       34   |  b4c5 |
|Total|  10227550     4194  |  10018219     3557   |  5803333     2201   |       |
|Mean |    444676      182  |    435574      155   |   252318       96   |       |
|  %  |       100      100  |        98       85   |       57       50   |       |
|     |                     |                      |                     |       |__________________________________________________________________________________

  Table 2: 6-ply search data, node count and time.


