
Monday, February 5, 2001 page 1

Dynamic Memory Allocation (malloc and calloc).

King Chapter 17: describes the mechanism for obtaining a
pointer to a block of new memory. This is accomplished
with the routines, malloc and calloc, found in <stdlib.h>

malloc() returns N bytes of space for the user, and
calloc() gets space for an array of objects each of size N.

Thus malloc is best viewed as returning a pointer to an
array of chars, while calloc will return a pointer to an
array of the same type as the objects in each element.

int N = 100;
char* p = (char*) malloc (N);

will return a pointer to a space in the heap were a
contiguous block of 100 bytes of memory exists. NONE of
those bytes will be initialized. If space cannot be found,
then p will be NULL.

However, keep in mind that to manage this memory the
system actually needs some overhead space.

To next available free space

0 1 2 N-1

N

p

Monday, February 5, 2001 page 2

Remember, if you want to use malloc to obtain memory for
a string, you must leave space for the '\0' terminator.

To give the space back to the system simply write

free(p);

To obtain space for N integers write

int* q = (int*) malloc (N*(sizeof (int)));

Note the necessary and different coercion (casting).
Because malloc is a void* function it can be coerced to point
to any object. In C++ no default coercion occurs.

calloc is similar in many ways, but it initializes the
memory obtained to zero. More general and better.

To obtain N integers, each initialized to zero, write:

int* q = (int*) calloc (N, sizeof(int));

Similarly

free (q);

gives the space back to the system.

calloc is especially useful for acquiring space for a data
structure element.

Monday, February 5, 2001 page 3

NULL*next :::::::::Dn D2 D1

np

*next

// prototypes and declarations in header file

struct node {
int data;
struct node* next;

}; // prototype node

typedef struct node* NodePtr; // defining NodePtr
#define NodePtr struct node* // same as above

NodePtr makenode (int); // prototype funct

NULLD1
np

D2 *next

D3 NULL
t

t->next = np;
np = t;

NULLD1

np
D2 *next

D3 *next
t

Monday, February 5, 2001 page 4

// functions and main program
NodePtr makenode (int item)
{

NodePtr ptr; // definition of ptr
ptr = (NodePtr) malloc (sizeof (struct node));

if (ptr != NULL) { // check valid pointer
ptr->data = item;
ptr->next = NULL;

} else exit (1);
return ptr;

}

int main (void) {
NodePtr np = NULL; // np start of list
NodePtr t; // t is a temp

for (i = 1; i < 5; i++) {
t = makenode (i); // assumes t != NULL
t->next = np;
np = t;

}
for (t = np; t != NULL; t = t->next)

printf ("%d\n", t->data);
}

What we have actually built here is a stack.
A Last In First Out (LIFO) Queue

NOTE: We have simplified the programming by using a
typedef in the header file to define NodePtr.

Monday, February 5, 2001 page 5

Operations on strings

char* s = "My sample string";
we can also use the typedef statement to form a user type

typedef char* String; // #define String char*
String s = "My sample string";

We can now find the length of this string with:

int len = strlen (s); // will yield 16

but if we want to copy this string into an array then we
would need a declaration like:

char letters [1+strlen(s)]; // Why 1+?

and then use the copy procedure strcpy()

strcpy (&letters[0], s);

This however is not common usage.
Note the prototype for the strcpy function

char* strcpy (char* StrNew, const char* StrOrig);

Questions:
why is this a char* function and not a void function?

why is the second parameter of type const char* ?

Monday, February 5, 2001 page 6

const attached to a parameter means that the parameter
will not change. In this case it means that the parameter
StrOrig cannot be an L-value within the strcpy function.

Thus it can provide valuable protection and assurance that
the copy will not be in the opposite direction!

So what is happening here?
Let us consider an example

char* s = "My sample string";
String tmp; // char* tmp;
strcpy (tmp, s); // tmp has a copy of s

First this is not the simple case in which tmp simply points
to the original string s, as in:

tmp = s;

why on earth would we need strcpy to do this?

strcpy() actually does something like:

tmp = (String) malloc (1+strlen(s)); // space

for (i = 0; *(s+i) != '\0'; i++)
*(tmp+i) = *(s+i);

// String terminator?
return (tmp);

Monday, February 5, 2001 page 7

Of course we don't really need this return(tmp), but it
does help us handle the error condition where malloc fails.

In the above we have assumed that malloc always succeeds.
strcpy() must handle failure by returning the NULL pointer.

tmp = (char*) malloc (1+strlen(s));

if (tmp == NULL) return NULL;

for (i = 0; *(s+i) != '\0'; i++) {
*(tmp+i) = *(s+i);

}

*(tmp+i) = '\0'; // String terminator!

return (tmp);

Outside in the calling program one might well actually use
strcpy as follows:

if (strcpy (tmp, s) != NULL) {.........}

Monday, February 5, 2001 page 8

Another useful string function is strcmp()
which is used to determine if two strings are identical.

The prototype is:

int strcmp (const char* s1, const char* s2);

It returns values of <0, 0 or >0 depending whether
s1 is less than, equal or greater than s2

What does "less than" mean in this context?

A comparison is made on a character by character basis in
each string until the two strings are different. Then the
ordering of the characters in the ASCII character set (see
Appendix E in King) is used to determine the relative order
of the two strings. Typical usage might be:

if (strcmp (s1, s2) == 0) {..//strings identical..

The three functions strlen(), strcpy() and strcmp() are
enough for our purpose. When you need more you will be
skilled enough to read the prototypes in <string.h>

Read King Chapter 13 and K&R Chapter 7 for details

Monday, February 5, 2001 page 9

Review of fgets() and command line args.

To aid in input/output of strings we have the fgets()

char* fgets (char* line, int maximum, FILE* fp);

Let us assume that fp correctly points to an open file.
However if we are now at the end of that file, then fgets
will return NULL, indicating that an EOF was read.
Otherwise fgets reads the next line of input (including the
newline) from the file pointed to by fp into the character
array line, but no more than maximum-1 characters will
be read! The resulting string (in array line) is terminated
with '\0'.

Avoid the functions gets() and puts() on stdin and stdout

Command line arguments

use of int main (int argc, char* argv[]);

Imagine we want to write a program reverseline that
reverses every line in a file, but the file name is specified
in the command line. Thus instead of invoking as

reverseline <datafile
and taking input from stdin, we want to type:

reverseline datafile
specifying the name of the input file as a command line parameter

Monday, February 5, 2001 page 10

FILE* fopen (const char* file, const char* mode);
void reverse (char* buffer);

datafile\0
NULL

0

1

2

argv []

reverseline \0

int main (int argc, char* argv[]) {
char line[80];

if (argc != 2) {
printf ("Wrong usage for %s\n", argv[0]);
return (1);

}

fp = fopen (argv[1], "r"); // datafile

if (fp != NULL) {
while (fgets (&line[0], 80, fp) != NULL) {

reverse (&line[0]);
printf ("%s", line);

} // found EOF
} else return (2); // file open failure

return 0;
}

Of course we still have to write the “reverse” function,
but is left as a (non-trivial) exercise.

