
Febr uar y 8, 2001 Page 1

Review of Pointers and Addresses

• C has a simple memory model. Blocks of memory are
organized as a sequence of bytes that can be manipulated
individually or in contiguous groups.
• Each byte of memory has an address.

An address is stored in a pointer.

• Each datatype requires one or more bytes to store it.
Typically a character requires one byte, an integer requires
2 or 4 bytes, a double usually take 8 bytes, and so on. It
follows that not every byte address is a legitimate memory
address for the start of a data object.

Consider how we exchange two values in memory. For the
quantities a and b, we would simply write

double a, b;
double t;

t = a;
a = b;
b = t;

• However, if we want to do the same thing inside a
procedure we would have to pass the addresses of a and b as
actual parameters, as follows

swap(&a, &b);

Febr uar y 8, 2001 Page 2

We know that a pointer to a double data object is declared as
follows:

double* p;

Thus the formal definition of the swap function must be:

void swap (double* p, double* q) {
double tt;

tt = *p; // p is a pointer, *p is the value
*p = *q;
*q = tt;

}
To access the data object referenced by a pointer, use the
dereferencing operation *, as in

*p = *p + 1; adds 1 to the contents of p, as does
p[0] = p[0] + 1;

while
p[0] = p[1]; is the same as
*p = *(p + 1);

p is incremented by the size of the object.

But what about
*p = *(p++); // avoid such ambiguous constructs.

• It is important to remember that a pointer is an address
of an object of a certain type. You must keep track of the
type_size when you are manipulating addresses of objects,
and when manipulating the objects themselves.

Febr uar y 8, 2001 Page 3

Keep in mind what you want to do with the pointer.
Do you want to:
• assign it to another pointer
• pass it as a pointer argument?
• dereference it (follow it) and work with the object that
it points to?

Review the examples pointers-1.c and its associated output pointers-
1.log, and pointers-2.c and its associated output pointers-2.log. See
class handout and online notes.

Arrays and Pointers (continued)

• C really does not have arrays. C has contiguous
regions of identical objects with a base pointer.
Array notation is simply a form of pointer shorthand.

Given the two declarations:

double a[10];
double* pa;

The following pairs of notation are equivalent

&a[0] a the former is preferred
a[i] *(a+i) the former is preferred
*(pa+i) pa[i] the former is preferred

Febr uar y 8, 2001 Page 4

• The only difference between arrays and pointers is that
declaring a as an array means that the identifier a is read-
only. That is, it cannot appear as an Lvalue.

pa = &a[3] // OK to use pointer as L-value
but not

a = pa + 1 // cannot use array name here

Here we are incrementing pa by one unit of size double.
This is an address, but if we store it in a, then we would be
saying that &a[0] is now &a[1]. Even a computer would be
confused!! Therefore not allowed, because the original
array declaration was

double a[10];

Febr uar y 8, 2001 Page 5

See King Chapter 17 or K&R P. 167
Dynamic Memory Allocation.

By using the three routines below we can implement
dynamically allocated arrays by providing a mechanism for
obtaining a pointer to a block of new memory.

#include <stdlib.h>

void* malloc(size_t size);

void* calloc(size_t NumMembers, size_t size);

void* realloc(void* ptr, size_t size);

void free(void* ptr);

Notes:
Malloc allocates N-bytes of space (not initialized)
Calloc allocates N-units of space, each of the same specified
size. Each unit is set to "zero"
Realloc, is like malloc, creates a new space of M-bytes and
copies over the contents of the data pointed to by "ptr".

Look at the examples pointers-3.c and its associated output
pointers-3.log

Febr uar y 8, 2001 Page 6

Handling mixed character and numeric data.

Formal definition of polynomial for ease of programming.

<polynomial> ==> {<sign><coeff><exponent>}*

<sign> ==> + | -

<coeff> ==> DOUBLE

<exponent> ==> x̂ <degree> | x | []

<degree> ==> INTEGER

Draw a state-transition diagram that describes the
"processing" of a polynomial.

Note: ax^2 + bx + c = c + bx + ax^2 = c + x(b + x(a + …)))
So a polynomial can be evaluated without the use of pow().

Typically want to read in a data stream, remove blanks or
whitespace, store into memory (e.g. an array) and then use
fgetc(), fscanf() to re-read the data now in a more regular
form, but from an array instead of from a file.

Use fscanf (fid, "%lf", coeff);

Use fscanf (fid, "%d", degree); or fgetc(fid)

Use fgetc (fid) and ungetc (char, fid) to examine characters.

Febr uar y 8, 2001 Page 7

Flow Diagram:

Recognition of polynomial terms

coeff

x

^

power

yes

yes

yes

yes

no

no

no

no

Done, evaluate

C[0] = coeff

C[1] = coeff

C[power] = coeff Error, no exponent

polynomial = sum (C[i] x^i)
 i = 0 to N

int i; double C[100];

Febr uar y 8, 2001 Page 8

Example:

char str [100]; // char* str = malloc(100);
int ch, i = 0;
while ((ch = getchar()) != NL) // or perhaps EOF

if (ch != BLANK)
str[i++] = ch; // or *(str+i++) = ch;

str[i] = EOS; // EOS is '\0'

we can now re-read str[] as if it were a file. In the case of
polynomial evaluation one might do:

int rcode, power;
char x = 'x';
double coeff;

rcode = sscanf (str, "%lf%c^%d", &coeff, &x, &power);
// seeking a term

switch (rcode) {
case 1: power = 0; break;
case 2: power = 1; break;
case 3: break;
default: exit (-printf("End of polynomial.\n"));

}

printf ("%c^%d has coefficient %f\n", x, power, coeff);
return 0;

}

