
February 8, 2001 Page 1 copyright UoA

An Array of Strings
char* name[] = {"George", "Mark", "Peter", "Jimmy", NULL};

To check syntax of C declarations use:
cmput> ~tony/Cdecl/cdecl
cdecl> explain int (*pa)[20];

declare pa as a pointer to array 20 of int
pa

0 19

cdecl> explain int* pa[5];
declare pa as array 5 of pointer to int

See also King P. 411 for a simple method for decoding
declarations. This information will be extremely useful in a
week or two when we discuss pointer functions and
pointers to functions.

p a

name[0]

0

George\0
Mark\0
Peter\0
Jimmy\0

name

February 8, 2001 Page 2 copyright UoA

 cdecl> explain int a[5][20];
declare a as array 5 of array 20 of int

a

.......

a[0][0] a[0][19] a[4][0] a[4][19]

Unix Command line arguments
Consider the prototype:

int main (int argc, char* argv[]);

In the above the declaration of argv will produce an access array
that guarantees that argv[argc] is NULL

For the command line> convert 13 to bits

int main (int argc, char* argv[]) {
 int i;
 for (i = 0; i <= argc; i++) {

if (argv[i] == NULL)
 printf ("Null pointer at: %d\n", i);
e l s e
 printf ("%s\n", argv[i]);

 }
 return 0;
}

argv[0]

0

convert\0
13\0
to\0
bits\0

char* argv[]

argc

February 8, 2001 Page 3 copyright UoA

Functions and Procedures

• There are two ways of declaring and defining
procedures in C, the old way and the ANSI standard way
- you may run into both, but use only ANSI form

• All procedures in C are really functions, that is, they
return a value. The special type void indicates that a
return value is not used (not wanted). Such void
functions are called procedures.

• C has both function declarations and function definitions
- these are two different concepts

• A function declaration contains all the information
required to call the function, that is the name the type
of each parameter and the type of the return value.
These declarations are also called prototypes.

• A function definition includes all the information in a
function declaration, plus local variables and the
statements in the function - It not only describes how
the function can be called, but also how it computes its
value

February 8, 2001 Page 4 copyright UoA

Function Declarations (ANSI prototype)

type FunctionName (ParameterDeclarations);

• For example:
float Work (int x, double y, char* s);
float Work (int , double , char*);

• The parameters in the prototype are in the order of the
function definition (no surprise there).

Function Definitions

• The ANSI style of function definition is:

type FunctionName (ParameterDeclarations) {
<local variable declarations>;
<statements>;
return (<expression>);

}

• A return statement is used to supply the value of the
function and to give control back to the calling program

• Formats of the return statement are:

return (Rvalue); or return Rvalue;
and

return ; /* used only with void functions */

Although the return can be omitted in that case.

February 8, 2001 Page 5 copyright UoA

Parameter Passing

• All parameter passing in C is by value, that is, when a
function is called the parameter values from the calling
function are copied into temporary storage in the called
function--all modifications to the parameter values
occur in this temporary storage; the original values in
the calling function are not changed

• This means that you cannot return a result directly
through a parameter. The only way to export a result
with a parameter is to do so indirectly through a
pointer to the location where the result will be stored

• Remember arrays are built with pointers, so if you
pass an array address (not an array element) to a
function, you can modify the elements in the array and
these changes will be seen outside of the function

void initialize (int x) {

we can do anything we like to x inside this function.
The calling function won't see any of these changes.
It provides only the initial value of x
x = 5;

}

but consider ::::::::

February 8, 2001 Page 6 copyright UoA

void reset (int* y) {

y = 5; / put 5 in cell pointed to by y */
}

int i = 3, j = 3;
initialize (i);
reset (&j);
printf ("%d, %d", i, j);

• This will print 3, 5, since we have passed a pointer to j
into the function, the location pointed to is changed by
the reset - note that the invocation reset (j) will cause
all sorts of problems, since the parameter j isn't a
pointer.

When would j be a pointer?
int j[10];

then
reset (j); is the same as reset (&j[0]);

thus the parameter j is a pointer. HOWEVER, the
corresponding formal parameter would still be
void reset (int* y);

February 8, 2001 Page 7 copyright UoA

The ReadLine and FetchLine functions, below, are equivalent.

#include <stdio.h>
int ReadLine (char str[], int n)
{

int ch;
int i = 0;

while ((ch = getchar()) != '\n') {
if (i < n) {

str[i] = ch; i++;
}

}
str[i] = '\0';
return (i);

}

int FetchLine (char* str, int n)
{

int ch;
int i = 0;

while ((ch = getchar()) != '\n') {
if (i < n) {

*(str+i) = ch; i++;
}

}
*(str+i) = '\0';
return (i);

}
The parameter declarations are consistent with usage.

February 8, 2001 Page 8 copyright UoA

void main (void) {

char message [32];
int m;

m = ReadLine (message, 16);
printf ("%d chars in: %s\n", m, message);
m = FetchLine (&message[0], 16);
printf ("%d chars in: %s\n", m, message);

}

Function Calls
When you call a function, the actual parameters (arguments)

to the function are copied and placed onto the stack.
Thus the function manipulates copies of the parameters,
not the original arguments themselves. That is to say,
all function calls in C are call by value.
To alter a data object in the calling program you
must either return a value from the function, or
pass the address of the object to the function.

Just to convince you that arguments are copied:
#include <stdio.h>

void look (int a, int b, char c, char d, double f, double g) {
printf ("The address of argument a is %x\n", (int) &a);
printf ("The address of argument b is %x\n", (int) &b);
printf ("The address of argument c is %x\n", (int) &c);
printf ("The address of argument d is %x\n", (int) &d);
printf ("The address of argument f is %x\n", (int) &f);
printf ("The address of argument g is %x\n", (int) &g);

}

February 8, 2001 Page 9 copyright UoA

/ *
The previous is a procedure called “look” that prints 8 lines of
output. Each line has a single number that is the address of a
different parameter--coerced from an unsigned int to an int and
printed in hexadecimal (%x)

* /

int main (void) {
static int a = 1; /* 4 bytes of space */
static int b = 2;
static char c = '3'; /* 1 byte of space */
static char d = '4';
static double f = 5.0; /* 8 bytes of space */
static double g = 6.0;

printf ("The address of a is %x\n", (int) &a);
printf ("The address of b is %x\n", (int) &b);
printf ("The address of c is %x\n", (int) &c);
printf ("The address of d is %x\n", (int) &d);
printf ("The address of f is %x\n", (int) &f);
printf ("The address of g is %x\n", (int) &g);

look (a, b, c, d, f, g);
return (0);

}
produces output like

The address of a is 40b0 4 bytes
The address of b is 40b4 4 bytes
The address of c is 40b8 1 byte
The address of d is 40b9 1 byte + 6 bytes
The address of f is 40c0 why not 40ba ?
The address of g is 40c8 8 bytes

February 8, 2001 Page 10 copyright UoA

Run this program and discuss the remaining output with
your TA

The address of argument a is effff7ac 4 bytes
The address of argument b is effff7b0 4 – 4 bytes
The address of argument c is effff75f 1 +80 bytes
The address of argument d is effff75e 1 byte
The address of argument f is effff750 8 + 6 bytes
The address of argument g is effff748 8 bytes

Note the size of the (stack) addresses!!
Why are they not at 4-byte intervals?

low addresses

high addresses

00000000

FFFFFFFF

effff7ac

000040b4

