
Page 1

Multi-Dimensional Arrays

• A multi-dimensional array is just an array of arrays
• We declare a 2 dimensional array with:

int a[10][20];

• This can be viewed as 10 arrays, each of which contain
20 integer elements

• An individual element of this array is retrieved with:

int x;
x = a[i][j];

• Naturally we can still do things like the following

int* pa;

pa = &a[0][0]; /* or even pa = a; */

pa

a

j

i

a[0][19]
a[1][19]

a[9][19]
??

x = *(pa+i*20+j); /* x = a[i][j]; */

Page 2

• Similarly we can do things like:

int a[10][20];

pa = &a[0][0]; /* or pa = &a[0]; */

• An observation: A variable should be used in a way that
is consistent with its declaration

• The type in a variable declaration is usually a basic
type, the declaration syntax shows how a value of that
basic type can be obtained from the variable name

• Also note that [] has higher precedence than *. So

int (*pa)[20];
represents a pointer to an array of 20
integers. While

int* pa[20]; /* and also int *pa[20]; */
is the declaration of an array of 20 pointers
to integers

See King P. 410 for a systematic way of interpreting
declarations.

Page 3

Character Arrays and Initialization

• An array of pointers to text strings (which is not the
same as a 2 dimensional array of characters) is often
used in C programming. Such a structure can be
initialized in the following way:

char* name[] = {"George", "Mark", "Peter", "Jimmy"};
name[0]

0

George\0
Mark\0
Peter\0
Jimmy\0

name

• The last element of the array should be NULL, to serve
as a marker. We can check if that is the case in the
following way:

#define NULL 0
int i = 0;
while (name[i] != NULL) {

printf("%d %s\n", i, name[i]);
i++;

} /* but what is the value of i here? */

0 George
1 Mark
2 Peter
3 Jimmy
4 ™̨
5

Page 4

Consider now the assignment statement

name[2] = "Paul"; /* replace "Peter" by "Paul" */

Note that the compiler has built the string constant "Paul"
and the assignment causes name[2] to point to it.
The space that "Peter" used is still in existence, but is now
inaccessible. Later we will see how to manage this memory
loss better.

See King pages 262 and 263
Consider another way of forming this matrix of names:

char name[][7] = {"George", "Mark", "Peter", "Jimmy"};

This is your customary 2-D array formation. Thus in C we
have two similar but distinctly different ways of forming
multidimensional arrays. The first one above is the more
efficient in terms of storage space, but uses pointers. Also
the use of char* (string) variables warrants use of the
special system functions in <string.h>. You must become
familiar with these, especially the string copy, strcpy(),
compare, strcmp(), and string length, strlen(), functions.

M a r k
P a u l

J i m m y

\0G e o r g e
\0

\0

\0

\0\0

\0\0

\0

name

