Handling mixed character and numeric data.
Formal definition of polynomial for ease of programming.
<pol ynom al > ==> {<si gn><coef f ><exponent >} *
<sign> =>+| -

<coef f> ==> DABLE

<exponent > ==> x | x"<degree> | []

<degree> —> | NTEGR

Draw a state-transition diagram that describes the
"processing" of a polynomial.

Usefscanf (fid, "%f", coeff);

Usefscanf (fid, "%l", exponent); orfgetc(fid)
Use fgetc (fid) and ungetc (char, fid) to examine characters.
Probably best to copy input stream into an array, removing
blanks as you go, and build a pointer to the array. One can

then read from the array just like from a file.

Most sophisticated.

January 29, 2001 Pagel JH/TM

We know that a pointer to a double data object is declared as
follows:

doubl e* p;
Thus the formal definition of the swap function must be:

void swap (doubl e* p, double* q) {

doubl e tt;
tt =*p; /1 pis apointer, *pis the val ue
* — %
P="0
*q = tt;
}
To access the data object referenced by a pointer, use the
as in
*p =*p + 1 adds 1 to the contents of p, as does
p[O] =p[0] + 1
while
p[O] = p[1]; is the same as
p=(p+1);

p is incremented by the size of the object.

But what about
*p = *(pHH); /I avoid such ambiguous constructs.
e It is important to remember that a pointer is an address
of an object of a certain type. You must keep track of the
when you are manipulating addresses of objects,
and when manipulating the objects themselves.

January 29, 2001 Page3 JH/TM

Review of Pointers and Addresses

* C has a simple memory model. Blocks of memory are
organized as a sequence of bytes which can be manipulated
individually or in contiguous groups.

« Each byte of memory has an address.

An addresses is stored in a pointer.

« Each datatype requires one or more bytes to store it.
Typically a character requires one byte, an integer requires
2 or 4 bytes, a double usually take 8 bytes, and so on. It
follows that not every byte address is a legitimate address
of a data object.

Consider how we exchange two values in memory. For the
guantities a and b, we would simply write

doubl e a, b;

doubl e t;

oo
TRV
TEe

* However, if we want to do the same thing inside a
procedure we would have to pass the addresses of a and b as
actual parameters, as follows

swap(&, &);

January 29, 2001 Page2 JH/ITM

Keep in mind what you want to do with the pointer.

« Do you want to assign it to another pointer, or to
e pass it as a pointer argument?
e Do you want to dereference it (follow it) and work with
the object that it points to?

Review the examples pointers-1.c and its associated output pointers-
1.log, and pointers-2.c and its associated output pointers-2.log. See
class handout and online notes.

Arrays and Pointers (continued)
* C really does not have arrays.

Array
notation is simply a form of pointer shorthand.

Given the two declarations:

doubl e a[10];
doubl e* pa;

The following pairs of notation are equivalent

&a[0] a
afi] *(at)
*(pat) pai]

January 29, 2001 Page4 JH/ITM

e The only difference between arrays and pointers is that
declaring a as an array means that the identifier a is read-
only. That is, it cannot appear as an Lvalue.

&3] is ok
pa +1 is not

pPa
a

Here we are incrementing pa by one unit of size double.
This is an address, but if we store it in a, then we would be
saying that &a[O] isnow &a[1] . Even a computer would be
confused!! Therefore not allowed, because the original
array declaration was

doubl e a[10];

January 29, 2001 Page5 JH/TM

See King Chapter 17 or K&R P. 167
Dynamic Memory Allocation.
By using the three routines below we can implement
dynamically allocated arrays by providing a mechanism for
obtaining a pointer to a block of new memory.
#incl ude <stdlib. h>
voi d* nal loc(size t size);
voi d* calloc(size t NunMenbers, size t size);
voi d* real l oc(void* ptr, size t size);
void free(void* ptr);

Look at the examples pointers-3.c and its associated output
pointers-3.log

January 29, 2001 Page6 JH/ITM

