
J anuar y  29,  2001 Page1 JH/TM

Handling mixed character and numeric data.

Formal definition of polynomial for ease of programming.

<polynomial> ==> {<sign><coeff><exponent>}*

<sign> ==> + | -

<coeff> ==> DOUBLE

<exponent> ==> x | x̂ <degree> | []

<degree> ==> INTEGER

Draw a state-transition diagram that describes the
"processing" of a polynomial.

Use fscanf ( fid, "%lf", coeff );

Use fscanf ( fid, "%d", exponent );  or fgetc( fid )

Use fgetc (fid) and ungetc (char, fid) to examine characters.

Probably best to copy input stream into an array, removing
blanks as you go, and build a pointer to the array.  One can
then read from the array just like from a file.

Most sophisticated.

J anuar y  29,  2001 Page2 JH/TM

Review of Pointers and Addresses

• C has a simple memory model. Blocks of memory are
organized as a sequence of bytes which can be manipulated
individually or in contiguous groups.
• Each byte of memory has an address.

An addresses is stored in a pointer.

• Each datatype requires one or more bytes to store it.
Typically a character requires one byte, an integer requires
2 or 4 bytes, a double usually take 8 bytes, and so on.  It
follows that not every byte address is a legitimate address
of a data object.

Consider how we exchange two values in memory.  For the
quantities a and b, we would simply write

double a, b;
double t;

t = a;
a = b;
b = t;

• However, if we want to do the same thing inside a
procedure we would have to pass the addresses of a and b as
actual parameters, as follows

swap( &a, &b );

J anuar y  29,  2001 Page3 JH/TM

We know that a pointer to a double data object is declared as
follows:

double* p;

Thus the formal definition of the swap function must be:

void swap ( double* p, double* q ) {
double tt;

tt = *p;   // p is a pointer, *p is the value
*p = *q;
*q = tt;

}
To access the data object referenced by a pointer, use the
dereferencing operation *, as in

*p = *p + 1; adds 1 to the contents of p, as does
p[0] = p[0] + 1;

while
p[0] = p[1]; is the same as
*p = *(p + 1);

p is incremented by the size of the object.

But what about
*p = *(p++); // avoid such ambiguous constructs.

• It is important to remember that a pointer is an address
of an object of a certain type.  You must keep track of the                      
type_size when you are manipulating addresses of objects,
and when manipulating the objects themselves.

J anuar y  29,  2001 Page4 JH/TM

Keep in mind what you want to do with the pointer.

• Do you want to assign it to another pointer, or to
• pass it as a pointer argument?

• Do you want to dereference it (follow it) and work with
the object that it points to?

Review the examples pointers-1.c and its associated output pointers-
1.log, and pointers-2.c and its associated output pointers-2.log.  See
class handout and online notes.

Arrays and Pointers (continued)

• C really does not have arrays. C has contiguous
regions of identical objects with a base pointer. Array
notation is simply a form of pointer shorthand.

Given the two declarations:

double a[10];
double* pa;

The following pairs of notation are equivalent

&a[0] a the former is preferred
a[i] *(a+i) the former is preferred
*(pa+i) pa[i] the former is preferred



J anuar y  29,  2001 Page5 JH/TM

• The only difference between arrays and pointers is that
declaring a as an array means that the identifier a is read-             
only. That is, it cannot appear as an Lvalue.       

pa = &a[3] is ok
a = pa + 1 is not

Here we are incrementing pa by one unit of size double.
This is an address, but if we store it in a, then we would be
saying that &a[0] is now &a[1].  Even a computer would be
confused!!  Therefore not allowed, because the original
array declaration was

double a[10];

J anuar y  29,  2001 Page6 JH/TM

See King Chapter 17 or K&R P. 167
Dynamic Memory Allocation.

By using the three routines below we can implement
dynamically allocated arrays by providing a mechanism for
obtaining a pointer to a block of new memory.

#include <stdlib.h>

void* malloc( size_t size );

void* calloc( size_t NumMembers, size_t size );

void* realloc( void* ptr, size_t size );

void free( void* ptr );

Look at the examples pointers-3.c and its associated output
pointers-3.log


