
10 January 2001 Page 1

#include <stdio.h>

#define MAXLINELENGTH 80

int main () {
char line[MAXLINELENGTH];
int ch, length;

while ((ch = getchar ()) != EOF) {
length = 0; /* Read a line */
while (length < MAXLINELENGTH) {

if (ch == '\n') break;
line[length++] = ch;
if ((ch = getchar ()) == EOF) break;

}
while (length > 0) { /* Print the line reversed */

putchar (line[--length]);
}
putchar ('\n');

}
return 0;

}

/*
This is a test
tset a si sihT
and so is this
siht si os dna
What about EOF
FOE tuoba tahW

Under Unix an EOF can be supplied by entering Cntrl-D
Under Unix a program can be terminated by entering Cntrl-C
Under Unix a program can be suspended by entering Cntrl-Z
*/

10 January 2001 Page 2

#include <stdio.h>
int main ()
{

char c;
short int p;
int q;
unsigned int v;
long int r;
float s;
double t;
long double u;

printf ("Size of Variables:\n %d %d %d %d %d %d %d %d \n",
sizeof c, sizeof p, sizeof q, sizeof r, sizeof s,
sizeof t, sizeof u, sizeof v);

printf ("Size of (Types):\n %d %d %d %d %d %d %d %d \n",
sizeof (char), sizeof(short int), sizeof(int),
sizeof(long int), sizeof(float), sizeof(double),
sizeof(long double), sizeof(unsigned int));

return 0;
}

/*
Size of Variables:
 1 2 4 4 4 8 8 4
Size of (Types):
 1 2 4 4 4 8 8 4
*/
/* Advice: Just write sizeof(something) */

/*---*/

10 January 2001 Page 3

To reduce errors of repetition the make facility provides a
macro (or define) facility.
Thus in practice the make file might really look like

CREATOR = gcc -Wall -ansi

phone : main.o phone.o
 $(CREATOR) -o phone main.o phone.o

phone.o : phone.c
 $(CREATOR) -c phone.c

main.o : main.c phone.h
 $(CREATOR) -c main.c

In the above the macro CREATOR is defined to be
"gcc -Wall -ansi"
and the macro is expanded whenever $(CREATOR) appears.
The names you choose for macros are entirely your own.
See the assignment 1 statement for a different makefile:
Namely to build and run a series of experiments,
recompiling only those that you modify.

Two useful tests on makefiles are:
make -vet makefile
checks that each command line of the makefile
begins with a TAB character
#
make -n phone
shows what commands will be executed when make phone
is requested.

10 January 2001 Page 4

Read King Chapters 4, 5 and 6
(expressions, simple statements and loops)
Basic C Data Types (King Chapter 7)

 C has a few basic data types, they are:

• A character: char
• An integer: int
• A floating point number: float and double

 There are three modifiers that are commonly applied to
some basic data types

 • long, which basically doubles the space allocated to int
and float/double types.

 • short, which handles ints up to 32768
(it is less important now that computers have more
memory).

 • unsigned, which is applied to integers and changes
their range from
[-2^31, 2^31) to [0, 2^32).
A unsigned value does not view its left-most bit as a
sign, it is part of the value.

The type qualifier const is important.
• const qualifies data items that must not alter during

execution of the program.

10 January 2001 Page 5

I also consider a pointer to be a basic data type - a pointer is
always the size of a machine address and is treated like
an unsigned integer

See King Page 111, for the range of integer values for 32-bit
computers.

Use the sizeof operator to determine space needs of
datatypes. King P. 489 and 494 give i/o conversion specifics.

Declaration Space scanf printf

char c; 1 byte (8 bits) %c %c

short int p; 2 bytes %hd %hd

int q; 4 bytes %d %d

unsigned int r; 4 bytes %u %u

long int s; 4 bytes, (8 ?) %ld %d

float u; 4 bytes %f %f

double v; 8 bytes %lf %f

long double x; 8 bytes, (16 ?) %le %f

10 January 2001 Page 6

Variables can be initialized at declaration:

char c = 'd';

int q = 4;

float u = 13.5;

double v = 7.9e-2;

Thus a declaration has the following general format:

 Type VariableName = InitialValue ;

The '= InitialValue' part is optional

A pointer to a data item is declared in the following way

 Type* VariableName ;

int* ptr;

The type specifies the kind of item referred to. Here ptr
points to an integer object. As things stand this is not
particularly useful. Later pointers come into their own when
we access arrays and other objects indirectly with pointers.

Character Constants

10 January 2001 Page 7

Character constants are enclosed in single quotes, for
example,

 'a', 'b', 'c'.

There are a number of special characters that must be
"escaped" so they can be recognized. See King P. 119.

The common ones are:

 New Line '\n'
 Tab '\t'
 Backslash '\\'

the \ is also used to provide values for octal and hexadecimal
numbers. See King page 111.

10 January 2001 Page 8

String Constants (literals)

Literal strings are seen first in print statements, and are
enclosed in double quotes. They may form an output
message like

printf ("Hello World");

or may appear as the format string for presenting the value
of an expression or a variable

printf ("Here we have a fifteen %d", 3*5);

We will deal with string variables later after we cover arrays
and pointers.
See also King, Chapter 13.

Arrays

 * Arrays and pointers are closely related in C
 * C basically supports one dimensional arrays, the first

subscript value is 0
 * An array is declared in the following way:
 Type ArrayVariable [size] ;

Thus valid indices are in the range 0 to size-1.

 * The type, name and size (length) of the array are all
specified here.

10 January 2001 Page 9

For example

int a[100];

produces an array with room for 100 integers. The first
element is
a[0] and the last element is a[99]

 * Arrays can be initialized at declaration time with a list of
values

For example

int a[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
int b[10] = {-3, -1, 0, 1, 3, 5, 7, 9, 11, 13};
int c[] = {-3, -1, 0, 1, 3, 5, 7, 9};

 * A text string is a one-dimensional array of char elements

For example, a text string can be declared and initialized in
the following way:

char string[25] = "This uses 19 bytes";

 * A character string constant is enclosed in double quotes
("), for example:

10 January 2001 Page 10

"this is a text string"
Note the different usage of single and double quotes

 * In C and Unix a text string is terminated by a zero byte
(or NULL byte), this is written as '\0'. An empty string
requires one byte of storage. In general a string with n
characters requires n+1 bytes of storage. Later in the
course you must be careful to allocate space for that
extra byte.

char data[5] = "WORD";

is the same as:
char data[5];

data[0] = 'W';
data[1] = 'O'; /* this is the letter Oh */

data[2] = 'R';
data[3] = 'D';
data[4] = '\0'; /* this is the digit Zero */

10 January 2001 Page 11

all: file.dvi file.ps twopage.ps
 ls -ldg *ps

twopage.ps: file.ps
 psnup -d -n2 -pletter file.ps >twopage.ps

file.ps: file.dvi
 dvips file.dvi

file.dvi: file.tex mystyle.cls
 latex file.tex

file.tex mystyle.cls

file.dvi

file.ps

twopage.ps

latex file.tex

dvips file.dvi

psnup –d -n2 -pletter file.ps

ls -ldg *ps

-rw-rw---- 1 tony search 5782714 Jan 2 12:27 file.ps
-rw-rw---- 1 tony search 5945651 Jan 2 12:28 twopage.ps

