
Requirements for a Hooks Tool

Garry Froehlich, H. James Hoover, Luyuan Liu, Paul Sorenson

Department of Computing Science

University of Alberta

Edmonton, AB. T6G 2H1

fgarry,hoover,luyuan,sorensong@cs.ualberta.ca

November 16, 1998

Abstract

Object-oriented frameworks can be complex and di�cult to use. Tool support

can greatly aid developers in using these frameworks. However, existing tools, such

as graphical user interface builders, only support one framework and are not easily

customized. Hooks, which describe the intended use of a framework, can form the

basis of a general, exible tool that supports many di�erent frameworks. This paper

describes the requirements for such a tool.

1 Introduction

Graphical user interface builders represent one of the most successful applications of frame-

work technology. Object-oriented frameworks consist of a generic design for a class of prob-

lems, such as user interfaces, and an object-oriented implementation of that design. GUI

builders allow developers to quickly piece together a window-based user interface from prede-

�ned components such as buttons, windows and menus. The interactions of the components

1



are well-de�ned within the framework but the components are given user-de�ned function-

ality. However, frameworks exist in many di�erent areas beyond user interfaces, such as

manufacturing [14], communications [7] , operating systems [3] and engineering [13]. Tools

for these kinds of frameworks can help, and in some cases are critical in, making their use

more successful as well.

A tool for developing applications from frameworks needs to be both an aid to the

user and exible enough to be used in di�erent ways. There are two primary ways in

which we envision such a tool being used. First, application developers uses the tool to

quickly develop applications from the framework without changing the framework. Second,

framework maintainers will use the tool to evolve or modify the framework itself.

In order to aid application developers, support for exploring the documentation of the

design and use of the framework should be provided, along with support for actually adding

application speci�c classes. Hooks provide the basis for documenting the changes the frame-

work builder intended to be made to the framework. The structured description of those

changes within hooks can be enacted interactively with the user of the tool. Aid to framework

maintainers is provided by allowing extensions to the framework and the hooks themselves

to be made and incorporated back into the framework.

Existing tools, such as GUI builders, focus exclusively on a single framework, and do

not support the integration of multiple frameworks. Users must learn multiple tools and do

integration between frameworks by hand, but a tool based on hooks can be exible enough

to support many di�erent frameworks. A general tool will also enable framework builders

to adapt the tool to their framework instead of going through the expense of developing a

custom tool for each framework, or not providing tool support at all. The exibility to add

new components, add new hooks, modify hooks or modify parts of the framework is required

by the framework maintainer.

In this paper, we outline the key requirements for a tool we are building to aid in the

use of frameworks to develop applications. Section 2 describes the concept of hooks which

are at the heart of the tool. Section 3 describes in greater detail the requirements of the

2



tool for application developers and speci�es how the tool can be used to enact the changes

described in a hook. In Section 4, the focus is on requirements for the tool from a framework

maintainer's perspective. Finally, a summary and future directions are given.

2 Hooks

A hook [4] is a point in the framework that is meant to be adapted in some way such as by

�lling in parameters or creating subclasses. Each hook description documents a problem or

requirement that the framework builder anticipates an application developer will have and

provides guidance about how to use the hook and ful�ll the requirement. Each description

typically focuses on a small requirement. For more complex problems a group of hooks can

be provided, each focusing upon a smaller problem within the larger, more complex problem.

Each hook details the design/implementation actions that are required, the constraints

that must be adhered to, and any e�ects on the framework that will result. The hook exposes

only the framework details needed to solve the problem so that it can be quickly understood

and used. Once the correct hook has been found, an application developer uses the hook

simply by performing all of the activities within the changes section of the hook in the order

given.

A hook description is written in a speci�c format made up of several sections. The sections

detail di�erent aspects of the hook, such as the components that take part in the hook

(participants) or the steps that should be followed to use the hook (changes). The format in

which hooks are described helps to organize the information and make the description precise

and amenable to enaction within a tool. Each hook description consists of the following parts:

� Name: a unique name, within the context of the framework, that identi�es the hook.

� Requirement: a textual description of the problem the hook is intended to help solve.

The framework builder anticipates the requirements that an application will have and

describes hooks for those requirements.

3



� Type: an ordered pair consisting of the method of adaption used and the amount of

support provided for the problem within the framework.

� Area: the parts of the framework that are a�ected by the hook.

� Uses: the other hooks required to use this hook. The use of a single hook may not be

enough to completely ful�ll a requirement that has several aspects to it, so this section

states the other hooks that are needed to help ful�ll the requirement.

� Participants: the components that participate in the hook. These are both existing

and new components.

� Preconditions: constraints that must be satis�ed before the hook can be applied.

� Changes: the main section of the hook that outlines the changes to the interfaces, as-

sociations, and control ow amongst the components given in the participants section.

� Postconditions: constraints that must be satis�ed after the hook has been applied.

� Comments: any additional description needed.

Not all sections will be applicable to all hooks, in which case the entry not required

is simply left out. For example, a hook that does not use any others will have no Uses

declaration.

An important aspect of hooks is the level of support provided for the adaption within

the framework. There are three main levels of support types for hooks.

The option level provides the most support, and is generally the easiest for the application

developer to use. A number of pre-built components are provided within the framework and

the developer simply chooses one or more without requiring extensive knowledge about the

framework. The hook describes the options and how the chosen option(s) can be inserted

into the framework. Often, this insertion should be obvious and can potentially be handled

automatically.

4



At the pattern level, the developer supplies parameters to components and/or follows a

well-supported pattern of behavior. The simplest patterns occur when the developer needs

to supply values or parameters to a single class within the framework. The parameters

themselves may be as simple as base variables, or as complex as methods or component

classes. Some common tasks may require the collaboration of multiple classes, and may also

have application speci�c details. For these, a collaboration pattern is provided which the

developer follows to realize the task. Using a pattern hook requires more knowledge about

the framework than does using an option hook, but since it is well supported within the

framework, the developer does not usually need to worry about unwanted interactions, or

require a deep understanding of the design of the framework.

It is at the open-ended level that hooks are provided to ful�ll requirements without being

well supported within the framework. Open-ended hooks involve adding new properties to

classes, new components to the framework, new interactions among components or sometimes

the modi�cation of existing code. Since they are open-ended, the developer has to be more

careful about the e�ects changes will have on the framework.

3 Requirements for Application Developers

When application developers start development using frameworks, our tool �rst must create

a copy of the framework or multiple frameworks that they wish to include. The tool incor-

porates the assumption that the original design or implementation of the framework should

not be modi�ed. This assumption preserves the bene�ts of maintaining a common code base

between a family of applications; otherwise, the application is no longer an extension of the

framework, but an evolution of its code base.

The tool distinguishes between two types of classes:

� Framework classes are classes provided with the framework and should not be modi�ed.

� Application classes are added to the framework classes by application developers in

order to implement speci�c functionality and can be modi�ed freely.

5



Create Inbox

Send Message

Handle Message

Encode/Decode

Message

Mailserver Comm Aware Object

Mailbox

Inbox

Outbox

Create Outbox

Address Message Handler

FileManager

Persistence

Data

SimServer

SimEngine

Submit

RunTurn

New
CommAwareObject

Figure 1: CSF: Framework View.

To protect the design of the framework it can be distinguished from application classes

through color or shading. Figure 1 shows a simpli�ed view of a client-server framework

(CSF) using shading in UML. Being able to see the overall design of the framework is one of

the main requirements for the frameworks tool. UML [1] provides a standard diagramming

notation for both the structure and behavior of the framework through class and interaction

diagrams. We are adding explicit support of the notion of hooks to UML for the tool.

6



The overall view, di�erent than UML views, shown in Figure 1 is the main view of the

framework, or the framework view. It contains all of the classes of the framework, along

with any additional classes that have been added by application developers. For example,

Data is a framework class while SimServer is an application class. Hooks such as Handle

Message are shown as ovals which connect to the primary participant within the hook.

Whenever a user tries to modify or delete one of the framework classes such as Com-

mAwareObject, a warning is given with an explanation of the potential danger of changing

the framework. There will be cases in which the framework has to be modi�ed to complete

the development of an application because of some limitation of the framework or because

the application developers are scavenging parts of the framework, so we provide the exibil-

ity to override the warning. Modifying application classes such as SimServer do not cause

any warnings.

Option hooks are a special case, since they include optional components to the applica-

tion, but these components are provided as part of the framework library. Attempting to

modify the components themselves produces a warning, but modifying the choice of compo-

nents does not.

Users of the tool can develop applications in two main ways. In the �rst, application

developers use the editing tool to add or modify application classes in any means desired.

The second, preferred, method is choosing and enacting hooks within hook views.

3.1 Hook Views

When a user clicks on one of the hooks within the main view, or another hook view, a hook

view opens. A hook view contains a subset of the overall view of the framework. Both

class and interaction diagrams are contained within the view. The view forms the context

within which the hook is used, containing the participants of the hook and related classes.

Since determining the complete context of a hook is di�cult, hook views are de�ned by the

framework builders rather than generated dynamically. Hooks may share the same context

and thus the same view. The hook view shown in Figure 2 shows the context of the Handle

7



Message

Mailserver Comm Aware Object

Mailbox

Inbox

Outbox

Address Message Handler

SimServer

SimEngine

Submit

RunTurn

NewCOA.register -> NewCOA.registerHandler(message.type, NewMH)
new operation NewCOA.register

new subclass NewMH of MessageHandler

Changes

MessageHandler.handleMessage(Message m, CommAwareObject coa)
NewMH.handleMessage(Message m, CommAwareObject coa) extends

NewCOA subclass of Comm_Aware_Object

Handle Message Hook
Preconditions

Figure 2: CSF: Handle Message Hook View.

8



Message Hook. It contains not only the diagrams but also an additional window which

lists the pre and post conditions of the hook that was requested by the user along with the

changes that can be made using the hook.

Within a hook view, application developers can enact the changes within the hook, semi-

automatically with the tool's help. The allowable conditions and change statements are

de�ned by a grammar and can be interpreted by the tool. That is, the tool interactively

goes through the activities contained in the hook with the user, performing as much as it can

automatically and requesting any required information from the user. Section 3.2 provides

a more detailed example of how this happens. As the �rst stage in the process of enacting

the hook, any preconditions of the hook must be satis�ed. Next each of the changes within

the hook can be made, or ignored if not needed. Finally, all the postconditions of the hooks

should be satis�ed. Checking a single precondition or postcondition, or enacting a single

change statement is called a step.

The application developer has several actions that can be performed within a hook view:

� Start enactment.

� Do a step. Check one precondition, one postcondition or perform one of the changes

within the hook.

� Undo a step.

� Undo all steps and start over.

� Suspend enactment. This action is required in order to perform some other tasks or

leave the work for a later time.

� Invoke another hook. Hooks which use other hooks will place the current hook view in

a suspended state and open up a new hook view.

� Resume with playback. If modi�cations to the application have been made within the

context of the hook view, then preconditions must be checked again to ensure that none

9



of the modi�cations have violated them. After the preconditions have been checked,

changes that were previously made by the developer can be 'played back' meaning they

are automatically invoked by the tool.

� Resume without playback. If no modi�cations have been made, then the application

developer can resume stepping through the hook immediately.

� Commit with all conditions met. Changes made within the hook view are propagated

to the main framework view.

� Commit without all conditions met. Changes should only be propagated when all the

postconditions of the hook are satis�ed, but the application developer has the option

of overriding any conditions.

� Throw away changes. Any changes within the hook view are simply discarded and the

view closed.

3.2 Example Hook Enactment

As an example, when a user selects the New CommAwareObject hook show below, the

communication hook view is displayed (see Figure 3). The changes window has been removed

for simplicity. In this example, we are using the client server framework to create a simple

internet-based simulation, such as a turn-based farming simulator. Users of the simulator

enter a turn's worth of information using a client program or web-browser and submit it

to the server, such as decisions about which types of crops to grow for a given year and

how much fertilizer to use on the �elds. The server then invokes the simulation engine and

returns the results of the simulation to the user. Here we focus on the creating part of the

server side. In order to create a server class which can communicate with clients using CSF,

the New CommAwareObject hook is used.

Name: New CommAwareObject

Requrement: An object needs to communicate across the network.

10



Message

Mailserver Comm Aware Object

Mailbox

Inbox

Outbox

Address Message Handler

SimServer

Figure 3: CSF: New CommAwareObject Hook View.

11



Type: Enabling Pattern

Area: Communication

Participants: NewCOA, Comm_Aware_Object (provided), Message

Uses: Handle Message

Preconditions: none

Changes:

// First create a new subclass of Comm_Aware_Object

new sublcass NewCOA of Comm_Aware_Object

repeat as necessary

fill in Message.type // a string name of the message (corresponding

// to the type) that the COA should respond to.

// invoke the Handle Message hook

Handle Message[NewCOA = NewCOA, message = Message]

Along with the view, a changes window displaying the preconditions and changes sections

of the hook is shown. When the user is ready to start enacting the hook, they select the

�rst step within the changes window. As this hook is a creation hook, it has no speci�c

preconditions, so the �rst step becomes the �rst change, the creation of a new subclass of

the framework class CommAwareObject. NewCOA is a variable representing an application

class, which is called SimServer in Figure 3. The next step is a repeat loop which simply

repeats all of the steps inside of it until the user declares that they are �nished. The '�ll in'

step brings up a dialog with the user that requests a string representing the message type.

We want to create a message for submitting a turns worth of information to the servers, so

the message type is SubmitTurn (not shown). CommAwareObjects communicate through

messages represented by the Message class, each of which has a unique type. The second

step within the loop then invokes the Handle Message hook. To do this, the current hook

view is suspended and a view for the Handle Message hook is opened.

12



Message

Mailserver Comm Aware Object

Mailbox

Inbox

Outbox

SimServer Submit

create

registerHandler

Address Message Handler

SimServer

Submit

register

registerHandler

handleMessage

Class Diagram Interaction Diagram

Figure 4: CSF: Handle Message Hook View.

13



Name: Handle Message

Requrement: When an object receives a message, it needs to respond to

it in some way.

Type: Enabling Pattern

Area: Communication

Participants: message, NewCOA, MessageHandler (provided), NewMH

Uses: none

Preconditions:

NewCOA subclass of Comm_Aware_Object

Changes:

// First, create a new MessageHandler subclass

new subclass NewMH of MessageHandler

// Specialize the handleMessage method and fill in the appropriate code.

// 'extends' infers that handleMessage must call it's superclass

// ie. code 'super.handleMessage(message,coa);'

NewMH.handleMessage(Message m, CommAwareObject coa) extends

MessageHandler.handleMessage(Message m, CommAwareObject coa)

// The next line is for 'hooking' up the handler.

// Registering can occur within the initialization method of the object

// (the name 'register' is just a placeholder).

new operation NewCOA.register

NewCOA.register -> NewCOA.registerHandler(message.type, NewMH)

The Handle Message hook has the same context as the previous hook, although a new

window is opened on the screen. Before the hook can be enacted, the participants are mapped

to the parameters given with the hook invocation from the New CommAwareObject hook.

14



As shown in the hook call, the NewCOA participant (SimServer) is mapped to the NewCOA

participant in Handle Message. The Message participant is similarly mapped to message in

Handle Message. The �rst step in the enactment of the hook is to check the only precondition

which checks automatically to see if NewCOA is a subclass of CommAwareObject. In this

case it is, so enaction can proceed to the �rst change step. The �rst step creates a new

subclass NewMH of MessageHandler. NewMH is another application participant. In this

case we are creating a handler for the SubmitTurn message, so NewMH corresponds to

Submit in Figure 4. Next the handlemessage method on NewMH is �lled in by the user.

A dialog then asks the user for a new operation, or a link to an existing method, within

NewCOA (SimServer) from which registration of the handler can occur. The last step in the

changes section then invokes the callback method regiseterHandler within NewCOA.

The changes are then committed to the parent view, the New CommAwareObject hook

view. Once the changes are committed, the New CommAwareObject hook view resumes and

the repeat loop is invoked again, unless the user is �nished. Here, we have no more messages

to add, so the loop is stopped and the changes are committed to the parent view again, that

is, the main framework view.

3.3 View Consistency

When changes are committed, consistency must be maintained between the hook views and

the main framework view. Consistency is maintained by propagating the changes from the

hook view to the parent view. All of the changes are logged by the tool and essentially they

can be played back in the parent view. The framework classes that participate within the

hook serve as the anchors that exist in both the framework and the hook view and on which

the changes can be played back.

In general, propagating an arbitrary set of changes from one view to another is a very

di�cult problem. Due to the nature of the changes that can be made within a hook, the

problem becomes much simpler. Only application classes are modi�ed, so the two views

will always have a set of framework classes in common. Further, the changes involve some

15



modi�cation, but mostly additions of classes, methods or properties to a class which can be

easily added to the main view. However, in some cases, there will be interference between

hooks that must be caught.

3.4 Hook Interference

Interference occurs when two hooks enact changes which conict with each other, or when

general changes are made to an application that may conict with an active or suspended

hook view. Interference can occur when:

� A participant of a hook is deleted.

� A participant of a hook is modi�ed.

� Namespace conicts, such as two classes being given the same name.

In the general case, whenever arbitrary changes are made to a class in any view, all

hook views currently open with that participant must have their preconditions checked and

potentially undergo a resume with playback operation.

If the changes only involve the enactment of hooks, then the tool can help to prevent

interference by de�ning sets of mutually exclusive hooks. Hooks with the same participants,

particularly those which are application classes have the potential to interfere with one

another. Two hooks within the same set cannot be enacted at the same time. As shown

in Figure 5, hooks A and B cannot be enacted at the same time, but hooks A and C can.

Since hooks do not allow the deletion of participants, only hooks which modify the potential

participants of hook A need to be considered for belonging to the set of mutual exclusion for

hook A. Currently, the framework builder de�nes the sets of mutual exclusion. By default,

all hooks are considered to be in the same set. Namespace conicts can occur for example

when two new subclasses of a single class have the same name and can be checked prior to

committing the changes to the hook view.

16



A

B

C

Mutually Exclusive Set

Figure 5: Mutually Exclusive Set of Hooks.

Hooks are automatically considered to interfere with themselves, but this is not always

the case. A hook may not conict with itself if it only adds things, unless the hook is

meant to be used only once. Two separate views (two di�erent windows) of the same hook

might not have the same application classes as participants. The application participants, as

opposed to the framework participants, are the important ones, since framework participants

shouldn't be modi�ed by the hooks. So two views of the same hook may not have the same

application participants and therefore they shouldn't conict.

Two hooks might also invoke incompatible options within option hooks. The options

should be speci�ed in pre or post conditions to ensure that doesn't happen.

The tool does not consider implicit conicts such as those created by a method or class

which calls a participant during normal framework operations. A distinction can be made

between interference during the enactment of hooks and logical errors within the application.

Changes might cause some subtle conict within the application, but this is a logical error

in relation to the framework or even the application extensions and not a direct result of the

hooks. A logical error invalidates the framework, but does not invalidate the hook. Detection

17



of logical errors is a much larger and more complex problem outside the scope of hooks.

3.5 Hook Books, Examples and Use Cases

Design diagrams and hook views should not be the only means of presenting the framework.

Other information such as use cases, examples and class descriptions give additional informa-

tion to the user to aid in application development. Use cases provide a means of describing

typical scenarios, sets of actions involving framework classes, in which the framework is used.

They are valuable to people �rst learning to use the framework, or learning to use it in a

di�erent way.

Examples are equally valuable to show how the framework can be used. Users typically

grasp concrete examples more quickly than abstract descriptions. The examples should be

both of the framework in general (sample applications) and of individual hooks and use

cases.

Descriptions of methods and classes are also necessary. These help application developers

to understand the purpose of a class or method as these descriptions are not contained within

the hook descriptions.

The hook book is a listing of all hooks within the framework. The book lists the name

and the requirement sections of the hook. The hook book can be used to browse the list of

hooks, or it can be searched for particular keywords or matching requirements. Additionally,

the hook book can be used to monitor which hooks have been used, how many times they

have been used, and which hooks views are currently open among all of the multiple users

of the tool.

All of these things, the use cases, the examples, the class and method descriptions, and

the hook book, are linked together to form a web of information about the framework which

can be easily browsed. Use cases link to a series of hooks that are used within the use case.

They and hooks also point to examples of the use of the framework, and conversely, examples

point to the hooks that have been used within them. Hooks also point to the descriptions

of the methods and classes that participate in them.

18



Finally, a log of all of the changes made through the hooks is kept which can then be

reviewed when errors are detected. The log is also an invaluable tool when changes to the

framework itself are made (ie. a new version is released). If hooks have changed in the

framework, the log will show which parts of the application have to be modi�ed to work

with the new version of the framework.

4 Maintainers and Developers

One of the key advantages of the tool is its ability to be used for many di�erent frameworks

rather than focusing exclusively on one. Once the initial development of a framework has

been completed, the framework builders only have to import their design into the tool and

then de�ne the hooks for it. However, the tool is not appropriate for the initial development

phases of a framework. Development typically happens in a tight spiral and constantly

updating the framework model for the tool would require too much unnecessary overhead.

Once the code base has become stable, it can be imported into the tool to aid in the use and

future maintenance of the framework.

During maintenance, changes are typically made to the main view and then the hook

views are updated accordingly. Maintaining consistency is not as much a concern, since

modi�cations should be made by few or one maintainer. Maintenance of the framework

involves two main areas: modi�cations to the hooks and modi�cations to the design of the

framework itself.

To allow for exibility within the tool, new hooks can be added to the framework. Adding

hooks involves the least amount of di�culty when re�tting existing applications, since no

change to the application is required. A hook design screen is used which presents the hook

template. The framework maintainer �lls in the appropriate �elds which then can be checked

for internal consistency by the tool. Then the hook can be placed in the framework view

and a new hook view de�ned for it, or an existing hook view assigned to it.

Hooks may also be modi�ed by the maintainer, either to correct errors, to improve the

19



hook or because the underlying framework has evolved in some way. The main di�erence

between modifying and adding a hook is that the hook description and view already exists,

otherwise the same process is followed. However, existing applications may themselves have

to be modi�ed when the hooks are changed.

The framework itself will evolve over time to add new functionality or to recast existing

functionality in a new way. Changes to the existing framework can be accomplished within

the tool (after turning the warnings o�). Any changes to the participants of a hook may

require changes to the hook and will likely require changes to existing applications as well.

5 Related Work

Other means of describing the intended use of a framework include cook books and framework

patterns. Cook books can be presented as tutorials that describe the basis of the framework

and examples of its use [9], or can be a listing of individual problems and their step by step

solutions within the framework [12]. Similarly, framework patterns [8] document common

problems and solutions with examples through a general narrative. These are called motifs

in [10]. The information contained in cook books and framework patterns is valuable but

cannot be easily interpreted by an automated tool, unlike hooks.

A tool for the exploration and use of frameworks through exemplars is described in [6].

A concrete instance is provided for all abstract classes in the framework. These can then

be executed through the tool to learn the behavior of the framework. A tool also exists for

examining or discovering the design patterns [5] used in a framework [11]. These tools allow

exploration of the design of the framework, but do not explicitly describe how the framework

can be used.

Parallels also exist between the hook tool and aids used in commercial tools such as the

wizards or wizard-like dialogs in Borland Delphi [2] or Microsoft programming tools. These

are dialogs that take a user step-by-step through some process and request information from

the user much in the same way that the hook tool does. However, wizards are generally

20



coded for a particular tool and cannot be dynamically generated. A tool for enacting hooks

is much more exible in that the hook descriptions are interpreted and hook descriptions

can be easily modi�ed.

Graphical user interface (GUI) builders that come with many tools, including Visual-

Works for Smalltalk [12], have already been mentioned. These tools allow users to visually

position components on a screen and to adjust a list of parameters provided with the compo-

nent. Typically, the user can also de�ne or �ll in methods that can respond to events within

the system. Similarly, application developers can select components to include through op-

tion hooks and adjust parameters or �ll in methods through pattern or open-ended hooks.

However, the hook tool applies to many di�erent frameworks whereas GUI builders focus on

a single visual framework.

6 Conclusions and Future Work

Using the same basic ideas that exist in graphical user interface builders, tools can be con-

structed to aid in the use and evolution of object-oriented frameworks. The notion of hooks

helps to form the basis of the tool by describing how the framework is intended to be used

and showing where changes can be made. The hook tool aids users by extending the UML

language to include hooks and by semi-automatically enacting the changes within hooks.

The tool handles propagation of changes between views and helps to prevent inconsistencies.

Additional support comes from extensive use of use cases, examples, class descriptions and

hook books. To support evolution, the tool is exible enough to allow hooks to be added

or modi�ed along with the framework itself. Finally, the tool is exible enough to provide

support for many di�erent frameworks, or more than one framework at a time, which is not

currently done in existing tools.

In the future we would like to increase support for application developers and framework

maintainers. Incorporating new versions of a framework into an existing application can

potentially be aided by the tool since all application extensions to the framework have been

21



logged and potential areas of conict can be agged. We would also like to provide additional

support for framework developers who de�ne the intended use of the framework through use

cases by identifying hooks within the use cases. Finally, an interesting extension of the work

with use cases would be to allow users to de�ne use cases and then identify the hooks within

the framework which will ful�ll those use cases.

References

[1] G. Booch, I. Jacobson and J. Rumbaugh. The Uni�ed Modeling Lan-

guage for Object-Oriented Development. Rational Software Corporation

(http://www.rational.com/uml.html).

[2] Borland Delphi for Windows. Borland International, Inc., Scotts Valley, CA, 1995.

[3] R. H. Campbell, N. Islam, D. Raila and P. Madany. Designing and Implementing

Choices: An Object-Oriented System in C++. Communications of the ACM, 36(9),

Sept. 1993, 117-126.

[4] G. Froehlich, H.J. Hoover, L. Liu and P. Sorenson. Hooking into Object-Oriented Ap-

plication Frameworks. In Proceedings of the 1997 International Conference on Software

Engineering (Boston, Mass, 1997), pp. 491-501.

[5] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

[6] D. Gangopadhyay and S. Mitra. Understanding Frameworks by Exploration of Ex-

emplars. In Proceedings of 7th International Workshop on Computer Aided Software

Engineering (CASE-95) (Toronto, Canada, 1995), pp. 90-99.

[7] H. Hueni, R. Johnson and R. Engel. A Framework for Network Protocol Software., In

Proceedings of OOPSLA'95, Austin, TX, 1995.

22



[8] R. Johnson. Documenting Frameworks Using Patterns. In Proceedings of OOPSLA'92

(Vancouver, Canada, 1992), pp. 63-76.

[9] G.E. Krasner and S.T. Pope. A Cookbook for Using the Model-View-Controller User In-

terface Paradigm in Smalltalk-80. Journal of Object-Oriented Programming 1,3 (August-

September 1988), 26-49.

[10] R. Lajoie and R. K. Keller. Design and Reuse in Object Oriented Frameworks: Pat-

terns, Contracts, and Motifs in Concert. In Proceedings of the 62nd Congress of the

Association Canadienne Francaise pour l'Avancement des Sciences, Montreal, Canada,

1994.

[11] D. B. Lange and Y. Nakamura. Interactive Visualization of Design Patterns Can Help in

Framework Understanding. In Proceedings of OOPSLA'95 Austin, TX, 1995, 342-357.

[12] VisualWorks Cookbook. Release 2.5, ParcPlace-Digitalk Inc., Sunnyvale, CA, 1995.

[13] SEAF Project, unpublished (http://www.cs. ualberta.ca/�softeng/SEAF/project.html).

[14] H. A. Schmid. Creating the Architecture of a Manufacturing Framework by Design Pat-

terns. In Proceedings of OOPSLA'95 Austin, TX, 1995, 370-384.

23


