
Application Framework Issues when Evolving
Business Applications for Electronic Commerce

Garry Froehlich

Department of Computing Science

University of Alberta

Edmonton, Alberta, Canada, T6G 2H1

garry@cs.ualberta.ca

H. James Hoover

Department of Computing Science

University of Alberta

Edmonton, Alberta, Canada, T6G 2H1

hoover@cs.ualberta.ca

Wendy Liew

Department of Computing Science

University of Alberta

Edmonton, Alberta, Canada, T6G 2H1

wendy@cs.ualberta.ca

Paul G. Sorenson

Department of Computing Science

University of Alberta

Edmonton, Alberta, Canada, T6G 2H1

sorenson@cs.ualberta.ca

Abstract

When an organization embarks on e-commerce it

rarely has a chance to re-engineer its existing busi-

ness applications. However, if these business applica-

tions were built using an application framework, then

one might hope to reuse many of the existing legacy

applications in the new e-commerce context. This pa-

per examines the general issues created by migrating

applications to e-commerce, and proposes an archi-

tecture for application frameworks that must support

e-commerce.

1. Introduction

1.1. E-Commerce

The current general de�nition of e-commerce is the
ability to do business on-line via the internet.

Traditional e-commerce focused on business-to-
business transactions over proprietary networks in the
form of EDI (Electronic Data Interchange). The out-
come of this limited business-to-business form of e-
commerce were, among others,

� Increased e�ciency of order processing,

� Reduced costs due to just-in-time inventory
management,

� Locking-in trading partners by requiring all sup-
pliers to participate in the EDI network.

The advent of the internet and the explosion of the
web have opened up e-commerce to small businesses
and consumers in general.

The situation facing organizations as they move
from a locally based enterprise towards a web-based
e-commerce enterprise is depicted in Figure 1. Their
business processes have to expand into a new domain,
and if they use an application framework to build
their business applications, then that framework also
has to expand into a new domain.

Figure 1: Expanding into E-commerce means moving

both business processes and the technology to imple-

ment them into a new domain.

With Internet-based e-commerce come new types
of transactions, which are loosely categorized along



two axes: the parties in the transactions, and the
things involved:

� Parties: business, consumer, government

� Things: tangible goods, intangible goods, ser-
vices

A transaction type is then some combination of par-
ties and things. For example, one can have consumer-
business transactions for tangible goods, such as buy-
ing books; or consumer-government transactions for
services, such as �ling income tax.

This taxonomy is useful for detailed workow anal-
ysis when building an e-commerce application. For
example, if only intangible goods are involved, then
one can ignore the issues associated with shipping,
receiving, and its associated tracking. But from a
framework standpoint, there is nothing essentially dif-
ferent between these various transactions. A good
framework for electronic commerce should enable one
to build applications for any of these transaction
styles.

1.2. Is E-Commerce Di�erent From Nor-
mal Commerce?

How di�erent is e-commerce from normal com-
merce? One could claim that since almost all contem-
porary business transactions are mediated by com-
puters over networks, all commerce is electronic. But
e-commerce is not just the presence of computers or
absence of paper. It implies more, such as:

� Using a non-proprietary open network, the In-
ternet, with its associated issues of security and
reliability.

� Not requiring proprietary client software, that
is, any browser should do.

� Service that is 24 hours a day, 7 days a week,
and its associated system reliability require-
ments.

� A greatly expanded, non-exclusive club of pos-
sible parties. Customers and suppliers can be
geographically distributed worldwide.

� A change in the relationships between trading
parties. Since it becomes simpler to locate and
compare products, the role of 3rd party bro-
kers and middlemen changes. The must provide
some signi�cant value added service if they do
not want to be bypassed.

� The need to establish the identities of parties
without requiring physical contact, and the re-
sulting authentication problems.

� The need to establish o�-line contact between
parties through email, voice, fax or other means.

� The ability to collect data and pro�le parties.
Vendors can know more about their customers
habits and needs and so provide more precise
marketing. Customers can search and compare
among vendors, and customer groups can keep
data on suppliers.

Are e-commerce business processes any di�erent
from normal? Most business objects and analysis pat-
terns [3] for e-commerce are the same as those for
usual business systems. For example, whether done
electronically or not, the typical business-business
supply chain procurement process has to support
tasks like: Account Opening, Order Entry, Order
Change, Order Status Inquiry, Product Con�gura-
tion, Acknowledgement and Feedback, Delivery Ad-
vice, Invoicing Protocol, Payment Protocol, and Cus-
tomer Support. It will require business objects like
Customers, Accounts, Orders, Shipments, and so on.
E-commerce does not really change this basic analy-
sis, but it does provide the opportunity to enhance
the business processes, for example by building cus-
tomer pro�les. It also comes with its own problems,
such as authentication, which inuences the details of
the business processes.

Figure 2: O�ceCo's decision to embark on E-commerce

permits extending its existing processes, and provides

opportunities to expand the client base from only other

businesses to also including consumers.



E-commerce provides a business with an opportu-
nity to change the way it delivers services or to expand
its client base. For example, suppose that O�ceCo,
an o�ce products company, currently deals only with
a small number of business clients. O�ceCo may
want to allow its existing client base to use the web
for procurement in addition to the normal phone and
fax route. In this case they are taking existing pro-
cesses and extending them over the web. Or perhaps
O�ceCo wants to expand into the consumer market.
To do that using existing methods might require ex-
panding their sales sta�, or fragmenting sales sta�
who now must deal with a mix of traditional business
customers and with consumers with di�erent expec-
tations. Thus expanding to the consumer base might
only be possible if it occurs in conjunction with ex-
tending the business processes over the web. This
kind of situation is illustrated in Figure 2.

An organization desiring to support e-commerce is
not usually in a position to completely re-engineer
its business processes. So any e-commerce e�ort will
have to deal with legacy business processes. In partic-
ular, it will have to address the issue of how to migrate
existing applications. If existing applications are built
with an application framework, then the question
becomes one of how the application framework can
be extended to support e-commerce. This extension
could involve attempts to use additional frameworks,
such as one already extant for web applications, and
integrating them within the new application.

1.3. Focus on Application Frameworks

An application framework is a software architec-
ture, along with its implementation, that provides all
of the generic capabilities required by applications
in a particular domain. A new application in the
domain is developed by adding custom application-
speci�c code to points in the framework called hooks.
These hooks vary considerably in nature, from sim-
ple parameterizations of existing classes, to register-
ing callback methods, to inheriting from abstract base
classes for implementing new architectural features.

The promise of application frameworks is that they
reuse of the portion that is common to all applications
in the domain. The price one pays for this reuse is
that one must accept the overall architectural solu-
tion provided by the framework. You have to adapt
your problem to the framework.

The typical business application framework has to
provide the following:

� workow support | being able to express the
business processes of the organization,

� user interface foundation | the basic look and
feel of the user interface, and mechanisms for it
to monitor and control the workow,

� service provision | providing the services nec-
essary to implement the workow, such as au-
thentication.

Most application frameworks are built with a par-
ticular style of user interface and workow in mind.
It is very di�cult to use the framework if your ap-
plication does not �t into that workow model. So
a crucial question for migrating legacy applications
is whether their user interface and workow model
makes sense in an e-commerce context.

It is important to note that application frameworks
are not simply the domain of sophisticated software
developers. Even small organizations use application
frameworks. O�-the-shelf application builders like Vi-
sual Basic, databases like Access and Paradox, and
even spreadsheets are all a form of application frame-
work. Small organizations especially can have a sig-
ni�cant investment in these home grown applications,
and it is next to impossible to migrate these applica-
tions to an e-commerce context.

Our focus for the rest of this paper is on is-
sues associated with applications built using a frame-
work. Legacy applications built in an ad hoc way are
much more problematic (although sometimes wrap-
ping technology can be used to hide the original sys-
tem).

2. E-Commerce Demands on Work-

ow

What makes an application framework for e-
commerce any di�erent from one for normal business
processes? Does an e-commerce framework have to
handle any unusual demands that are not already
raised in normal business processes?

Many of these issues, like dispersed customer loca-
tions, will already be addressed in the business pro-
cesses of large �rms, while small �rms with walk-in
clients may have never experienced them before. It is
also important to note that, because the network is
open, a task like authentication now becomes a con-
cern at every interaction in a process.

The requirements analysis for the e-commerce busi-
ness process has to re-examine every existing process
and business object in the e-commerce context. The
kinds of issues it will expose are illustrated in the fol-
lowing example of the tasks in a typical procurement
workow. It shows how the the process and interface



of the tasks are a�ected by introducing e-commerce
and the Internet.

1. Account Opening: How does identi�cation
get veri�ed? For example, a clerk used to be
able to visually examine a driver's license. How
does the identi�cation information get trans-
ferred securely over the network? Parties can
now be in vastly di�erent geographical and ju-
risdictional locations (tax and legal), this must
be anticipated and captured.

2. Order Entry: The user interface needs to be
friendly, since now the user and not a sales clerk
is constructing the order. Access to the cat-
alog for parts numbers, details, and so on is
needed, as well as a mechanism for price quo-
tations. Should the order entry system adapt
to the pro�le of the customer, for example by
rearranging the catalog to the users style (for
example if the customer is an NT shop, only
list NT compatible software).

3. Order Change: Users must only retrieve or-
ders they are authorized to see, which will re-
quire a modi�ed search facility from that pro-
vided to a sales representative. How does the
impact of a change request get communicated
to a customer, for example changing a compo-
nent to something incompatible with the other
parts being ordered. A change to an order is a
modi�cation of the original contract, so how is
this recorded and communicated for audit pur-
poses?

4. Order Status Inquiry: A status inquiry
might involve a third party, for example for-
warding the request to the courier company's
system to get a location status for the shipment.
So the supplier may need to use authentication
information provided by the customer.

5. Product Con�guration: Customers may not
be experienced in specifying the con�guration of
the product, for example when buying a com-
puter system. What kind of support will be
provided?

6. Acknowledgement and Feedback: Cus-
tomers may want to select among alternative
forms of feedback, for example some may be
happy with email acknowledgement of orders,
others my want a fax. What happens in excep-
tional circumstances that require contacting the

customer, for example if a shipment is delayed,
product cancelled, or payment fails?

7. Delivery Advice: How should choice of de-
livery method be handled. This may require
scheduling with the customer in the case of de-
livery or installation. How does the customer
or supplier handle revised delivery requirements
and rescheduling?

8. Invoicing Protocol: How are customers to be
billed? How are receipts for delivery and pay-
ment going to be generated?

9. Payment Protocol: How are payments to be
made? What about pricing and payments in
foreign currencies? What about taxes and other
charges that are a function of the customer and
supplier's locations? One can be certain that
this particular issue will evolve rapidly in the
near term.

10. Customer Support: Many operations do not
have any existing support structure. How is
this to be integrated into their business sys-
tems? Should there be product support news-
groups, and should they be open to all or just
customers?

As one can see from just this cursory examination,
migrating an organization's business processes out to
the customer is non-trivial. The basic problem is that
the user community for applications undergoes a rad-
ical change in domain (as in Figure 1) from being ex-
perienced in-house users to inexperienced, potentially
hostile, outsiders. It may be that this creates such a
radical alteration in the workow that an entire set
of new applications will have to be created for the
e-commerce side of the business. Of course the hope
is that because existing applications were constructed
with a framework, the e�ort in producing new ones
will be dramatically less.

3. An E-Commerce Application

Framework

Most o�-the-shelf business application frameworks
were not built with e-commerce in mind. They have
a very speci�c purpose: enable the rapid construction
of two-tier business applications. A typical two-tier
business application framework is illustrated in Fig-
ure 3.

In this kind of framework, the basic model is that
business objects are stored in the database, and forms
are used to create new business objects and to change
their state. Typically each form is populated by a



Figure 3: A standard two-tier business framework.

database query associated with the form, and a form
changes object states through database post opera-
tions.

A developer designs the database schema and the
forms. The framework provides the skeleton, and re-
sulting look and feel for the application, along with
services like transaction locking and rollback.

The single biggest problem with such two-tier
frameworks is that the business logic is associated
with the forms. Thus the user interface cannot be
replaced without reimplementing much of the busi-
ness logic. Since migrating the user interface out
over the web is a key requirement of e-commerce,
such frameworks are intrinsically unsuitable for e-
commerce. Applications built using a two-tier model
are very di�cult to migrate. Even if an organization
does not intend to pursue e-commerce immediately,
it should still consider avoiding two-tier applications.

The logical extension to the two-tier framework

factors out the business logic into a separate part of
the framework. This is the so-called three-tier model.
The basic philosophy of three-tier frameworks is that
the business objects maintain the state of the business
process, and workow is controlled by the workow
manager. Users interact with the workow manager
through forms. Since their user interface component
is, more or less, independent from the business logic,
three-tier models are more amenable to distributing
an application over the Internet. In particular, the
three components need not be co-located. One can
have a thin-client model, in which the UI is extended
over the web, while the business logic and database
are on a common server. Or one can have a thick-
client model corresponding to the traditional two-tier
application where the business logic and UI are on the
same platform, and the database is on a server.

We suggest that even the three-tier model is in-
adequate for e-commerce. Because e-commerce can



a�ects the details of business processes, the frame-
work must be able to not only replace subframeworks,
but to integrate and simultaneously support di�erent
implementations of subframeworks, and to accommo-
date new services.

Figure 4 illustrates this extension of the three-tier
model. The framework is composed of three main
subframeworks, and a services pool:

� Object Management Framework | this is re-
sponsible for storing and retrieving all objects
in the application, not just the business objects.
It is also responsible for isolating the applica-
tion from the underlying database, so that it is
portable to di�erent environments.

� Business Logic Framework | the purpose of
the business logic framework is to encapsulate
the business rules and processes independently
of the user interface. This addresses a typical
problem with forms-based applications where
too much process is imbedded in the forms.

� User Interface Framework|- the purpose of the
user interface framework is to isolate the basic
notion of a form (which the user interacts with)
from the underlying window system and operat-
ing system. It also provides the glue the holds
the interface together: the main form, menus,
toolbars and so on that the user uses to initiate
forms.

� Generic Services Pool | This can be viewed as
a virtual machine, that provides services to all
the other frameworks in a su�ciently abstracted
form so that the services can be implemented
in various ways. It contains a number of ser-
vice frameworks, of various complexity such as
error handlers, email agents, message passing
services, authentication, and encryption.

The application speci�c code consists of de�ning the
speci�cs of each business class, the forms that gen-
erate transactions, and the actual transactions that
cause business classes to change state.

4. Migrating to an E-Commerce

Framework

Marketing hype aside, there are enormous techni-
cal hurdles to overcome when evolving a framework to
a new domain. Deciding on a migration strategy de-
pends on thoroughly understanding the issues in this
section for the existing and prospective frameworks.

Small to medium sized organizations often use
commercial o� the shelf components and frameworks
or framework-like environments such as Borland Del-
phi. Typically, these frameworks and tools will not
provide electronic commerce capabilities. When mov-
ing from an existing framework towards electronic
commerce capabilities, developers must consider the
amount of change required to add these capabilities.
Three of the options they have are:

1. Extend the existing system. If only a small
amount of change from the existing system is
required, then the existing system can be ex-
tended or modi�ed. However, as shown in Sec-
tion 2., the shift to electronic commerce can
touch several aspects of the business process
and the system can require a fairly substantial
amount of modi�cation. Extending an existing
framework may not be possible if the developers
do not have access to the source code.

2. Integrate the existing system with a new elec-
tronic commerce framework. For example, a
web-based user interface framework might be
combined with an existing system if the current
user interface for the existing system can be eas-
ily replaced.

3. Rebuild the system for electronic commerce. If
the �rst two options are not feasible, then a new
system may have to be developed. It may also
be possible to purchase a new system to replace
the old one.

Earlier parts of this paper touched on the amount
and types of changes required to move to electronic
commerce. The choice of whether to combine a new
framework with the existing framework or to rebuild
depends on the ease with which the frameworks can
be integrated and the amount of resources already in-
vested in the existing system. The rest of this section
focuses on the issues involved in trying to integrate
two or more distinct frameworks.

Like many software systems, object-oriented
frameworks are usually designed as stand alone sys-
tems. The framework is intended to provide the basis
for a complete application. However, a single frame-
work will not always provide all of the functionality
required by an application, particularly applications
that are evolving into new areas such as electronic
commerce. For this reason, an application may re-
quire multiple frameworks, for example one frame-
work for the web-based user interface and another for
the underlying business logic, and a means of inte-
grating those frameworks into a coherent whole.



Figure 4: Proposed extension to the three-tiered business framework composed of sub-frameworks and a services pool

of frameworks. Hooks are represented by lines between classes.

Since single, monolithic frameworks are not de-
signed to be used with other frameworks, problems
arise when these frameworks are combined. Integra-
tion concerns occur in three main areas:

� the services provided by a framework to an ap-
plication; what the framework does

� the thread of control model used by a frame-
work; how the framework works

� the hooks of the framework that an application
is meant to use; how the framework is used

The two main types of problems that can occur
when integrating multiple frameworks are gap and
overlap [13]. If the services expected by one frame-
work do not match the services expected by another,
then there is a gap. Overlap occurs when two or more
frameworks provide the same services, or try to con-
trol the same resources. Each of the three areas are
discussed below in terms of these problems.

4.1. Services

Each framework provides services that can be used
by an application, and may also require services to be
provided by the application. Many application frame-
works provide all the services the framework requires.
A user interface framework will provide standard user
interface controls such as forms and buttons, but may
also incorporate error handling and communication
services. Integration problems occur when two or
more frameworks provide the same service, or require
an outside service.

To identify potential integration conicts, a list of
the services required and provided by the frameworks
needs to be made. The initial list only needs to in-
clude high level or large grained services, such as error
handling and authentication. Framework gap can oc-
cur when services required by one framework are not
provided by another or are provided in a way that



does not meet the framework's requirements. The
means of providing and using services in frameworks
can be described by hooks and this issue is further
expanded in the subsection on hooks.

Services that are required by the application and
provided by two or more frameworks become sources
of framework overlap problems and need to be fur-
ther examined. Examples are error handling and
communication services. Sometimes, the high level
service can be broken down into more �ne-grained
services. If the conicting frameworks provide dif-
ferent �ne-grained aspects of the same large-grained
service, then there may not be a conict. Specialized
communication to the object management framework
or database may not need to be in the same service
framework as communications with client programs
or web browsers. Framework overlap occurs when two
frameworks provide the same �ne-grained service.

To deal with overlap problems in services, the two
frameworks should be factored into smaller, service
providing frameworks. A service providing framework
is similar to a black box component or class library in
that it does not have an independent thread of con-
trol. The service providing framework receives control
from an outside source, performs a service, and re-
turns control to the outside source. The frameworks
in the Generic Services Pool, such as the Authenti-
cation subframework, are typical of service providing
frameworks. Another vital characteristic of the ser-
vice providing subframework is that it can be removed
or factored out of the larger framework.

If the service cannot be factored out of either
framework, then integrating them will require a great
deal of e�ort involving re-engineering of one or both
of the frameworks, and it may be simpler to build an
entirely new system. If the service can be factored out
of one of the two, then the adapter design pattern [5]
can be used to allow the �rst framework to make use
of the service provided by the second. Issues involving
hooks will also arise when trying to integrate the two
frameworks, and will need to be examined. Ideally,
the common service can be factored out of both frame-
works to become a third framework. Error handling
is a good candidate for a separate service providing
framework since many other frameworks will require
the service and it is important to handle and present
errors in a consistent way. The two frameworks will
then rely on the third framework to provide the ser-
vice.

Unfortunately, services are sometimes tied closely
to others. Factoring them out may involve removing
other parts of the system. A forms based user inter-

face may incorporate some of the business logic within
them and so when it is replaced with a web-based in-
terface that logic has to be captured and added else-
where in the system.

4.2. Control

Unlike pure object libraries, an object-oriented
framework incorporates a control model which ties
the parts of a framework together. The control model
refers to the thread of execution used by a frame-
work. For example, the typical control model for a
window-based user interface framework involves an
event loop inside the operating system itself which
captures events that the framework can respond to.

For integrating frameworks together, the key issues
in the control model are:

� what resources are being controlled

� does the framework use single or multiple
threads of control

� what is the style of control

{ event-driven: external events are received
and processed in the order they arrive,
with the system idle between events. This
style is used in most modern window based
applications.

{ polling: the framework continuously mon-
itors external controls and acts when the
controls change

{ step-by-step: the framework has a directed
graph of actions that the user must follow,
and the user can only move to the immedi-
ate neighbors in the workow. This is the
screen based style used in many mainframe
applications, and also modern 'wizards.'

{ batch: actions are performed in a pre-
determined sequence without outside in-
tervention

Gap can occur when one framework, particularly a
controlling framework, uses multiple threads of con-
trol, and a second service providing framework ex-
pects only a single thread of control. There is a gap
or simply a mismatch between the type of control ex-
pected, and the one given. Under these conditions,
the second framework is not guaranteed to perform
correctly, so the �rst framework must be restricted to
a single thread when interacting with the second.

The use of two di�erent control models between in-
teracting frameworks can also be gaps. A framework
that uses step-by-step or batch control may not be



able to respond to requests coming from a framework
using an event-driven control model. A framework
may use more than one control style, such as an event-
driven system with also incorporates some wizards so
the states in which the frameworks interact has to be
taken into account. When the user of a web-based
framework can have multiple windows and multiple
forms displayed at the same time, the existing system
will have to be able to receive requests or information
from any of them at any time.

Overlap occurs when two frameworks control the
same resources. Sometimes the frameworks will ex-
pect complete control over the resource, such as both
the organization's existing framework and the new
electronic commerce framework they are trying to in-
corporate both containing the main event-dispatching
loop. One or both of the frameworks then have to be
factored into service providing frameworks and one of
the control loops removed. Again, if the frameworks
cannot be factored, then the e-commerce framework
may not be suitable, or the existing system may have
to be redeveloped.

Often a framework will not expect complete control
over a resource or service, but only temporary control.
It may request information and process it with the
framework or actually hand o� the thread of control
to a service providing framework. A means of inter-
leaving control, and ensuring that any dependencies
between frameworks are maintained, such as a locking
mechanism in the Object Management Framework, is
needed.

4.3. Hooks

Hooks provide information about the ways in
which a framework can be used, in terms of both
what the framework expects to be provided and what
it provides. As mentioned in the subsection on ser-
vices, problems can occur when the service provided
by one framework does not match up with the ser-
vice required by another framework. In other words,
the hooks that describe what the �rst framework pro-
vides do not map onto the hooks that describe what
the second framework requires.

In object-oriented frameworks, the two main lan-
guage mechanisms for providing hooks are inheritance
and composition [14]. The use of inheritance allows
the framework builder to embed many of the services
and control ow mechanisms within the framework
and only require the application developer to �ll in
a few methods when extending the framework. Since
the developer has few details to worry about, these
hooks are often easy to use. General transaction man-
agement can be handled in the Business Logic Frame-

work with individual transactions inheriting the busi-
ness logic making it simpler to quickly add new types
of transactions. On the other hand, callbacks or sim-
ple method calls, types of composition, can be more
di�cult to use since it is hard to determine what state
the system was in when the callback was invoked.
In cases such as the Object Management Framework
where the framework can maintain its own relevant
state like the locks on data, composition is appropri-
ate. However, hooks using composition are easier to
integrate than are hooks using inheritance.

Framework gap can occur with hooks using com-
position, or when one hook uses composition and an-
other uses inheritance. The framework providing the
callback may not use the same interface or maintain
the required conditions. An Error Handling frame-
work may require information on the application state
that the User Interface framework does not provide.
Much like all gap problems, an adapter can be used
to bridge the gap between the frameworks.

The more serious problem of framework overlap
can occur when inheritance is used. When both the
providing and requesting hook use inheritance, then
multiple inheritance is required to bridge the two into
a single subclass, bringing with it all of the problems
of multiple inheritance. If both the User Interface and
Error Handling frameworks have error classes within
them which must be inherited from, then integrating
them will require a third class which inherits from
both if the language even allows it, and overlaps in
methods and state variables must be resolved.

All of the service, control and hook concerns point
towards easily factorable frameworks, similar to that
presented in Section 3, as being the best candidates
for integration. Of course, many systems simply can-
not be so cleanly factored so some new components
will need to be added to bridge the gaps between two
frameworks, or some parts of a framework modi�ed
to work with another framework. However, if the
framework cannot be factored, then integration with
another framework becomes much more di�cult and
may not be feasible.

5. Case Study Experience

6. Conclusions and Future Work

The future directions of e-commerce are uncertain.
An organization must be careful to choose applica-
tion frameworks that not only address their current
needs, but which will let them migrate to e-commerce
in the future, and will be adaptable to the evolution
in e-commerce itself. We are currently experimenting



with the details of how services should be factored in
the extended three-tier model.

E-commerce places new demands not only on de-
livery technology, but on the way that business pro-
cesses are designed. At present, technology is forc-
ing organizations to embark on e-commerce before
they have built a coherent model of the business pro-
cesses they need. Since application frameworks need
an associated business model in order to be useful,
one main direction of future research is to develop
business domain modelling frameworks that can sup-
port e-commerce. Without these models, developers
of application frameworks will be solving the wrong
problems. The San Francisco project [7] is just one
example of the integration of busineess modelling and
the support framework.

Acknowledgements

We wish to acknowledge the support of Natural
Sciences and Engineering Research Council of Canada
(Grants OGP , OGP, IOR) and Teledyne Fluid Sys-
tems - Farris Engineering.

References

[1] K. Beck and R. Johnson. Patterns Generate Ar-

chitectures. In Proceedings of ECOOP'94, Bologna,
Italy, 1994, 139-149.

[2] M. Fayad and D. Schmidt. Object-Oriented Applica-

tion Frameworks. CACM, 40(10), October 1997.

[3] M. Fowler. Analysis Patterns: reusable object mod-

els. Addison Wesley, 1997.

[4] Froehlich, G., Hoover, H.J., Liu, L. and Sorenson,
P. 1997. Hooking into Object-Oriented Application
Frameworks. Proceedings of the 1997 International

Conference on Software Engineering, Boston, Mass.,
May 17-23, 1997, pp. 491-501.

[5] E. Gamma, R. Helm, R. Johnson and J. Vlis-
sides. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, Reading, MA,
1995.

[6] D. Gangopadhyay and S. Mitra. Understanding

Frameworks by Exploration of Exemplars. In Pro-
ceedings of 7th International Workshop on Computer
Aided Software Engineering (CASE-95), Toronto,
Canada, 1995, 90-99.

[7] San Francisco - Concepts & Facilities Version 2

SC41-0670-00.
http://www.ibm.com/Java/Sanfrancisco

[8] R. Johnson. Documenting Frameworks Using Pat-

terns. In Proceedings of OOPSLA'92, Vancouver,
Canada, 1992, 63-76.

[9] G. E. Krasner and S. T. Pope. A Cookbook for Using

the Model-View-Controller User Interface Paradigm

in Smalltalk-80. Journal of Object-Oriented Pro-
gramming, 1(3), August-September 1988, 26-49.

[10] M. Mattsson, J. Bosch, M. E. Fayad. Framework In-

tegration Problems, Causes and Solutions. Preprint.
fayad@cs.unr.edu, 1998.

[11] W. Pree. Design Patterns for Object-Oriented

Software Development. Addison-Wesley Publishing
Company, Reading, MA. 1995

[12] R. Pyle. Electronic commerce and the internet. Com-
mun. ACM 39, 6 (Jun. 1996), Pages 22 - 23.

[13] Sparks, S., Benner, K. and Faris, C. 1996. Managing
Object-Oriented Framework Reuse. IEEE Computer.

29(9), 1996, 52-62.

[14] Taligent. The Power of Frameworks. Addison-Wesley
Publishing Company, Reading, MA. 1995.


