
Designing Object-Oriented Frameworks

Garry Froehlich, H. James Hoover, Ling Liu, Paul Sorenson

Department of Computing Science

University of Alberta

Edmonton, AB. T6G 2H1

fgarry,hoover,lingliu,sorensong@cs.ualberta.ca

1 Introduction

Most software reuse has focused on code reuse, such as reusing parts of existing applications, reusing library

functions or reusing pre-built components. With the recent interest in design patterns [Gamma et al., 1995]

and object-oriented frameworks, the focus is shifting away from just reusing code to reusing existing designs

as well. Design patterns provide a reusable piece of a design which solves a recurring design problem in

software construction. An object-oriented framework, which is the focus of this chapter, is the reusable

design and implementation of a system or subsystem [Beck and Johnson, 1994]. It is typically implemented

as a set of abstract classes which de�ne the core functionality of the framework along with concrete classes for

speci�c applications included for completeness. Users of the framework complete or extend the framework

by adding custom application speci�c components or functions to produce and application.

Designing a framework di�ers from designing a single application in at least two respects. First, the level

of abstraction is di�erent. Frameworks are meant to provide a generic solution for a set of similar or related

problems or an entire domain, while applications provide a concrete solution for a particular problem.

Second, frameworks are by their nature incomplete. Whereas an application design has all of the compo-

nents it needs to execute and perform its task, a framework design will have places within it that need to be

instantiated by adding concrete solutions to a speci�c application problem. A framework does not cover all of

the functionality required by a particular domain, but instead abstracts the common functionality required

by many applications, incorporating it into the common design, and leaving the variable functionality to be

�lled in by the framework user.

Due to these di�erences, framework design focuses on providing 
exible abstractions that cover the

functionality required by applications within a domain and making the framework easy to use. These

abstractions in turn provide ways in which application developers can customize the framework. Object-

1



oriented technology is a natural �t for frameworks. Just as a subclass is a specialization of a parent class,

an application can be thought of as a specialization of a more general framework. One of the ways to use

a framework is to specialize the generic classes that are provided in the framework into application speci�c

concrete classes.

There is yet to be an established standard for designing and developing frameworks. The purpose of this

chapter is not to propose a standard, but instead to identify some of the key issues and techniques that a�ect

framework design. Hopefully, as framework development becomes more common and better understood,

standard approaches will emerge. We assume that the reader is already familiar with object-oriented design,

so we will focus on the factors that di�er between regular application vs. framework development. Several

properties, such as ease of use and 
exibility, have been identi�ed in the frameworks literature as aiding the

reuse of the framework. We discuss several techniques, such as the bene�ts of using inheritance, composition,

and the use of hooks which help a framework attain these properties. Some key terms are de�ned in section

2 and the bene�ts of using frameworks are described in section 3. Sections 4, 5 and 6 forms the core of the

chapter, describing the issues to consider when designing frameworks and methodologies for doing the actual

design. Section 7 brie
y discusses framework deployment issues. Section 8 summarizes the chapter and lists

some of the open issues in framework design.

2 Concepts and Properties of Frameworks

Before discussing framework design, we de�ne some concepts and terms associated with frameworks, starting

with the roles involved in framework technology and a more in depth look at the parts of a framework.

2.1 Users and Developers of Frameworks

Three di�erent roles can be associated with the development and use of frameworks:

� Framework Designers or framework developers, develop the original framework.

� Framework Users, sometimes called application developers or framework clients, use (reuse) the frame-

work to develop applications.

� Framework Maintainers re�ne and redevelop the framework to �t new requirements.

The di�erent roles are not necessarily �lled by di�erent people. Often the framework designer is also one

of the framework users and framework maintainers.

2



2.2 Framework Concepts

Several di�erent parts can be identi�ed within an application developed from a framework as shown graph-

ically in Figure 1. Applications are developed from frameworks by �lling in missing pieces and customizing

the framework in the appropriate areas. Application development is discussed in the chapter on using

object-oriented frameworks.

Framework
Core

Framework
Library

Unused
Library
Classes

Framework Application

Application Extensions

Figure 1: Application Developed from a Framework.

The parts of a framework are:

� Framework Core: The core of the framework, generally consisting of abstract classes, that de�ne the

generic structure and behavior of the framework, and forms the basis for the application developed

from the framework. However, the framework core can also contain concrete classes that are meant to

be used as is in all applications built from the framework.

� Framework Library: Extensions to the framework core consisting of concrete components that can be

used with little or no modi�cation by applications developed from the framework.

� Application Extensions: Application speci�c extensions made to the framework, also called an ensemble

[Cotter and Potel, 1995].

� Application: In terms of the framework, the application consists of the framework core, the used

framework library extensions, and any application speci�c extensions needed.

� Unused Library classes: Typically, not all of the classes within a framework will be needed in an

application that can be developed from the framework.

3



ToolSelectionTool

RectangleTool

TextFigure

Figure

RectangleFigure

DrawingController

CompositeFigure

DrawingView

Drawing

OMTClassFigureOMTClassTool

Framework CoreFramework Library

Application Extensions

Key Aggregation

Inheritance

Object

Class

Figure 2: Simpli�ed View of the HotDraw Framework.

A simpli�ed example of the HotDraw framework [Johnson, 1992] is shown in Figure 2. HotDraw is a

framework for building graphical editors, such as class diagram editors, written in Smalltalk.

The core of the HotDraw framework consists of classes that de�ne the interactions and interfaces of

the key abstractions of the framework. Some of the key abstractions in HotDraw are Figures (along with

CompositeFigures and Drawings) which represent items within a diagram such as lines and boxes, Tools which

plug into the DrawingController to handle user actions such as moving Figures around on the screen or creating

new Figures, and DrawingViews which handle the display for the application.

Some of the pre-built components supplied with HotDraw in its framework library consist of SelectionTool

for selecting and moving Figures and RectangleTool for creating RectangleFigures within a Drawing. These are

tools that may be useful in any application, but do not necessarily need to be included in every application

4



built from the framework. Common Figures are also provides, such as RectangleFigure for representing

rectangles and TextFigure for text labels.

HotDraw applications often require new application speci�c Tools and Figures to be derived. As an

example, two application speci�c classes are shown in Figure 2. The complete application allows Object

Modeling Technique [Rumbaugh et al., 1988] class diagrams to be drawn and edited, but only two classes

are shown here. OMTClassTool derives from the core Tool class and allows OMTClassFigures to be created

and edited.

2.3 Hooks and Hot Spots

Application extensions are connected to a framework through hooks. Hooks are the places in a framework

that can be adapted or extended in some way to provide application speci�c functionality [Froehlich et al.,

1997]. They are the means by which frameworks provide the 
exibility to build many di�erent applications

within a domain. For example, HotDraw has hooks for producing new types of Figures and Tools as well as

more complex activities such as disabling the use of Tools to make a display-only application instead of an

editor.

Hot spots [Pree, 1995], also called hinges [Cline, 1996], are the general areas of variability within a

framework where placing hooks is bene�cial. A hot spot may have many hooks within it. The area of

Tools within HotDraw is a hot spot because di�erent applications will use di�erent tools. A Data Flow

Diagram application will have tools for creating and manipulating the DFD that are standard for iconic

interfaces, whereas a PERT chart application, because of its strict temporal ordering constraints, will likely

have di�erent creation and manipulation tools. There are a number of hooks within the Tool hot spot which

de�ne the various ways in which new tools can be de�ned.

In contrast, frozen spots [Pree, 1995] within the framework capture the commonalties across applications.

They are fully implemented within the framework and typically have no hooks associated with them. In Hot-

Draw, DrawingController is an example of a frozen class. The Tools used may vary, but the DrawingController

remains a constant underlying mechanism for interation.

2.4 Framework Categorization

Several di�erent means of classifying frameworks have been proposed. Here we present three relatively

orthogonal views of frameworks. A framework can be categorized by its scope, its primary mechanism for

adaptation and the mechanism by which it is used. The scope de�nes the area the framework is applicable

to, whether a single domain or across domains. The adaptation mechanism describes whether the framework

relies primarily upon composition or inheritance for reuse. Finally, the means of usage describes how the

5



framework interacts with the application extensions; by either calling the application extensions, or having

the extensions call the framework.

2.4.1 Scope

The scope of the framework describes how broad an area the framework is applicable too. Adair [1995]

de�nes three framework scopes.

� Application frameworks contain horizontal functionality that can be applied across domains. They

incorporate expertise common to a wide variety of problems. These frameworks are usable in more than

one domain. Graphical user interface frameworks are a typical example of an application framework

and are included in most development packages.

� Domain frameworks contain vertical functionality for a particular domain. They capture expertise

that is useful for a particular problem domain. Examples exist in the domains of operating systems

[Campbell et al., 1993], manufacturing systems [Schmid, 1995], client-server communications [Brown

et al., 1995] and �nancial engineering [Eggenschwiler and Gamma, 1992].

� Support frameworks provide basic system-level functionality upon which other frameworks or appli-

cations can be built. A support framework might provide services for �le access or basic drawing

primitives.

2.4.2 Customization

The means of customizing is another way in which frameworks can be categorized. Johnson and Foote [1988]

de�ne two types of frameworks, white box and black box. While this is an important dichotomy, a framework

will often have elements of both black box and white box frameworks rather than be clearly one or the other.

� White box frameworks, also called architecture driven frameworks [Adair, 1995] rely upon inheritance

for extending or customizing the framework. New functionality is added by creating a subclass of a

class that already exists within the framework. White box frameworks typically require a more in-depth

knowledge to use.

� Black box frameworks, also called data-driven frameworks [Adair, 1995], use composition and existing

components rather than inheritance for customization of the framework. Con�guring a framework by

selecting components tends to be much simpler than inheriting from existing classes and so black box

frameworks tend to be easier to use. Johnson argues that frameworks tend to mature towards black

box frameworks.

6



2.4.3 Interaction

Andersen Consulting [Sparks et al., 1996] di�erentiates frameworks based on how they interact with the

application extensions, rather than their scope or how they are customized.

� Called frameworks correspond to code libraries (such as the Ei�el libraries [Meyer, 1994] or Booch's

libraries [Booch, 1994]). Applications use the framework by calling functions or methods within the

library.

� Calling frameworks incorporate the control loop within the framework itself. Applications provide the

customized methods or components which are called by the framework ("don't call us, we'll call you").

In this chapter we will be primarily focusing on calling frameworks, although much of the material

applies to called frameworks as well.

2.5 Desirable Properties

Frameworks are meant to be reused to develop applications, and so reusability is very important. Software

reusability means that ideas and code are developed once, and then used to solve many software problems,

thus enhancing productivity, reliability and quality. With frameworks, reusability applies not only to the

code, but also the design. A good framework has several properties such as ease of use, extensibility,


exibility, and completeness [Adair, 1995] which can help to make it more reusable.

2.5.1 Ease of Use

Ease of use refers to an application developers ability to use the framework. The framework should be both

easy to understand and facilitate the development of applications, and therefore ease of use is one of the most

important properties a framework can have. Frameworks are meant to be reused, but even the most elegantly

designed framework will not be used if it is hard to understand [Booch, 1994]. In order to improve the user's

understanding of the framework, the interaction (both the interface and the paths of control) between the

application extensions and the framework should be simple and consistent. That is, the hooks should be

simple, small and easy to understand and use. Additionally, the framework should be well-documented with

descriptions of the hooks, sample applications and examples that the application developer can use.

2.5.2 Extensibility

If new components or properties can be added to a framework easily, then it is extensible. Even if a framework

is easy to use, it must also be extensible to be truly useful. A simple parameterized linked list component

may be completely closed and easy to use, but its reusability is enhanced if it can be easily extended to

include new operations.

7



2.5.3 Flexibility

Flexibility is the ability to use the framework in more than one context. In general, this applies to the

domain coverage of the framework. Frameworks that can be used in multiple domains, such as graphical

user interface frameworks, are especially 
exible. If a framework is applicable to a wide domain, or across

domains, then it will be reused more often by more developers. However, 
exibility must be balanced with

ease of use. In general, a framework with many abstract hooks will be 
exible, but will also be either di�cult

to understand, require too much work on the part of the application developer to use, or both.

2.5.4 Completeness

Even though frameworks are incomplete, since they cannot cover all possible variations within a domain,

relative completeness is a desirable property. Default implementations can be provided for the abstractions

within the framework so they do not have to be re-implemented within every application, and application

developers can run the framework to gain a better understanding of how it works. The framework library can

provide the implementations of common operations, which the developer can choose, making the framework

easier to use as well as more complete.

2.5.5 Consistency

Consistency among interface conventions, or class structures is also desirable. Names should be used con-

sistently within the framework. Ultimately, consistency should speed the developers understanding of the

framework and help to reduce errors in its use.

3 Bene�ts and Concerns of Building a Framework

The design of any type of framework requires the consideration of many issues. The �rst, and possibly

the most important decision is whether or not a framework is needed. Although frameworks have bene�ts

such as design reuse, their are also drawbacks, such as the increased cost of building a good object-oriented

framework as compared to a single application.

Bene�ts

1. Reuse. Quite simply, the main bene�t of frameworks is the ability to reuse not only the implementation

of a system, but the design as well. The framework helps to reduce the cognitive distance [Krueger,

1992] between the problem to be solved and the solution embodied in a software system. Once a

framework has been developed, the problem domain has already been analyzed and a design has been

produced which can be reused to quickly develop new applications.

8



2. Maintenance. Since all applications developed from a framework have a common design and code base,

maintenance of all the applications is made easier.

3. Quality. The framework not only provides a reusable design, a tested design proven to work and

therefore forming a quality base for developing new applications.

Concerns

1. High Cost. Building a framework is often signi�cantly more costly than developing a single application.

A great deal of time is spent de�ning and re�ning the abstractions that form the core of the framework.

2. Shifting Domains. The domain in which the framework is to be built must be relatively stable and

well-understood. If the domain changes, then, unless the framework can be easily modi�ed to �t the

new domain, much of the e�ort put into development will be lost.

3. Evolution. Any changes to the framework will a�ect the applications developed with the framework.

If the architecture or any interfaces change then upgrading applications to use the new framework may

be costly. If the applications are not upgraded, then the advantage of having a common code base is

lost.

Typically, the best candidates for frameworks are applications that are developed repeatedly, with minor

variations [Taligent, 1995]. Domains that change rapidly, or are new enough not to have a base of existing

applications are generally not good candidates for frameworks.

4 Design Process

Frameworks should be developed from 'scratch'. It is unlikely that an application can be transformed into a

framework in a straightforward manner. Frameworks, just like most reusable software, have to be designed

to be reusable from the very beginning.

As Booch [1996] suggests, object-oriented development in general and framework development in particu-

lar requires an iterative or cyclic approach in which the framework is de�ned, tested and re�ned a number of

times. Additionally, small teams or even individual developers are recommended for framework development

so that each member of the development team has a good overall understanding of the framework.

Standard software development methodologies are not su�cient for developing object-oriented frame-

works [Pree, 1995]. For example, traditional methods do not take into account the need to design the hooks

of a framework which provide for the 
exibility and extensibility of the framework. They tend to focus on the

functional requirements. Hooks are also requirements of a framework, but they are quasi-functional. They

do not perform functions within the system, but instead allow the framework to be customized to support

9



a wide range of functionality. Hooks should be considered throughout the process of requirements analysis

through to testing [Cline, 1996].

While there is no agreed upon standard for designing frameworks, some techniques have been proposed

[Sparks et al., 1996] [Taligent, 1995] [Johnson, 1993] [Pree, 1995]. The proposed approaches are still immature

and provide guidelines rather than a fully de�ned methodology. Each of the approaches can be characterized

by several general steps: analysis, design and implementation, testing, re�nement.

The steps are the traditional stages of software development, but each is tailored to the design of frame-

works. Typically, the framework is not built during a single pass, but through multiple iterations of the

steps.

4.1 Analysis

As with any type of software development, the �rst stage is the analysis of the problem domain. In the

case of frameworks, this requires a domain expert. The expert identi�es the size of the domain that the

framework covers, the abstractions that will be incorporated within the framework, and how variations

between applications within the domain will be dealt with.

One of the key decisions that needs to be made when building a framework is deciding on how large of a

domain it will cover. Does the framework apply to a large domain, a narrow part of a domain, or even apply

to several domains? There are bene�ts and drawbacks to frameworks that cover a large domain or a large

part of a domain versus small frameworks which cover a narrow part of a domain. A wide framework will be

reusable in more situations, and thus be 
exible, but may be unwieldy and di�cult to maintain. Building a

widely applicable framework is a signi�cant undertaking, requiring a lot of resources.

Narrow frameworks may be insu�cient for an application, and developers will have to add signi�cant

amounts of additional functionality to produce an application. Narrow frameworks are also easily a�ected

by changes in the domain. While a wider framework might be able to evolve, a narrow framework may no

longer be applicable. On the other hand, narrow frameworks do tend to be smaller and less complex and

therefore easier to maintain. They are also potentially easier to use in other contexts because they aren't

all encompassing of a particular domain. Finally, using a large framework often requires using all of the

functionality within it, regardless if it is needed or not. Having several smaller frameworks instead of one

large one allows framework users to only take the functionality they need. In general, the bene�ts of building

small frameworks outweighs the drawbacks, and so small frameworks are typically recommended.

After the domain of the framework has been determined, analyzing the domain of the framework helps to

determine the primary or key abstractions that will form the core of the framework. For example, graphical

drawing framework, such as HotDraw, will contain abstractions for representing the drawing, the �gures the

drawing contains, and the graphical tools used to manipulate the �gures.

10



Examining existing applications within a the domain of the framework is a useful means of identifying

the abstractions [Johnson, 1993]. In order to gain domain expertise, a framework designer may also want

to build an application within the domain if the designer is not already an expert in the domain [Taligent,

1995].

Developing scenarios for the operation of the framework and reviewing them with potential users of the

framework is another recommended analysis approach [Sparks et al., 1996]. Scenarios help to de�ne the

requirements of the framework without committing developers prematurely to any design decisions. The

scenarios can be abstracted into use cases [Jacobson, 1992] to help identify the primary abstractions and

interaction patterns the framework needs to provide.

The hot spots, the places of variation within the framework, also need to be identi�ed. Again, examining

existing applications will help identify which aspects change from application to application and which remain

constant.

4.2 Design and Implementation

The design determines the structures for the abstractions, frozen spots and hot spots. The design and

implementation of the framework are often intertwined. Abstractions can be di�cult to design properly

the �rst time and parts of a framework may have to be redesigned and reimplemented as the abstractions

become better understood [Pree, 1995]. Parts of the framework may undergo redesign even while other parts

are being implemented.

In order to re�ne the abstractions, reviews of the design are recommended [Sparks et al., 1996]. Reviews

examine not only the functionality the design provides, but also the hooks and means of client interaction

provided by the framework.

Speci�c techniques that aid in the design of frameworks will be discussed later in the chapter. However

some general guidelines have been identi�ed through experience by framework developers working on the

Taligent frameworks and ET++. In order to develop easy to use and 
exible frameworks, Taligent [1995]

suggests:

� reduce the number of classes and methods users have to override

� simplify the interaction between the framework and the application extensions

� isolate platform dependent code

� do as much as possible within the framework

� factor code so that users can override limiting assumptions

11



� provide noti�cation hooks so that users can react to important state changes within the framework

Some additional general design advice proposed by Birrer and Eggenschwiler [1993] is to:

� consolidate similar functionality into a single abstraction,

� break down larger abstractions into smaller ones with greater 
exibility,

� implement each key variation of an abstraction as a class (and include it in the framework library),

and

� use composition rather than inheritance.

At this stage, the speci�c hooks for each hot spot must also be designed and speci�ed. The hooks show

speci�c ways in which the framework can be adapted to an application, and so are an important part of

the framework. Hooks can be described in an informal manner or a semiformal manner using templates

[Froehlich et al., 1997].

Often, trade-o�s must be considered when designing the hooks and structuring the hot spots in general.

Frameworks cannot be arbitrarily 
exible in all directions (i.e.. they only bend in certain ways and bending

them in other ways will break them). Some of the required 
exibility can be determined by examining

existing applications. Often the framework designer has to rely on experience and intuition to make these

trade-o�s. Subsequent testing may require changes in the structure of the hot spots. Further trade-o�s occur

between 
exibility and ease of use. The most 
exible framework would have very little actually de�ned and

so require a great deal of work on the part of the framework user. The framework should incorporate as

much functionality as it can and all the interfaces should be clearly de�ned and understandable, sometimes

at the expense of 
exibility.

4.3 Testing

There are two types of testing that a framework can undergo. First, a framework should be tested in isolation;

that is, without any application extensions. Testing the framework by itself helps to identify defects within

the framework, and in so doing isolates framework defects from errors that might be caused by the application

extensions, or in the interface between the framework and the application extensions. Andersen Consulting

has followed an approach of requiring framework designers to produce a test plan that provides a minimum

of 50% block coverage of the framework with a goal of 70% coverage [Sparks et al., 1996]. It is important

to catch defects in a framework since any defects will be passed on to all applications developed from the

framework. Defects in the framework force users to either �x the defects themselves, or �nd a work around,

both of which reduce the bene�ts of using the framework.

12



Second, the true test of a framework really only occurs when it is used to develop applications. Designers

never truly know if a framework can be reused successfully until it actually has been. Using the framework

serves as a means of testing the hooks of the framework, the points where interactions between application

extensions and the framework occur. Using the framework also helps to expose areas where the framework

is incomplete and helps to show areas where the framework needs to be more 
exible or easier to use. The

applications produced from this kind of testing can be kept as examples of how to use the framework and

are also valuable for regression testing when parts of the framework change.

4.4 Re�nement

After testing, the abstractions of the framework will often need to be extended or re�ned. Building a

framework is a highly iterative process, so many cycles through these steps will be performed before the �nal

framework is produced. A rule of thumb among framework developers is that three separate applications

must be developed from a framework before it is ready for deployment and distribution. After the core has

been successfully developed and implemented, the framework library can be further developed to make the

framework more complete.

5 General Framework Development Techniques

5.1 Abstract and Concrete Classes

A good framework often has a core of abstract classes which embody the basic architecture and interactions

among the classes of the framework. Not all of the core classes need to be or should be abstract, but

the ones involved in hot spots generally are. For example, HotDraw has classes for Figure and Tool which

must be customized to use. Framework designers derive new classes from abstract classes by �lling in the

methods deliberately left unimplemented in the abstract classes or by adding functionality. The abstract

classes should be 
exible and extensible. These classes capture the properties of key abstractions, but just

as importantly, they capture the interactions between elements of the framework as well. The Figure class

interacts with many classes to provide its functionality, such as Tool, Drawing and DrawingView, and this

interaction is de�ned at the level of the Figure class. Any classes derived from it will follow that interaction.

A framework will generally have a small number of these core classes [Gangopadhyay and Mitra, 1995],

but will also have a number of concrete classes which form the framework library. These concrete classes

inherit from the abstract classes but provide speci�c and complete functionality that may be reused directly

without modi�cation in an application developed from the framework. HotDraw provides a number of Figure

classes within the library that can be easily reused. However, the library can also contain parameterized

13



object instances, such as the Tool instances provided with HotDraw. Library components may also be

composed of a number of core classes rather than derived from one exclusively. Providing these concrete

classes makes the framework both more complete and easier to use. If concrete classes are not needed in a

particular application, then they can simply be excluded from the application.

5.2 Hot Spots and Frozen Spots

As mentioned earlier, frameworks contain hot spots which are meant to encompass the variability between

applications within the domain of the framework. Hot spots provide the 
exibility and extensibility of the

framework and their design is critical to the success of the framework.

Two questions to consider about a hot spot are: [Pree, 1995]

� what is the desired degree of 
exibility, remembering that 
exibility has to be balanced with ease of

use?

� must the behavior be changeable at run-time, in which case composition is preferred over inheritance?

Pree's hot spot approach [Pree, 1995] de�nes several metapatterns which aid in hot spot design. Each

metapattern de�nes a set of relationships between template methods and hook methods within an abstract

base class. Template methods de�ne the 
ow of control for the framework and either perform actions directly

or defer functionality to hook methods. Hook methods are left unimplemented within the framework and

are specialized by the application developer to �t the needs of the application. Design patterns also help in

structuring hot spots as described in a later section.

Select Tool Hook New Tool Hook New Tool Type Hook

Tool

DrawingController

Figure 3: Hooks for the Tools Hot spot.

14



Each hot spot will likely have several hooks associated with it. The hooks describe how speci�c changes

can be made to the framework in order to ful�ll some requirement of the application [Froehlich, 1997]. Figure

3 shows the Tool hot spot and three hooks within it. There are three main ways in which a framework can

be modi�ed using hooks and each of these are illustrated in the three hooks depicted in Figure 3.

� Several pre-built components can be provided within the framework library which can be simply used

as is in applications, such as the Select Tool Hook. If there are a limited number of options available,

then the components provided may be all that is needed.

� Parameterized classes or patterns can be provided (such as the use of template and hook methods)

which are �lled in by framework users. The Tool class in HotDraw is an example of a parameterized

class and the New Tool Hook describes how the parameters must be �lled in.

� When it is di�cult to anticipate how a hot spot will be used, or if a lot of 
exibility is needed,

then new subclasses are often derived from existing framework classes and new functionality is added,

corresponding to the New Tool Type Hook.

5.3 Composition and Inheritance

Inheritance and composition are the two main ways for providing hooks into the framework. Composition

is often recommended over inheritance as it tends to be easier for the framework user to use (data driven as

opposed to architecture driven) but each has strengths and weaknesses. The type of customization used in

each case depends upon the requirements of the framework.

5.3.1 Composition

Composition typically involves the use of callbacks or parameterized types. The class of the framework to

be adapted will have a parameter to be �lled in by the application developer which provides some required

functionality. Since the customization is done by �lling in parameters, the framework user does not need an

in-depth knowledge of how the particular component operates. In HotDraw, the Tool class is parameterized

so that new Tools can be quickly and easily produced. The main parameter for customizing the Tool class is

the command table shown here for the example OMTClassFigure tool.

Reader Figure Command

DragReader OMTClassFigure MoveCommand

ClickReader OMTClassFigure ExpandCommand

The OMTClassTool shown here has two entries in its command table which determines what actions it

takes depending upon the context in which the tool was used. The Reader determines the type of use, such

15



as DragReader or ClickReader. The Figure is the type of Figure selected by the tool and the Command is the

action to take on the Figure using the Reader. So, if the OMTClassTool is dragged on the OMTClassFigure

then it will invoke the MoveCommand which moves the Figure. Tools can be easily produced by combining

di�erent Commands, Readers and Figures. The separation of Readers and the Commands from the Tool class

also makes the individual Readers and Commands more reusable. Many Tools will have actions for dragging

and clicking the mouse and they can all use the same Reader classes.

Composition also allows the component used to be changed dynamically. The DrawingController class in

HotDraw uses composition for this purpose. The class has a slot for the Tool that is currently being used,

but there are many di�erent Tools in a typical HotDraw application and the user changes Tools frequently.

The tool that is currently in the DrawingController class may have to be changed at run-time, so Tool was

made into a separate class with each tool having the same interface so that it can be made the current tool

whenever the user selects it.

When composition is combined with a large number of existing concrete classes within the framework

library, adapting the framework becomes a simple matter of choosing the right components and connecting

them together. Composition tends to be the easier of the two types of adaptation to use. A developer

should understand the interface to the component, the functionality the component provides and little else

about the inner workings of the framework. More generally, the developer simply needs to understand which

existing concrete component performs the desired function.

5.3.2 Inheritance

Inheritance involves specializing methods from an abstract class, or adding functionality to an abstract class.

Inheriting from a class requires a considerable understanding of the abstract class and its interactions with

other classes, thus it can be more error prone and more di�cult to use than composition. The advantage

of inheritance is extensibility. An application developer can easily add completely new functionality to a

subclass of an existing class, which is not as easily accommodated with composition.

New Figures in HotDraw are derived by inheritance. New Figures often require added functionality or

instance variables that cannot be anticipated by the framework developers and inheritance provides the

means by which the new methods and variables can be added. For example, the OMTClassFigure in Figure

4 is derived from CompositeFigure and adds two new methods, addvar and addmethod. These methods are

used to add new variable and method text labels to the class box. It also contains TextPopupFigures derived

from TextFigures for the text labels. The TextPopUpFigures contain an additional attribute desc which holds

a description or code fragment and a method popupdesc for displaying the description. Since none of this

functionality was contained in HotDraw before, and it is impossible to anticipate the full range of additional

functionality that might be needed in a Figure, it must be added by inheritance.

16



CompositeFigure

Figure

TextFigure

OMTClassFigureTextPopupFigure

popupdesc()

desc
addmethod()

addvar()

Figure 4: Inheritance Diagram for OMTClassFigure.

Often the abstract class will provide default methods that need to be overridden in a child class. Hook

methods are an example of this. The method is called by another template method, but the speci�c func-

tionality is class speci�c and can't be pre-determined. HotDraw provides a step method for Drawings that is

used for animation, but is left empty by default since no one method can account for the complete variety

of possible ways to animate a Drawing.

5.3.3 Composition vs. Inheritance

Composition is generally used when interfaces and uses of the framework are fairly well de�ned, whereas

inheritance provides 
exibility in cases where the full range of functionality cannot be anticipated.

Composition forces conformance to a speci�c interface and functionality which cannot be easily added to

or changed. All Tools use Readers to determine the location of the mouse pointer and what action is being

taken, and invoke Commands to perform actions on Figures. In practice this works fairly well and covers the

range of actions needed to be performed by Tools. When something outside of this paradigm is required,

however, the Tool class itself must be subclassed to provide the extra functionality.

It has been proposed that frameworks start out as white box frameworks that rely upon inheritance.

As the domain becomes better understood and more concrete support classes are developed, the framework

evolves to use more composition and becomes a black box framework [Johnson and Foote, 1988]. The step

method for animating Drawings was mentioned above. While it is currently blank, and must be overridden

17



through inheritance, it may be possible to provide a number of standard ways to animateDrawings. Instead of

providing a new Drawing class for each standard type of animation, it would be better to move the animation

routines into its own class using the Strategy design pattern [Gamma et al., 1996] which can be linked into

the Drawing class as needed.

Beyond components that developers have to connect, a framework might gain the ability to decide how to

connect components itself. This could possibly be done dynamically or by using a development tool, freeing

the developer to simply choose the components needed without doing any programming.

5.4 Framework Families

Much in the same way that an individual class is a specialization of a more abstract class, one framework may

be a specialization of a more abstract framework. There are two reasons why such a family of frameworks

might be built.

First, a specialized framework can provide more support for special cases within the domain. Abstract

frameworks provide the basic services and interactions, while the specialized frameworks extend that to pro-

vide more specialized support. The abstract framework provides 
exibility while the specialized frameworks

provide more completeness and ease of use.

Second, framework families are a means of dealing with complexity. Instead of including all possible

options within a single, complex framework, related options can be bundled into specialized frameworks.

An alternate approach for producing framework families is to develop an initial problem solution and

then to generalize it [Koskimies et al., 1995]. For example, a framework that is developed to solve a graphing

problem might be generalized into a more abstract framework. The generalized framework is then abstracted

again into a more abstract problem. This process continues until the most general problem solution is found.

The generalization approach quite naturally produces a framework family with the most abstract and 
exible

framework at the top of the 'family tree' and the more speci�c framework at the bottom. Unfortunately, it

is not always clear what a more general solution to the problem would be, or what the most general solution

is.

6 Speci�c Development Techniques

6.1 Domain Analysis

Domain analysis techniques, such as FODA [Kang et al., 1990], focus on �nding the requirements for an

entire domain rather than just for a single application. Domain analysis [Arago, 1991] identi�es the concepts

and connections between concepts within a domain without determining speci�c designs. The analysis can

18



help to identify the variant and invariant parts of the domain, and the primary abstractions needed for

a framework. In the Feature Oriented Domain Analysis technique, the generic parts of the domain are

abstracted from existing applications by removing all of the factors that make each application within the

domain di�erent. The abstraction is done to the point where the product produced from the domain analysis

covers all of the applications. Di�erences are factored out by generalizing existing parts of applications, or

aggregating the variant aspects into more generic constructs. The resulting concepts are then the primary

invariants of the framework. Variations within the domain are captured in FODA by re�ning the common

abstractions through specialization and decomposition. Parameters are de�ned for each re�nement which

capture the variant aspects. The re�nements and parameters can then form the basis for the hooks of the

framework.

6.2 Software Architecture

All software systems, including frameworks, must have a solid foundation at the level of software architecture

[Perry et al., 1992]. Software architecture studies the higher level issues involved in software design, such as

the organization of the system, physical distribution of subsystems, performance and composition of design

elements [Shaw and Garlan, 1996]. Architecture consists of components, the pieces of software such as UNIX

�lters or object-oriented classes, and the connectors that allow them to communicate with each other, such

as UNIX pipes, or object-oriented methods.

6.2.1 Architectural Styles

An architectural style [Shaw and Garlan, 1996] de�nes the types of components and connectors that can

exist within a particular style, and the rules of how they can be composed. These rules can aid in application

development from a framework by helping to describe the types of applications that can or cannot be built,

and general rules for their structure.

For example, HotDraw uses the object-oriented architectural style. The components within HotDraw are

classes and the connectors are the messages that are passed between classes. Object-oriented architectures

allow 
exible structures in which objects can collaborate with other objects in arbitrary ways to provide

functionality, but each object must know about the objects it collaborates with beforehand, unlike �lters in

the pipe and �lter architecture. However, HotDraw is a framework for graphical drawing applications rather

than a command line �lter and is well-suited to the object-oriented style.

6.2.2 Domain Speci�c Software Architectures

Domain Speci�c Software Architectures [Tracz, 1994] are closely related to object-oriented frameworks.

By focusing on a speci�c domain, a DSSA can provide more specialized components and connectors than

19



architectural styles and even provide components that can be used within applications just as is done with

frameworks. A DSSA consists of three things:

� a software architecture with reference requirements and domain model

� infrastructure to support it

� process to instantiate/re�ne it

The reference requirements de�ne the requirements that an application has within the domain. The

domain model is a lexicon of terms within the domain, such as objects, relationships or even actions that

occur within the domain. The infrastructure can refer to tool support provided to build an application

within the domain, as well as pre-built components than can be used within applications.

A DSSA can be provided as a framework (which satis�es the architecture and some of the infrastructure

requirements), but can also include such things as fourth generation languages or application generators.

However, the requirements for a DSSA apply equally well to object-oriented frameworks, and suggest that

frameworks should be part of a larger package that includes requirements, tool support and a process for

using the framework.

6.3 Design Patterns

A design pattern captures some of the expertise of object-oriented software developers by describing the

solution to a common design problem that has worked in the past in several di�erent applications. The

description of the solution will detail the bene�ts and drawbacks of the pattern and perhaps name alter-

natives. Design patterns have been associated with object-oriented frameworks from their inception even

though they are not limited to use in frameworks. They are appropriate for designing parts of frameworks

and particularly designing hot spots within frameworks because many design patterns enhance 
exibility or

extensibility.

DrawingController

DrawingViewDrawing

Figure 5: The MVC Pattern in HotDraw.

20



Model-View-Controller

Context: Interactive applications with a 
exible human-computer interface.

Problem: User interfaces are especially prone to change requests, and when the functionality of an appli-

cation changes, the user interface must change to re
ect that. Additionally, di�erent users require di�erent

interfaces, such as keyboard vs. menu and button. If the user interface is tightly tied to the functionality of

the application, then it becomes di�cult to change and maintain. The following forces in
uence the solution:

� Di�erent windows display the same information and each must re
ect changes to the information.

� Changes to the user interfaces should be easy, including supporting di�erent look and feel standards.

Solution: Divide the application into three areas: processing, output, and input. The three components

that incorporate these areas are called the model, the view and the controller.

� Model: encapsulates the data and functionality of the application.

� View: displays the data within the model. Multiple views can be attached to a single model to display

the data in di�erent ways, or to display di�erent parts of the data.

� Controller: receives input from the user and invokes methods within the model to ful�ll user requests.

Each view can have its own controller and controllers can be changed to provide di�erent means of

input.

Figure 6: The Model-View-Controller Architectural Pattern

Three levels of design patterns have been identi�ed [Buschmann et al., 1996]. Architectural patterns

describe a general high level architecture that can form the basis of a framework or application, and are

closely related to architectural styles. However, many patterns use a particular style and are not styles

themselves. The patterns identify speci�c components and connectors that are used in the architecture. For

example, the HotDraw framework uses the object-oriented architectural style, and the Model-View-Controller

architectural pattern [Buschmann et al., 1996] described brie
y in Figure 6. As shown in Figure 5 the Drawing

forms the basis of the model, DrawingView corresponds to view and DrawingController corresponds to the

controller. Using the pattern gives the framework 
exibility by separating the display (DrawingView) from

the user input mechanisms (DrawingController) and the internal representation of the drawing (Drawing).

New views or types of views can be easily added, new user input mechanisms can be implemented or even

removed so the application becomes a simple display.

At the next level down, the patterns are speci�cally called design patterns. These patterns don't form

the basis for an entire framework, but help to structure speci�c parts of a framework. They are especially

21



Figure

CompositeFigureTextFigure

Drawing

RectangleFigure

Figure 7: The Composite Pattern in HotDraw.

useful in adding 
exibility to hot spots in the framework. The Composite Pattern [Gamma et al., 1996] is

used in HotDraw as shown in Figure 7 to help structure the Figures hot spot. Basically, CompositeFigure is

made a subclass of Figure with the same interface as Figure, but also may contain any number of Figures.

Drawing is a speci�c type of CompositeFigure. CompositeFigures will respond to the same methods that are

invoked on Figures, so that they can be treated interchangeably with ordinary Figures. This allows 
exible

and arbitrary collections of new Figures and nested CompositeFigures developed for an application rather

than forcing a 
at model in which Drawings can only contain simple Figures.

LineFigure

OMTClassFigure OMTClassFigure

Figure 8: The Observer Pattern in HotDraw.

HotDraw also incorporates the Observer Pattern [Gammaet al., 1996] to provide a means in which Figures

can be linked to each other, also within the Figures hot spot. Figure 8 shows a sample HotDraw application

in which two OMTClassFigures are connected by a LineFigure. When one of the OMTClassFigures is removed,

the LineFigure should be removed as well by the application. In order to provide this feature, the Observer

Pattern is used. LineFigure is made a dependent of each OMTClassFigure it is connected to and when one

OMTClassFigure is deleted, the framework automatically sends the class the appropriate deletion message.

22



The OMTClassFigure then noti�es each of its dependents so that they can take the appropriate action,

deleting itself in this case. Noti�cations can also be sent to dependents whenever a given Figure changes,

giving application developers an easy to use mechanism through which one Figure can re
ect changes in

another.

The lowest level patterns are called idioms. Idioms tend to be implementation language speci�c and focus

on speci�c low level issues. For example, an idiom might describe how exception handling can be provided

in a speci�c language.

6.4 Open Implementation

Open implementation [Maeda et al., 1997] is another technique for supporting 
exibility. Software modules

with open implementation can adapt their internal implementations to suit the needs of di�erent clients.

The modules themselves support several di�erent implementation strategies and provide a strategy control

interface to allow client modules to help choose or tune the implementation strategy that best suits the

client. For example, a �le system might support several di�erent caching strategies and allow the caching

strategy to be tuned based on the usage pro�le of the application. The application provides this information

to the module with open implementation, perhaps indicating that it will perform a sequential scan of a �le,

or random access. Typically, the strategy selection information is provided during the initialization of the

module.

This notion can be applied in particular to the framework library. Allowing clients to help select the

implementation strategy can help applications to tune a library class or module for e�ciency, and make it

more suitable for a wider variety of applications.

Four styles of open implementation interfaces have been identi�ed [Kiczales et al., 1997]

� Style A: No control interface is provided which is the same as providing a black box component or

module. The client has no means of tuning the implementation so this approach is best used when

only one implementation of a component is appropriate.

� Style B: The client provides information about how it will use the component, typically through setting

parameter values when initializing the component. The component itself is responsible for choosing

the best implementation strategy based on the information provided. The approach is easy for clients

to use, but does not give them much control over the component.

� Style C: The client speci�cally speci�es the implementation strategy to use from a set of strategies.

The component has no control over the selection, and this approach is the same as providing several

interchangeable components. It is best used when the component cannot select the appropriate strategy

through declarative information, as in style B.

23



� Style D: The client actually provides the implementation to use. The component simply provides the

interface, but no implementation. In frameworks, abstract classes are used in a similar way, de�ning

the interface, but leaving the implementation of methods to the application developer. It is best used

when the set of possible implementations cannot be predetermined.

6.5 Contracts

One of the di�culties in any type of framework is ensuring that the framework receives or produces the

correct information. Integrating classes is an issue in any application development, and using a framework is

in part an integration issue. Therefore, it is critical that the interfaces to the framework, both the methods

of the framework that are called by an application and the methods of an application that the framework

calls, be clearly de�ned.

6.5.1 Simple Contracts

Simple contracts as proposed by Meyer [1988] are a means of specifying the preconditions required by a

method or operation and the postconditions that a method ensures. Specifying and enforcing conditions

can help to cut down on the level of defensive programming needed within a framework, or any piece of

reusable software. For example, a reusable component within the framework library does not have to handle

every possible exception or error condition in the input if the preconditions for the component's methods

are clearly identi�ed and enforced.

As Meyer argues, clearly specifying the conditions helps application developers since they do not have

to guess what the framework does, and can handle errors that might best be handled by the application.

Forcing the framework to handle every possible exception can reduce performance and make the framework

less attractive for use.

Further, some means of enforcing the contracts may help reduce the number of errors application devel-

opers make when using the framework. In Ei�el, contracts are built into the language. In other languages,

Hollingsworth [1992] proposes that separate classes be built to represent contracts. These classes will ensure

that the preconditions and postconditions are met for the framework to operate correctly. These contract

classes could be included with the release of a framework and used during the development of an application

and removed to improve e�ciency when the application is released.

6.5.2 Behavioral Contracts

More complex behavioral speci�cations have been proposed. [Helm et al., 1992] Also called contracts, they

cover not only the interactions between two classes, or the conditions placed on one method, but on the

total interaction between multiple classes, often involving multiple methods to perform some task. The

24



contract ExecuteTool

Tool supports[

s: Sensor

execute() 7! Reader ! initialize(s,Command); Reader ! manipulate(s); Reader ! E�ect ]

Reader supports[

c : Command

initialize(sensor,c) 7! �c fcommand = cg; c ! initialize(sensor.mousepoint)

manipulate(sensor) 7! c ! execute(sensor.mousepoint)

e�ect 7! c ! e�ect ]

Command supports[

initialize(loc)

execute(loc)

e�ect ]

end contract

Figure 9: The ExecuteTool Behavioral Contract

speci�cation is 
exible in that one contract can specialize another, and contracts can be composed of other

contracts. When actually using the contract, a conformance declaration is produced which states how the

classes involved ful�ll the contract.

Specifying behavioral contracts within a framework helps to capture design information that might be

needed by application developers. Figure 9 shows the ExecuteTool contract used in HotDraw which details

how Readers, Commands and Tools interact in order to perform the task. When the Tool executes, it �rst

initializes the Reader with the mouse sensor and the Command to be executed. Afterwards, it sends the

manipulate command to the Reader which in turn actually executes the command on the Figure found at

the current location of the mouse. When the user is �nished using the tool (i.e. lets go of the mouse

button during a drag operation) the Tool sends the e�ect message to the Reader which performs any clean

up operations needed, including sending the e�ect message to the Command. When application developers

add a new Reader, Command or Tool class to an application developed from HotDraw, they need to conform

to this contract. The contract makes the information explicit and so the application developer does not need

to synthesize this information from the source code, which may not even be possible if the source code of

the framework is not available.

25



7 Framework Deployment

Once an object-oriented framework has been implemented, re�ned and tested to the point where it is stable,

it is ready to be deployed by application developers. There are a number of questions to be considered

when deploying a framework. First, what sort of aids for learning the framework are provided? Andersen

Consulting has used three di�erent approaches [Sparks et al., 1996].

� Roll out sessions: sessions are held after a framework has reached a certain phase in its development in

order to introduce users to the current set of features. This approach has the advantage of gradually

introducing the users to the framework as it is developed.

� Example Applications: examples help to show speci�c ways in which the framework can be used.

Examples can also potentially be modi�ed and used in a new application being developed.

� Reference Documentation: documentation that describes the purpose of the framework, how to use it

and how it is designed can and should be provided. Documentation techniques will be covered in the

next chapter on using object-oriented frameworks.

Additionally, a framework developer might be involved with application development as well. When the

framework designer is also involved in using the framework, application developers can use the designer's

expertise with the framework. The framework designer may also gain insights into how the framework can

be modi�ed or improved.

Second, will the framework be distributed as source code or a binary executable? Binary executables do

not allow developers to modify the framework but instead require them to rely on the interfaces provided.

This may make future upgrades of the framework easier to incorporate into existing applications if the

interfaces don't change, and will protect the framework code against tampering. However, developers cannot

�x any errors they encounter in the framework and are forced to devise workarounds. Additionally, developers

cannot examine the binary implementation to help to understand the framework as they can with source

code.

Third, how will changes to the framework be handled? When bugs are �xed or new features are added

to the framework, how will existing applications be a�ected? Ideally, only the internal implementations of

framework components will change, leaving interfaces and hooks the same, but this is not always possible.

This issue will be examined more fully in the chapter on using object-oriented frameworks.

26



8 Summary and Open Issues

Object-oriented frameworks provide the means for reusing both the design and implementation of a system

or subsystem. As such, they provide tremendous leverage for the application developer. The design of similar

applications do not have to be repeatedly constructed out of existing or new code components, but instead

an existing design can be customized quickly to provide the desired functionality. Due to the common design

base, several applications developed from the same framework can also be maintained more easily.

However, frameworks are more di�cult to design and develop than single applications. Frameworks must

be general enough to capture the commonalties of all the applications that might be built within the domain

of the framework and they must also be 
exible enough to allow for the variations that exist between those

applications. All of this generality and 
exibility has to be made easy to use for application developers if

the framework is to be a success.

There are no mature framework development methodologies. There are, however, guidelines and promis-

ing techniques for aiding in the development of frameworks and several of these have been presented. Domain

analysis can be used to identify the commonalties and variations (frozen and hot spots) in the domain. Inher-

itance and composition can be used to provide di�erent sorts of ease of use and 
exibility. Design patterns

and open implementation techniques help to structure the framework and to provide the right types of


exibility.

Providing such a methodology is one of the key open issues in the area of object-oriented frameworks. A

framework development process needs to focus on the identi�cation of hot spots and frozen spots. How are

the right abstractions for the framework determined and how should they be structured? It also needs to

focus on building 
exibility and ease of use into the framework, which in essence is designing the hot spots

of a framework.

Some techniques are available for developing 
exibility in a framework, but there is very little help for

deciding on which tradeo�s to make. Which part of the framework should be made more 
exible and how

will it a�ect the other parts? Does 
exibility need to be sacri�ced for more ease of use? While there are

guidelines for making frameworks easier to reuse, there is no criteria quantifying just how easy they should

be to reuse.

Object-oriented frameworks are a key means of moving software development away from the traditional

means such as continuously redeveloping commonly used code or trying to reuse and �t together unrelated

and often mismatched components. Frameworks provide the components and the context, together with

an overall structure and design to ensure component compatibility and provide a powerful form of software

system reuse.

27



References

[1] Adair, D. 1995. Building Object-Oriented Frameworks. AIXpert. Feb. 1995.

[2] G. Arango, G. and R. Prieto-Diaz, R. 1991. Domain Analysis Concepts and Research Directions, IEEE

Computer Society.

[3] Beck, K. and Johnson, R. 1994. Patterns Generate Architectures. Proceedings of ECOOP 94. 139-149.

[4] Birrer, A. and Eggenschwiler, T. 1995. Frameworks in the Financial Engineering Domain: An Experience

Report. Proceedings of ECOOP 93. 21-35.

[5] Booch, G. 1994. Designing an Application Framework. Dr. Dobb's Journal. 19(2):24-32.

[6] Brown, K., Kues, L. and Lam, M. 1995. HM3270: An Evolving Framework for Client-Server Commu-

nications. Proceedings of the 14th Annual TOOLS Conference. 463-472.

[7] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M. 1996. Pattern-Oriented Software

Architecture: A System of Patterns. John Wiley & Sons Ltd, Chicester England.

[8] Campbell, R.H., Islam, N., Raila, D., and Madany, P. Designing and Implementing Choices: An Object-

Oriented System in C++. Communications of the ACM. 36(9):117-126.

[9] Cline, M.P. 1996. Pros and Cons of Adapting and Applying Patterns in the Real World.Communications

of the ACM. 39(10):47-49.

[10] Cotter, S. and Potel, M. 1995. Inside Taligent Technology, Addison-Wesley Publishing Company, Read-

ing, MA.

[11] Eggenschwiler, T. and Gamma, E. 1992. ET++ SwapsManager: Using Object Technology in the Fi-

nancial Engineering Domain. Proceedings of OOPSLA 92. 166-177.

[12] Froehlich, G., Hoover, H.J., Liu, L. and Sorenson, P. 1997. Hooking into Object-Oriented Application

Frameworks. Proceedings of the 1997 International Conference on Software Engineering.

[13] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. 1995. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, Reading, MA.

[14] Gangopadhyay, D. and Mitra, S. 1995. Understanding Frameworks by Exploration of Exemplars. In

Proceedings of 7th International Workshop on Computer Aided Software Engineering (CASE-95). 90-

99.

28



[15] Helm, R., Holland, I.M. and Gangopadhyay, D. 1992. Contracts: Specifying Behavioral Compositions

in Object-Oriented Systems. Proceedings of ECOOP/OOPSLA 90. 169-180.

[16] Hollingsworth, J. 1992. Software Component Design-for-Reuse: A Language Independent Discipline

Applied to Ada, Ph.D. thesis, Dept. of Computer and Information Science, The Ohio State University,

Columbus, Ohio.

[17] Jacobson, I., Christerson, M., Jonsson, P. and Overgaard, G. 1992. Object-Oriented Software

Engineering{A Use Case Driven Approach. Addison-Wesley, Wokingham, England.

[18] Johnson, R. 1992. Documenting Frameworks Using Patterns. Proceedings of OOPSLA 92. 63-76.

[19] Johnson, R. 1993. How to Design Frameworks. Tutorial notes from OOPSLA 1993.

[20] Johnson, R. and Foote, B. 1988. Designing Reusable Classes. Journal of Object-Oriented Programming.

2(1):22-35.

[21] Kang, K., Cohen, S., Hess, J., Novak, W. and Peterson, A. 1990. Feature-Oriented Domain Analysis

(FODA) Feasibility Study. (CMU/SEI-90-TR-21, ADA 235785). Pittsburgh, Pa.: Software Engineering

Institute, Carnegie Mellon University, Pittsburgh, Pa..

[22] Kiczales, G., Lamping, J., Lopes, C.V., Maeda, C., Mendhekar, A., and Murphy, G. 1997. Open Imple-

mentation Design Guidelines. Proceedings of the 19th International Conference on Software Engineering.

Boston, Mass. 481-490.

[23] Koskimies, K. andMossenback, H. 1995. Designing a Framework by Stepwise Generalization.Proceedings

of the 5th European Software Engineering Conference. Lecture Notes in Computer Science 989. Springer-

Verlag. 479-497.

[24] Krueger, C.W. 1992. Software Reuse. ACM Computing Surveys. vol. 24(6): 131-183.

[25] Maeda, C., Lee, A., Murphy, G., and Kiczales, G. 1997. Open ImplementationAnalysis and Design. Pro-

ceedings of the 1997 Symposium on Software Reusability in ACM Software Engineering Notes 22(3):44-

53.

[26] Meyer, B. 1988. Object-Oriented Software Construction. Prentice Hall, Englewood Cli�s, NJ.

[27] Meyer, B. 1994. Reusable Software The Base Object-Oriented Component Libraries. Prentice Hall, En-

glewood Cli�s, NJ.

[28] O'Connor, J., Mansour, C., Turner-Harris, J. and Campbell, G. 1994. Reuse in Command-and-Control

Systems. IEEE Software 11(5):70-79.

29



[29] Perry, D.E. and Wolf, A.L. 1992. Foundations for the Study of Software Architecture. ACM SIGSOFT

Software Engineering Notes. 17(4):40-52.

[30] Pree, W. 1995. Design Patterns for Object-Oriented Software Development. Addison-Wesley Publishing

Company, Reading, MA.

[31] Rumbaugh, J., Blaha, M., Premerlani, W., Frederick, E. and Lorenson, W. 1991. Object-Oriented

Modeling and Design, Prentice Hall, Englewood Cli�s, NJ.

[32] Schmid, H.A. 1995. Creating the Architecture of a Manufacturing Framework by Design Patterns.

Proceedings of OOPSLA 95. 370-384.

[33] Shaw, M. and Garlan, D. 1996. Software Architecture - Perspectives on an Emerging Discipline, Prentice

Hall, Englewood Cli�s, NJ.

[34] Sparks, S., Benner, K. and Faris, C. 1996. Managing Object-Oriented Framework Reuse. IEEE Com-

puter. 29(9): 52-62.

[35] Taligent. 1995. The Power of Frameworks. Addison-Wesley Publishing Company, Reading, MA.

[36] Tracz, W. 1994. Domain-Speci�c Software Architecture (DSSA) Frequently Asked Questions (FAQ).

ACM Software Engineering Notes. 19(2):52-56.

[37] Vlissides, M. and Linton, M.A. 1990. Unidraw: A Framework for Building Domain-Speci�c Graphical

Editors. ACM Transactions on Information Systems. 8(3):237-268.

30


