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• Teledyne Fluid Systems / Farris Engineering

• Sizing according to ASME and API standards

• Selection according to catalog

• Conformance to engineering practice. 
  e.g. revision control, auditability, accountability

•Combine best of engineering and CS practice 

Pressure Safety Valve Engineering
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This:
On this:
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Prevents this:
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DBMS

Thick Client
UI + Queries + Business Logic

Eng.
WorksheetCatalog

We needed to build one of these as SizeMaster:
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• Weak grasp of new workflow possibilities.

• Vaguely articulated services.

• Radical change in UI

Clearly RAD project from beginning:
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Components + Framework are key to RAD:
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How? Delphi IDE for “two-tier” model

•Business objects are stored in a DBMS
•Forms move objects between states in lifecycle.

Capture Done ArchivedOrder:

Order
Entry

Cust.
Mgmt.

Capture Done ArchivedCustomer:
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Delphi IDE for “two-tier” model

•IDE focuses on building forms

•Forms are containers for the components,
 e.g. UI and  DBMS connections

•Business logic is spread over forms
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RAD does not imply good quality application

But . . .
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• no encapsulation of business objects, 
  schema overly exposed

• mixing of UI and business logic

• services unarticulated, diffuse in implementation

• no unity over applications in same domain

• ad hoc, brittle architecture, hard to evolve

Instead often get:
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• User: 
  business objects and workflow evolution

• Architecture: 
  basic services identification and factoring

Why?

Can look at RAD from two perspectives:

Most RAD is architecturally weak, even though
components are good.
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Slogan

Services + Frameworks + Components 

⇒   Quality RAD
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•physical, precise thing

•replaceable

•realizes a set of export interfaces, its capabilities

•conforms to a set of import interfaces

•exists in an architectural context or framework

•combine into assemblies, themselves components

What is a component?
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• An exported interface that addresses some
  group of tasks.

• A collection of imported interfaces that
  establishes the context of the service.

• A service is not a component, it is an
  architectural element.

What is a service?
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• A component is one way to realize a service,
  by exploiting the component’s capabilities.

• but a service can be realized by a set of 
  classes in the application framework, or even
  some piece of code.

A service is not a component
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• software architecture + implementation + hooks

• provides generic capabilities in some domain

• custom application specific code added at hooks

What is a framework?

Examples:
Inprise Delphi
spreadsheet
DBMS - DB2, Access
San Francisco
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Promise:
Leverage existing design and implementation
common to all applications in a domain.

Cost:
Must yield design authority and 

 adapt your application to the overall 
architectural solution dictated by framework.

Frameworks
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Service-centric
Framework
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Claim:  Quality applications are built by

• identifying required services

• allocating services to components

• using frameworks to hook up and build
  components

This process is iterative and evolutionary.
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A workshop is required to assemble components 
into a product.

The workshop provides:
•service decomposition
•an application framework
•a collection of components
•tools for customization 
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Problem with unadorned off-the-shelf
workshops:

• Few developers are good architects,

• Do not understand the underlying services
  and frameworks,

• Workshop provides no services, framework, 
  or process guidance
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Crucial to choose the right workshop for your
RAD  style.

Basic workshop IDE’s like Delphi, ACCESS, VB,
Java or workshop technologies like CORBA,
DCOM, are only good for Waterfall RAD

What about Evolutionary RAD?

RAD Management Issue
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• The success of evolutionary RAD depends
  crucially on identifying and factoring services.

• Services are provided by components.

• Can acquire small and large commodity
  components from vendors.

• Construct service components by customizing 
  a service-providing framework.

• All services are coordinated by a domain-specific 
  application framework.
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Dangers

•  Wrong level of abstraction for services

•  Bad factoring of services

•  Cross-component services, 
   E.g. trouble handling
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•  functional decomposition isn’t dead yet,
   we just call them services

•  commodity components can be bought

•  some large scale ones need to be built

•  good domain-specific application framework
   is key

Conclusion


