
1998-11-29 Hoover - CASCON 1

Services, Frameworks, and Components
What is really important to quality

rapid application development?

H. James Hoover
Software Engineering Research Lab
Department of Computing Science

University of Alberta
hoover@cs.ualberta.ca

http://www.cs.ualberta.ca/~softeng
http://www.avrasoft.com

IBM CASCON 1998
Workshop on Component-based software composition

Thursday Dec 3

Research supported by NSERC and Teledyne Fluid Systems

1998-11-29 Hoover - CASCON 2

Outline

• The story of SizeMaster
• Services, Components, and Frameworks
• A slogan
• RAD issues
• Conclusion

1998-11-29 Hoover - CASCON 3

• Teledyne Fluid Systems / Farris Engineering

• Sizing according to ASME and API standards

• Selection according to catalog

• Conformance to engineering practice.
 e.g. revision control, auditability, accountability

•Combine best of engineering and CS practice

Pressure Safety Valve Engineering

1998-11-29 Hoover - CASCON 4

This:
On this:

1998-11-29 Hoover - CASCON 5

Prevents this:

1998-11-29 Hoover - CASCON 6

DBMS

Thick Client
UI + Queries + Business Logic

Eng.
WorksheetCatalog

We needed to build one of these as SizeMaster:

1998-11-29 Hoover - CASCON 7

1998-11-29 Hoover - CASCON 8

1998-11-29 Hoover - CASCON 9

1998-11-29 Hoover - CASCON 10

• Weak grasp of new workflow possibilities.

• Vaguely articulated services.

• Radical change in UI

Clearly RAD project from beginning:

1998-11-29 Hoover - CASCON 11

Components + Framework are key to RAD:

1998-11-29 Hoover - CASCON 12

How? Delphi IDE for “two-tier” model

•Business objects are stored in a DBMS
•Forms move objects between states in lifecycle.

Capture Done ArchivedOrder:

Order
Entry

Cust.
Mgmt.

Capture Done ArchivedCustomer:

1998-11-29 Hoover - CASCON 13

Delphi IDE for “two-tier” model

•IDE focuses on building forms

•Forms are containers for the components,
 e.g. UI and DBMS connections

•Business logic is spread over forms

1998-11-29 Hoover - CASCON 14

1998-11-29 Hoover - CASCON 15

1998-11-29 Hoover - CASCON 16

RAD does not imply good quality application

But . . .

1998-11-29 Hoover - CASCON 17

• no encapsulation of business objects,
 schema overly exposed

• mixing of UI and business logic

• services unarticulated, diffuse in implementation

• no unity over applications in same domain

• ad hoc, brittle architecture, hard to evolve

Instead often get:

1998-11-29 Hoover - CASCON 18

• User:
 business objects and workflow evolution

• Architecture:
 basic services identification and factoring

Why?

Can look at RAD from two perspectives:

Most RAD is architecturally weak, even though
components are good.

1998-11-29 Hoover - CASCON 19

Slogan

Services + Frameworks + Components

⇒ Quality RAD

1998-11-29 Hoover - CASCON 20

•physical, precise thing

•replaceable

•realizes a set of export interfaces, its capabilities

•conforms to a set of import interfaces

•exists in an architectural context or framework

•combine into assemblies, themselves components

What is a component?

1998-11-29 Hoover - CASCON 21

• An exported interface that addresses some
 group of tasks.

• A collection of imported interfaces that
 establishes the context of the service.

• A service is not a component, it is an
 architectural element.

What is a service?

1998-11-29 Hoover - CASCON 22

Customer OrderAccount

Business Classes

Database
Middleware

Database

Create
Order Login

Change
Order

Form
 Classes

UI
Manager

Window
Manager

Database

UI

Application Specific

1998-11-29 Hoover - CASCON 23

• A component is one way to realize a service,
 by exploiting the component’s capabilities.

• but a service can be realized by a set of
 classes in the application framework, or even
 some piece of code.

A service is not a component

1998-11-29 Hoover - CASCON 24

• software architecture + implementation + hooks

• provides generic capabilities in some domain

• custom application specific code added at hooks

What is a framework?

Examples:
Inprise Delphi
spreadsheet
DBMS - DB2, Access
San Francisco

1998-11-29 Hoover - CASCON 25

Promise:
Leverage existing design and implementation
common to all applications in a domain.

Cost:
Must yield design authority and

 adapt your application to the overall
architectural solution dictated by framework.

Frameworks

1998-11-29 Hoover - CASCON 26

Service-centric
Framework

1998-11-29 Hoover - CASCON 27

Customer OrderAccount

Business
 Classes

Persistent
 Object

Manager

Database
Middleware

Database

Create
Order Login

Change
Order

Form
 Classes

UI
Manager

Window
Manager

Order
Transaction

Account

Workflow
Manager

Error
 Handling

Authentication

Object Mgmt
 Framework

Generic Services Pool

EMail

UI Framework

Business Logic Framework

Business
 Rules Mgr

Application Specific

1998-11-29 Hoover - CASCON 28

Claim: Quality applications are built by

• identifying required services

• allocating services to components

• using frameworks to hook up and build
 components

This process is iterative and evolutionary.

1998-11-29 Hoover - CASCON 29

A workshop is required to assemble components
into a product.

The workshop provides:
•service decomposition
•an application framework
•a collection of components
•tools for customization

1998-11-29 Hoover - CASCON 30

Problem with unadorned off-the-shelf
workshops:

• Few developers are good architects,

• Do not understand the underlying services
 and frameworks,

• Workshop provides no services, framework,
 or process guidance

1998-11-29 Hoover - CASCON 31

Crucial to choose the right workshop for your
RAD style.

Basic workshop IDE’s like Delphi, ACCESS, VB,
Java or workshop technologies like CORBA,
DCOM, are only good for Waterfall RAD

What about Evolutionary RAD?

RAD Management Issue

1998-11-29 Hoover - CASCON 32

• The success of evolutionary RAD depends
 crucially on identifying and factoring services.

• Services are provided by components.

• Can acquire small and large commodity
 components from vendors.

• Construct service components by customizing
 a service-providing framework.

• All services are coordinated by a domain-specific
 application framework.

1998-11-29 Hoover - CASCON 33

Dangers

• Wrong level of abstraction for services

• Bad factoring of services

• Cross-component services,
 E.g. trouble handling

1998-11-29 Hoover - CASCON 34

• functional decomposition isn’t dead yet,
 we just call them services

• commodity components can be bought

• some large scale ones need to be built

• good domain-specific application framework
 is key

Conclusion

