
Choosing an Object-Oriented Domain Framework

Garry Froehlich�, H. James Hoover, Ling Liu, Paul G. Sorenson

Department of Computing Science

University of Alberta

Edmonton, AB. T6G 2H1

fgarry,hoover,lingliu,sorensong@cs.ualberta.ca

Version 1.5

1998 April 9

Abstract

Deciding whether or not a framework '�ts' an application and provides an appropriate basis for

development of the application is one of the key decisions developers make when choosing to use a new

framework. In this paper we outline a three step process for helping to determine whether or not a

framework is appropriate. The process looks at the limitations, the hooks and the amount of uncertainty

in using a framework.

1 Introduction

Object-oriented frameworks [2] enable developers to rapidly produce new applications | provided that the

framework is actually suited to the requirements of the new application. Often, previous experience with

the framework is used to make this decision, but when application developers are unfamiliar with a new

framework they have no experience for deciding whether or not to use it. They may not discover that

a framework lacks support for key requirements of an application until well into the development cycle,

resulting in substantial redevelopment or discarding of the project altogether. They require a basis for

making the initial decision of whether or not to invest time in understanding and using the framework. Our

approach is most successful for domain speci�c object-oriented frameworks. Due to their size and overall

generality, this approach may not be as applicable to enterprise frameworks.

�Main contact author, garry@cs.ualberta.ca

1



We have been working with existing frameworks such as HotDraw [6], as well as developing new frame-

works in the engineering domain (EAF). Our experience, common to most framework users, is that building

up the level of expertise necessary to know in detail what applications a framework can be used for is a time

consuming process due to the abstract nature and complexity of most frameworks. How can this expertise

be captured and be made available to new users of the framework to help them decide whether or not to use

the framework? In other words, how do we describe the applicable domain of the framework?

A new application can fall into one of three areas. It can be (1) clearly outside of the applicable domain

and thus the framework can be immediately rejected as being unsuitable; (2) clearly within the applicable

domain and thus ideally suited to the framework; or (3) somewhere in between in a region of uncertainty

in which using the framework entails a high degree of risk. When what can and cannot be done with the

framework is poorly de�ned, the region of uncertainty is very large, and the decision of whether or not to

use the framework is much more di�cult.

The region of uncertainty can be reduced by better de�ning the applicable domain, but it can never be

eliminated in a non-trivial framework. When an application falls into the region of uncertainty, the potential

user of a framework will often perform experiments to increase their understanding of the framework and

to evaluate its appropriateness to the new application. The framework should provide support for this

experimentation.

2 Decision Process

There are three general steps for deciding whether or not to use a framework for an application.

1. Determine if the framework should be immediately rejected. Verify that the stated limitations of the

framework do not violate any of the requirements of the application.

2. Determine if the framework is clearly suitable. Try to map the requirements of the application to the

hooks described for the framework. The hooks [3] show what the framework is intended to be used

for and describe how a framework can be extended to meet a given requirement. If there is a hook for

every requirement of the application, then the framework can be easily used to develop the application.

3. Assess the level of uncertainty. If an application has requirements for which there are no hooks de�ned,

then it falls into the region of uncertainty. The framework may be suitable for the application, but is

not guaranteed to be so. Further, the greater the amount of uncertainty, the more likely it becomes

that developers will need to put more work into implementing their application from the framework.

Support for each of the three steps is described below.

2



2.1 Limitations - What cannot be done with the framework.

Every framework will have limitations placed on it through design decisions made by the framework develop-

ers. The limitations of a framework generally cannot be easily changed or bypassed and can cause a project

to fail if the application developers are not aware of them. Some applications will clearly fall outside of the

stated domain of the framework, for example applying our engineering framework to payroll applications.

Others are not so clear and the limitations of the framework need to be examined. Unfortunately, frame-

works frequently have little or no documentation on their limitations, and determining them often requires

inspection, experimentation, or appeal to an expert user.

Design patterns [4] often discuss the limitations and tradeo�s that are made when using the pattern and

when design patterns are used to document design decisions in the framework [1]. The limitations of the

design patterns then apply to the framework as well.

As an example, we'll use the SizeMaster application for selecting the appropriate pressure relief valve for

a given situation. SizeMaster was built using our engineering application framework (EAF), and our busi-

ness application framework (Kalos). Brie
y, some of SizeMaster's requirements are to perform moderately

complex sizing calculations, to show who performed and approved a given calculation, to maintain the units

used in a calculation in an internally consistent way, to enforce the work
ow of an order from requirements

capture to selection of the appropriate valve, and to maintain a customer, order and valve database.

The engineering application framework is designed for a particular style of calculation found in many

engineering standards, in which a relatively small number of variables and formulas can be inter-related in

many ways. The framework imposes some structural limitations on the calculation (for example, it requires

acyclic calculations in which two or more variables cannot each depend on the other), and has performance

limits to the number of equations and variables used. The framework is certainly not intended for real time

calculations.

Upon inspection, the valve equations from the design standard were found to �t within the limitations

imposed by the EAF. Not all equation dependencies were acyclic, but the cases in the standard where this

occurred were easily recti�ed by introducing some redundancy. The number of equations were also found to

fall under the performance limits of the framework, although they indicated that object creation in the EAF

is very expensive.

The associated user interface and persistent object framework provided by Kalos connects a database

to a forms-style user interface. Kalos requires a relational database that supports SQL queries, and the

forms transactions use optimistic locking. None of the requirements of SizeMaster clearly contradict these

limitations as the application will use a database, can use a forms based interface and the model is such that

con
icts will occur infrequently so optimistic locking is appropriate. The frameworks cannot be immediately

3



rejected.1

2.2 Hooks - What can be done with the framework.

Techniques such as cookbooks [7], patterns [6], and hooks have been developed to help describe how the

framework can be used. The hooks approach is the most structured and de�ned of the three and provides

a good basis upon which to make decisions about framework adoption. Hooks occur at the hot spots [8] of

a framework. Each hook gives a speci�c requirement that it ful�lls and then documents how to extend the

framework to meet the requirement. Hooks fall into three categories of use.

� Option: components are provided with the framework that can be easily used together within the

overall framework architecture. For example, the Kalos framework provides a standard set of navigation

buttons and menu options which can be used in an application.

� Pattern: components are con�gured with parameters and/or connected together in well de�ned ways.

For SizeMaster, one of the appropriate patterns are the standard forms in the frameworks which are

parameterized to display and allow the modi�cation of customer and order records. Another pattern

that �ts the requirements of the application is the new worksheet hook which allows arbitrary equations

and their dependencies between one another to be used in the application. There are also collaboration

patterns that capture the intended ways of combining the EAF and Kalos frameworks.

� Open: the framework is extended in well de�ned ways, generally by providing new components. Within

Kalos, open hooks are de�ned for creating the appropriate database tables, and persistent business

objects with application speci�c behavior. In the case of SizeMaster, the business objects identi�ed

above are customers, orders and valves.

By matching the requirements of the application to the hooks provided with the framework, the appli-

cation developers can be certain that their application will not \break" the framework. Although each hook

represents an intended use of the framework, frameworks are also meant to be 
exible and it is not possible

to describe every conceivable use of the framework.

When using the decision process, developers should keep in mind that they give up a lot of design control

to the framework. The requirements of the application have to be mapped to the capabilities and hooks of

the framework in order to use the framework. The framework may ful�ll the requirements in a di�erent, and

possibly better, way than the developers are accustomed to.

Some requirements of SizeMaster have not been accounted for by the hooks. Some of these are default

features of the framework, such as requiring users to log in and tracking which user performed what action,

1Of course, both the EAF and Kalos were designed for just this style of application.

4



or keeping all units in a calculation internally consistent. Others, such as work
ow fall in the region of uncer-

tainty. For example, many applications have common patterns of work
ow captured in wizards. Whether a

wizard can exercise the required control over the work
ow style supported by the framework is a signi�cant

area of uncertainty.

2.3 Dealing with uncertainty.

When appropriate hooks are missing for some of the requirements of the application, it is not clear if the

framework is applicable. Often, application developers simply don't have enough knowledge about the

framework to decide if it is suitable. They will use the framework in ways the original framework developers

never thought of. They may decide that modi�cations to the framework are required when in fact the desired

capability may already exist in the framework but was never documented. In our frameworks an application's

work
ow must �t into the general work
ow model supported by the framework.

Since it isn't possible to completely remove the area of uncertainty around the applicable domain of a

framework, developers need help to deal with the uncertainty. Within the region of uncertainly, application

developers must have a deeper understanding of the architecture and implementation of the framework. A

domain expert can help determine if the application is within the general domain of the framework, but

may not know if it is within the framework's applicable domain. Clear documentation of the design of

the framework, such as through design patterns or architecture description languages, can help to provide

the understanding needed. In our experience, access to the source code of the framework is indispensable

especially if new capabilities need to be added to it. In the case of SizeMaster, investigating the work
ow

requirements showed that some evolution of the framework was required.

Tools for understanding how the framework operates, such as exploring exemplars [5], can help deepen

the developer's knowledge of the framework. Tools which aid in the rapid development of applications, such

as the interactive development environments (IDEs) associated with graphical user interface frameworks,

allow developers to quickly prototype their applications and �nd potential pitfalls. Implemented on top of

Borland's Delphi framework, EAF and Kalos makes use of the Delphi IDE to enable developers to quickly

prototype the basic user interface and the support for work
ow required. The experience that comes out

of these experiments can then be captured as new hooks or limitations of the framework, or simply as a

description of what did or did not work. To guide the experimentation and learning process, we provide

a Kalos standard application. It illustrates all of the key hooks in the framework without many of the

obscuring details associated with a full application.

When signi�cant use of open hooks is required or actual code changes to the framework are necessary,

then the risk of framework use is high. Further exploration is necessary into tools to provide on-going advice

and risk assessment for the framework user.

5



2.4 Other Factors

The process outlined only helps to determine the �t of the framework to the application requirements. There

are other factors, beyond the scope of this paper, which also impact the decision of whether or not to use a

particular framework. For example, a framework which has been used extensively will be more mature and

stable than a newly developed framework and will likely incorporate good abstractions. Performance issues

can also play a role. Tools provided with the framework can make it signi�cantly easier to use than one with

no such support. User support from the vendor can also be important. Finally, the understandability of the

framework is critical to its use.

When choosing a framework which will be used for several applications, or across an entire business,

these other factors are more critical than when choosing a framework for a single application. For example,

vendor support becomes much more crucial when a framework must evolve to support the long term evolving

needs of an organization.

3 Summary

When using object-oriented frameworks, one of the key decisions that needs to be made is whether or not

the framework �ts the application. Since frameworks can be complex, gaining a deep enough understanding

of the framework to make that decision often requires the time consuming process of actually using the

framework. Capturing information about the applicable domain of the framework is a way to ease this

decision. Limitations and design tradeo�s about the framework can help to show what the framework

cannot be used for. Hook descriptions can be used to show what the framework can be used for. In the

middle is a region of uncertainty that will exist for all frameworks, but tool support and documentation can

aid in determining the suitability of the framework.

References

[1] K. Beck and R. Johnson. Patterns Generate Architectures. In Proceedings of ECOOP'94, Bologna, Italy,

1994, 139-149.

[2] M. Fayad and D. Schmidt. Object-Oriented Application Frameworks. CACM, 40(10), October 1997.

[3] Froehlich, G., Hoover, H.J., Liu, L. and Sorenson, P. 1997. Hooking into Object-Oriented Application

Frameworks. Proceedings of the 1997 International Conference on Software Engineering. pp. 491-501.

[4] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, Reading, MA, 1995.

6



[5] D. Gangopadhyay and S. Mitra.Understanding Frameworks by Exploration of Exemplars. In Proceedings

of 7th International Workshop on Computer Aided Software Engineering (CASE-95), Toronto, Canada,

1995, 90-99.

[6] R. Johnson. Documenting Frameworks Using Patterns. In Proceedings of OOPSLA'92, Vancouver,

Canada, 1992, 63-76.

[7] G. E. Krasner and S. T. Pope. A Cookbook for Using the Model-View-Controller User Interface Paradigm

in Smalltalk-80. Journal of Object-Oriented Programming, 1(3), August-September 1988, 26-49.

[8] W. Pree. Design Patterns for Object-Oriented Software Development. Addison-Wesley Publishing Com-

pany, Reading, MA. 1995

7


