
FrameScan: Exploring O-O Framework Usage

Amr Kamel Garry Froehlich Paul Sorenson
Department of Computing Science

University of Alberta
Edmonton, Alberta
Canada, T6G 2H1

1 780 492 1564
{amr, garry, sorenson}@cs.ualberta.ca

ABSTRACT
While much research has been conducted on the design of
object-oriented frameworks, few usability studies have
been done with frameworks to determine how software
practitioners can understand and use frameworks. The
empirical study presented in this paper addresses how
software practitioners obtain an initial understanding of a
framework and how they build and maintain framework
expertise within the project group.

The objective of this stage of our study is not to reach final
conclusions about framework usage, but rather to generate
hypotheses for further investigation in later stages of the
study. It lays the foundation for the development of
continuous studies leading to: i) understanding
requirements of tool support for effective large-scale usage,
ii) the feasibility of creating and maintaining an experience
bases around the framework and iii) better understanding of
the problems developers face in order to develop better
framework documentation.

Keywords
object-oriented frameworks, software reuse

1 INTRODUCTION
From the very beginning of the discipline (McIlory [26]),
building software systems out of reusable components has
been a prime goal of software engineering discipline.
Object-oriented application frameworks (frameworks for
short) are becoming an increasingly popular strategy for
component-based software development. A framework
comprises an architecture that targets a wide range of
applications within a specific domain, and an
implementation of that architecture [38]. Frameworks can
be commercially available products such as MFC or in-
house developments used to support software product lines
[6], [31], [32], [1]. Details of in-house frameworks are
typically hidden to maintain competitive advantages.

In commercial frameworks, and in many proprietary
frameworks, the framework is often developed by one
group of practitioners and used by a different group [4].
Furthermore, to overcome its development cost, a
framework is used by not one, but many development

groups in a product-line. This emphasizes the importance
of presenting the framework to its potential users in an easy
to understand way. Yet, frameworks are generally difficult
to understand [5]. A typical user is required to invest a lot
of time and effort to learn and understand the framework
before using it [28], [38]. Some researchers estimated the
effort required as being equivalent to that of maintaining an
existing application [31].

While building and designing frameworks has been
extensively discussed in literature, few studies have been
conducted to address frameworks' usability, with the goal
of minimizing the learning curve of new users. FrameScan
is an ongoing study with the goal of understanding how
software practitioners can effectively and efficiently
understand and deploy framework technology to construct
and evolve different applications. Our study focused on
white-box frameworks [18] documented using hooks [12].
A white-box framework is extended using inheritance to
drive new classes and writing application specific methods.
Hooks provide a structured template that describes in a pre-
defined grammar the changes necessary to adapt the
framework to fulfill a particular requirement. An example
of a hook in a common user interface framework is the
actual means of adding a new item to a menu (e.g. add the
name, produce the method that responds to the event, etc.).
The choice of white box frameworks was motivated by
their wide use in industry [6]; the choice of hooks was
motivated by their ease of automation [26] and [17].
Furthermore, the framework is intended a coarse-grained
component in an application, rather than being a basis for
the entire application.

The remainder of this paper will discuss some of the
background of frameworks and framework usage (section
2), and then will detail the setup of our study and some of
the initial results from it. In section 3 we discuss three
questions we wanted to answer with the study, and we then
carry those questions through the paper, first generating a
number of interesting hypotheses based on our data from
the study, and generating some initial conclusions. We
then describe how future studies in the series will be setup
to help answer some of the questions.

2

2 BACKGROUND
Little work has been done on addressing how to use a
framework as opposed to how to design and build one.
Most of the work on learning and using frameworks
focuses on how a framework designer can document his/her
framework and present it to its potential users. The purpose
of the framework, its design and intended-use are the three
roles proposed by Johnson [18] that documentation should
fulfil for frameworks. In [1] Butler et. al., a number of
types of documentation are discussed that are targeted
towards one or more roles.

Hooks [12], motifs [23], cookbooks [22], tutorials [31] and
exemplars are different documentation techniques targeting
how a framework is meant to be used. The basic concept
promoted by most of this work is to think of the framework
in terms of the functionality it provides, and to document it
in terms of related services. Each hook (a recipe in the
cookbook, etc.) describes a service along with a
demonstration of how to extend the framework to provide
its functionality in developing an application. Exemplars
[16] are used to show a prototypical examples of the
framework functions and provide some means of tracing its
control flow. The idea is to present to the user the
framework's hot spots [27], where the framework should be
modified, while maintaining the frozen spots intact. The
underlying assumption is that framework developers will
be able to adequately anticipate future uses of the
framework and provide enough documentation for all these
uses. This assumption may not hold true in many cases.

Empirical studies have shown that framework
customization is more complex than just modifying a
limited number of predefined spots [8]. Furthermore, these
studies inferred that documentation that assumes the
possibility of limiting the changes to a few points is too
restrictive to provide the required support for many realistic
problems. This promoted a maintenance style approach to
framework learning. Studies adopting this approach [33]
make no assumption about the hot spots of the framework.
The framework users are responsible for where and how to
modify the framework to support their application. In this
approach, framework users have access to the same set of
documentation available for the framework developers. In
addition, they have access to different example applications
built using that framework. The underlying assumption is
that using a framework needs the same level of
understanding needed for developing and maintaining it.
Typically, developing and maintaining a framework
requires substantially greater investment of time and effort
than that of a single application. Requiring framework
users to gain deep understanding of the framework,
equivalent to that of its developers is a lot of unnecessary
overhead defeating the whole concept of framework reuse.
Furthermore, adopting this approach severely limits

framework evolution and forward compatibility among
applications.

We are interested in conveying the intended use of the
framework to application developers. Frameworks consist
of hot spots (parts of the framework that can be configured
or have custom application components added to) and
frozen spots (parts of the framework that should remain
fixed) [27] as shown in Figure 1. Documentation for the
intended use such as hooks focus on these hot spots.

Figure 1: Hot Spots and Hooks

To overcome the problem of a limited number of
predefined hot spots [8], we integrated a feedback loop. In
our approach, input from framework users is used to
modify the documentation for future users. Our thesis is
that framework functionality can be better understood if the
framework user's perspective is considered while writing
the documentation. Furthermore, the documentation has to
be continuously updated to include any usage that was not
originally anticipated by the framework developers. Thus,
understanding how the framework is actually used is of
vital importance to achieve our goal.

3 RESEARCH QUESTIONS
The main goal of this study is to observe and understand
issues related to framework usability from the framework
users' standpoint. We reasoned that the best approach is to
observe practitioners developing application with minimum
interaction. From the information we collected, we hoped
to gain an understanding of principles and issues related to
developing applications using frameworks. We hoped to
understand the development process and ultimately,
recommend best practices, and build tools that support
these best practices.

Our study took place in a classroom environment. A major
challenge we had was to conduct the study, without
perturbing the pedagogical goals of the course. We
managed to achieve our goals by carefully planning the
process steps of our study. For obvious reasons, we
recommended what we envisioned as best practices and
guidelines to the whole class. However, using these
recommended practices was optional and we allowed
students to make use of their expertise and experiences to
modify these guidelines. We observed the processes

Framework

Hooks

Application

Components

Hot Spots

3

administered by the students and, determined how useful
were our guidelines. The main research questions we had
are:

1. Is there an effective way to understand and learn
how to develop applications using frameworks?

2. Does the use of hooks improve the
understandability and usability of a framework?

3. Can technical reviews be used effectively to speed
up the early stages of framework learning
process?

In order to formulate our hypothesis about these questions,
we collected a wide range of information about the students
and their academic and industrial background. We kept
track, to the best of our ability, of all details that seemed
affecting framework usage and understanding.

4 STUDY SETUP
Overview
To explore how frameworks are used, we ran a study as
part of a software-engineering course at the University of
Alberta in the spring term of 2000. A class of 34 computer
science students was divided into six teams of five or six
students each. Most of the study participants were at their
senior year, and many them had worked outside the
university on a sixteen-month industrial internship program
(IIP)1.

In order not to interfere with team synergy, students self-
selected their team partners. To compensate for any bias, in
collected data, that might result from the self-selection
process (e.g. teams are not of equal capability), students
background information, (e.g. courses taken, industrial
experience, technical knowledge, etc.) was collected and
considered during data analysis.

Over the time span of the course, each team was asked to
develop a client-server application of their choice with the
requirement of building the application using the CSF [14]
framework. The developed applications were small to
medium sized and covered domains like collaborative
document development, long-distance learning and on-line
gaming.

The CSF Framework.
The CSF (Client-Server Framework) is a small framework
of approximately 50 Java classes developed to serve the
purposes of this study. The framework facilitates
persistence data management and platform-independent
communication. The communication aspect allows objects
within different programs running on different machines to
exchange messages of any type and size. The mechanisms
deployed are fairly simple and are not intended to compete
with larger efforts such as CORBA.

1 See www.cs.ualberta.ca/iip/

In order to facilitate its use, the framework comes with
several types of documentation, covering all aspects
outlined in [8] and [18]:

• Use-cases to give an overview of the use of the
framework and points to individual hooks where
developers have to provide their own classes or
methods.

• Design documentation to provide a high-level
overview of the major classes of the framework and
their relationships to one another. This includes both
class diagrams and collaboration diagrams along with
textual descriptions.

• Hooks to document the framework's intended use.
They show how and where the framework can be
enhanced in order to meet application specific
requirements.

• Examples show some specific uses of the framework
and provide running code that the developers can
experiment with.

• API and code to show details of methods, classes used
in the framework. The source code of the framework
was made available.

Additionally, the framework developer and the teaching
team were available throughout the study to answer
questions that arose.

In order to enhance our confidence in the framework's
ability to provide its promised services, the framework was
carefully designed. Commonality analysis was performed
on other existing frameworks in the area along with other
client server applications developed in the class. Design
patterns [15] were incorporated where applicable.
Furthermore, in a previous offering of the same course, two
student groups had voluntarily used a beta-version of the
framework in a limited manner. Revisions based on the
results of this experience had enhanced the maturity of the
CSF Framework.

Running the Study

Due to the lack of guidelines discussing framework
deployment in literature, we had to develop our own,
relying heavily on our experience from the previous
offering of the course. The projects' lifecycle was separated
conceptually into two phases, exploring the framework and
using it to build an application. In the first phase, team
members explore the basic functionality of the framework
and set their reuse strategy. The objective of the first phase
is to build some confidence within team members that the
framework serves the purposes of their application. In the
second phase, the framework is actually used to produce
the application. Typically, the first phase is completed
during project analysis and the second phase starts with the
application design.

4

During the first phase, a CSF-expert (the developer) gave a
three-hour overview on the framework distributed over two
sessions. The sessions covered the framework design and
its documentation style. The use of the framework was also
demonstrated using a simple example application to give a
concrete instance of the abstract classes of the framework.

In the third week of the course, a technical review was held
with the purpose of swapping technical information
between development teams and the CSF-expert. In view of
their application, team members were asked to individually
review the framework and prepare a list of questions and
concerns. During a thirty minute collection meeting, each
team had the opportunity to address their concerns and ask
questions of the CSF-expert. Due to time limitations,
discussion was kept to a minimum. Depending on the
question/concern, the CSF-expert chose to either provide
quick answers, or defer the answers until later. The rework
session of the review produced a set of Frequently Asked
Questions (FAQ) that was attached later to the framework
documentation. Outcome of these reviews was the corner
stone for our feedback approach discussed earlier.

For the second phase, the guidelines were provided as a set
of deliverables at predetermined milestones. Each team had
to produce an analysis document and a detailed design
document. Deliverables to product testing, consisted of
updated version of the two documents along with test plans,
integration plans, reports on the process used, and user
documentation.

A second technical review was held on the eighth week of
the course. The purpose of this review was to find defects
in the design documents. The two reviews followed a
similar process, but they differed in roles, and reading
technique. In the second review, the teaching team was the
reviewer and student teams were the authors. Checklists
were the recommended reading technique for the first
review, while the second review used ad hoc technique.
The checklist for the review was prepared according to
guidelines.

The course was organized to mimic industrial setups, where
the class instructors played the role of upper management.
Due to this setup, project progress was monitored through
two ways. Weekly meetings were held between
management and each project team to gauge their progress
and address any concerns they might have. Second, project
team members were required to keep time logs of their
project-related activities.

Data and Analysis.
The six student teams were all given the same framework
as outlined above. Over the course of the project life span,
we collected a wide variety of data using a multitude of
techniques. Below we list the data collected and the
collection technique.

1. Project Marks – official grades

2. Self Assessment – questionnaires

3. Progress Reports – reviewed by instructor and teaching
assistants

4. Problem Reports – received and dealt with by
framework expert

5. Review Results – reviewed by instructor and teaching
assistants

6. Acceptance test results – reviewed by another team
and further assessed by instructor

7. Project Documentation – reviewed by instructor and
teaching assistants

The students’ questions for the CSF developer that came in
over the term were answered using the FAQ and recorded
for later study.

Because the development teams were composed of
students, some guidance was provided in the development
process. In addition, to monitoring project progress several
deliverables were required at predefined milestones in the
project lifecycle. After the final product was delivered,
each team filled out a short survey to document their
subjective experience of using the framework. In addition,
course TAs and the framework expert undertook detailed
analysis of the application code looking for the correct use
of the framework in their products.

We also used qualitative analysis methods [35], supported
with quantitative comparisons where possible. Qualitative
analysis methods have been heavily used in software
engineering for process elicitation [28] and auditing [6],
and more generally, where human aspects are considered
[34].

Although we collected a lot of data, the remainder of this
paper will focus on the three research questions outlined in
section 3. To answer the first question on how people learn
and use frameworks, we kept track of the teams through
meetings, daily logs, and project deliverables throughout
the entire course of the study. We also queried them using
a final survey regarding their approach to framework use
and application development.

In order to assess the value of hooks in answer to the
second question, the hooks for the framework were divided
into two sets of roughly equal complexity. One set was
made available to the development teams, while the other
was not. We then looked at the time logs, final products
and surveys to see if the students spent more time in
understanding the parts of the framework for which the
hooks were not available as opposed to the hooks that were
available.

To answer the third question on the utility of reviews, two
reviews were conducted; one during the project’s analysis
phase and the other after the design phase. The first review

5

focused on the rate and extent of learning how to
understand and use a framework. The second review
focused on the effectiveness of traditional objectives of
reviews such as defect finding and progress reporting as
they apply to framework use.

5 SUMMARY OF RESULTS.
In summarizing our results, we focus our initial analysis
over the three research questions outlined above.

Question 1: Is there an effective way to understand and
learn how to develop applications using frameworks?
In using the framework, the developers encountered several
difficulties that they had to overcome. These problems can
be grouped into three broad categories: architectural
understanding, interactions understanding and technical
problems.

Architectural understanding is about learning the basic
model of the framework and gaining a high level
understanding how the key pieces fit together. It is the first
key step in using a framework. From our experience, it is
evident that understanding the framework architecture is
key for designing and building a correct application using
the framework. Teams that did not grasp the CSF
architecture early on struggled to produce a correct design.
These teams had many problems at the more detailed
interaction level.

Architectural misunderstanding manifested itself in several
ways. Some teams attempted to extend frozen parts of the
framework (those parts not intended to be extended or
modified). Some attempted to duplicate functionality
already present within the framework. For example, one
application required a message passing system with
particular properties. They did not recognize that the
framework provided these properties; in part, this came
through resistance to the idea of using the framework itself.
The team mirrored the one already present within CSF, and
then faced the difficult task of reconciling the two similar
implementations of a message-passing scheme into a
working product. Most of these problems were caught
during the design review.

Understanding the interaction between the framework and
an application is the next crucial step in using the
framework once a developer understands the basic model.
Problems with interactions are localized to the framework
services or interface. For example, one team had problems
with sending synchronous messages across the network
when their application was not initializing that particular
part of the messaging system correctly.

Lastly, dealing with technical problems is a part of any
software project, including those involving frameworks.
Problems such as errors in the framework, hardware and
software incompatibilities etc. are usually caught during

application testing. Our experience showed that when
using third party software, testing might be problematic.
Users may look at the source code to trace the problems not
just through their own application code, but through the
framework code as well.

The need for tool support for the testing procedures was
obvious. Our development teams were able to manage
through direct communication with the framework
developers; however, in a general setup, easy access to the
framework developers might not be possible.

Hypothesis 1. When developing applications using
frameworks users go through the stages of
investigation, integration and testing. Each of these
stages can be enhanced through documentation and
tool support.

Unlike many of the other aspects of the study, the effect of
using frameworks on the development process was
relatively uniform across all teams. They first investigated
the framework, to build an initial understanding of its
architecture, and have an initial view of how it will
integrate within their application. The key process enacted
during this stage was the information swapping technical
review. Almost all groups made use of this session. They
reviewed the framework documentation, raised concerns
and asked questions about the framework usability and its
documentation. From our initial study we are convinced
that further tools could aid in investigation by stepping
users through the process of using the framework on an
example or linking the different types of documentation.

During the integration stage, the process is characterized by
round trips between hooks, examples and use cases.
Studying and running examples, investigating the code of
the framework itself and from time to time asking questions
of the developer were the basic techniques used during this
stage. The challenge remains to identify guidelines or best
practices to support this stage. Required support needs to
integrate hooks with the examples in an intuitive way, yet
not limit the hook to the specifics of the example. Tools at
this stage could help users properly integrate with the
framework by suggesting where to extend the framework
and by enforcing the correct integration details.

For the testing stage, the design review indicated some
positive potential. Yet, the reviews were not that successful
due to the amount of documentation that needed to be
reviewed. We recognize the need for more testing support
to both identify and correct errors made using the
framework. Tools could help at this stage by actually
automatically generating test cases based on the hooks the
developers have used.

Hypothesis 2. Consultation based development model is
well suited for developing applications using
frameworks.

6

Depending on the choice of the team, not everyone had
direct experience with using the framework. The number
of people responsible for learning and using CSF, shown in
Table 1, varied from one person to nearly the entire group.

Grades of the design document were the major indication
for team success. The significance of this measure was
cross-checked using records of our weekly meetings and
the type and volume of questions addressed to the CSF
expert after the first technical review. Successful teams
delegated all framework-related tasks to one or two team
members. These members invested time and effort
understanding the framework, then served as framework
experts during the analysis and design phases of the project.
The alternative approach involved replicating framework
expertise across the team with all team members investing
the same time and effort trying to learn and understand the
framework.

Team # of members
using CSF

Design
Assessment

A 1 98.67%

B 2 92.00%

C 3 88.67%

D 4 55.33%

E 2 93.33%

F 3 83.33%

Table 1: Team Members Using the CSF

Learning the framework requires a lot of time and effort.
Resources assigned to that job must be kept at minimal
level. However, the team gains collectively from having an
expert with good understanding of both the framework and
the application. This expert was able to propose solutions
and answer question when the need arose without having
other developers to devote extra time to understanding the
framework themselves.

When asked how confident they were in building another
application using the CSF, all members involved with the
CSF expressed a high level of confidence. This helps
indicate that each CSF expert invested the required amount
of effort to fully understand the framework. However, from
the project perspective, teams using consultation based
model made a better investment for their time.

Question 2: Does the use of hooks improve the
understandability and usability of a framework?
In order to assess the usefulness of hook documentation, we
divided the framework into a number of services (similar to
the idea of framelets [30]) and then looked at the students
perceived difficulty and actual errors made relating to each

service. The services are:

• Asynchronous communication – sending messages
across the network without blocking the sender.

• Synchronous communication – sending messages
across the network and then waiting for an immediate
reply within a given time limit.

• Mail server – choosing and using the correct ‘engine’
for message passing based on the type of application
being produced.

• Persistence – saving and restoring objects to and from
persistent storage.

• Data proxies – providing a local representation of data
being stored on another machine.

Furthermore, we focused on the utility of hooks and
examples. In order to do that, we provided varying levels
of documentation for each service. Design diagrams and
use cases for all services were provided. Table 2 shows
which type of documentation was provided for each of the
services.

Service Hooks Examples

Asynch. Yes Yes

Synch. No Limited

Mail server Yes Limited

Persistence No Yes

Proxy No No

Table 2: Documentation Provided for Framework
Services

Limited refers to cases where the documentation covered
some key aspects of use, but not others. Yes means that the
documentation covered all key aspects of use, while no
means no documentation of that type was provided.

In terms of complexity, we rated the services as simple,
moderate and complex based on the type of hooks required
in order to use this service. Proxy is a complex service
requiring a substantial effort from developers. Mail server
is a simple service, requiring only choosing the right
component and initializing it correctly. Finally, Persistence,
Synchronous and Asynchronous Communications are of
moderate complexity. Using these services mostly requires
the developers to supply application specific code in certain
places.

Hypothesis 3. Examples are perceived as the most
important type of documentation in the integration
stage.

On a scale of one to five, with one being the lowest,
students rated code as the most useful type of

7

documentation, with examples as a close second. The
results are shown in Table 3. We believe that examples are
more important than code because, as one student
mentioned "... the examples are very useful and when we
encounter a problem that the examples could not give
answer, then I went to the code to see the details."
However, they received lower score because "I did not find
them as clear as they could have been" as stated by another
student.

Documentation Average Score Median Score

Code 4 4

Hooks 2 1.5

Examples 3.67 3.5

Design 1.83 2

Use Cases 2.5 2.5

Table 3: Documentation Usefulness

Examples provided three advantages. First, they illustrated
specific uses of the framework and documented instances
of using the hooks. That is, concrete examples of many of
the hooks were given in the sample programs. Second, the
examples were executable and could be used to help
understand the dynamics behind the system. Finally, the
examples provided code that could be scavenged and used
directly in the applications.

We associate the usefulness of examples with the
integration stage in part, due to the subjects' memory effect.
The usefulness was assessed at the end of the project when
developers had been focussing on the code for some time,
rather than at the beginning when they were still learning
the framework.

Hypothesis 4. Examples are not enough to understand
how to use a framework. Hooks provide additional
tangible benefit in understanding the interactions
between an application and the framework.

The examples only showed specific instances of framework
usage, rather than the general cases described in the hook
documentation. Some students had problems extending the
functionality beyond what examples offered. Some groups
attempted to apply the examples directly to their
applications then had to go back and modify or re-
implement them when the examples didn’t exactly match
their requirements. In our experience, developers looked at
specific examples first and then tried to abstract the
required knowledge.

The lesson we learned is the importance of tying the
general case (the hooks) to the specific concrete cases (the
examples) so that the developers can see the abstractions
more clearly.

Hypothesis 5. Complexity is not the deciding factor in
the perceived difficulty of a framework service.

We then examined the surveys provided to the students and
the actual difficulties encountered. The services were
ranked in the following order of difficulty to understand
and use:

1. Synchronous Communication, and Proxies: difficult

2. Persistence and Mail Servers: moderate

3. Asynchronous Communication: easy

Synchronous communication proved to be clearly the most
difficult to understand and use. In this case, the limited
examples and lack of hooks hurt understanding, particularly
when certain key aspects of communication differed
between the cases illustrated in the examples and what the
developers wanted, when no hooks were provided. Data
proxies were also difficult to use, but since there was not
even an example of their use, only one group attempted to
use them, with limited success. The other three services
were ranked much more closely and in general. While
developers experienced some difficulties, they found them
relatively easy to use.

Finally, we compared the complexity of the services
against their ease of use. Complexity is based on the types
and sizes of hooks that are required to use the service. The
type of hook can be option (requiring the selection of an
option), template (requiring the user to fill in specific data)
or open (allowing the user to develop custom
functionality). The complexity of the five services can be
ranked as follows:

1. Proxies

2. Persistence, Synchronous Communication,
Asynchronous Communication

3. Mail Servers

As can be seen, complexity did play a part in the ease of
use, but it was not the deciding factor. We expected
proxies to be the most difficult and mail servers to be the
easiest; however, that did not prove to be the case. The
coverage of the documentation proved to be the deciding
factor in how difficult the services were to use regardless of
how complex they were. Many groups struggled with
synchronous communication as opposed to asynchronous
communication. As seen in Table 2: Documentation
Provided for Framework Services, asynchronous
communication was better documented than its
synchronous counterpart. Even though the two services
share much of the same underlying mechanisms within the
framework, the preliminary results indicate that the right
type of documentation was very important. Persistence
was easy to use when the application requirements matched
the examples provided, but much more difficult when the
application had to go beyond the example, and no

8

generalizations through hooks were provided.

Question 3: Can technical reviews be used effectively to
speed up the early stages of framework learning process?

Hypothesis 6. Technical reviews with the purpose of
information swapping speed up the learning curve for
new framework users.

Technical review held early in the term helped to raise the
level of understanding of the framework's architectural
model. First, it required users to review the documentation
and second it allowed them to address immediately their
questions and concerns to the framework expert. Students
rated the usefulness of the technical review towards
understanding the CSF as high. Furthermore, some students
added "The technical review was the first step in
development, and I thought it was an important first step in
understanding the CSF."

Results of this review can be used to gauge a team’s level
of understanding of the framework concept. During the
review, it was evident that one group was resisting the
framework and trying to deploy another technology they
are more familiar with. During the review session,
motivation and benefits of using the framework were
emphasized, thereby reducing the resistance.

Potential Confounding Factors.
Since we don't have the same level of control as in
experimental study, identifying and eliminating the effect
of potential confounding factors is vital for the correctness
of the study findings. Ideally, the effect of potential
confounding factors should be gauged using quantitative
analysis. In similar studies, researchers sometimes used a
high α-level [1] A statistical test at this significance level
does not provide strong evidence of relationship [36]. The
limited sample size (six teams) made it infeasible to use
quantitative statistical tests, even with high α-level. The
exploratory nature of the study allowed us to use qualitative
techniques to assess the effect of potential confounding
factors. These techniques are used frequently in social
science research in similar situations [2], [39]. The effect of
subjects’ background is a usual concern in this type of
study. Typically, industrial experience [39] and
professional training of a software developer are used to
assess his/her background.

Professional training was assessed in terms of academic
records in previously studied computer science courses and
the count of these courses. Based on their grades, they were
categorized as above average, average or below average.
Assuming a normal distribution for students’ grades, a
student is considered:

• above average if his/her GPA is greater than the class
average GPA + σ/2, (31% of the class)

• below average if his/her GPA is less than the class
average GPA – σ/2, (31% of the class)

• average otherwise. (38% of the class).

All subjects in our study have experiences in designing and
implementing course projects, and they all worked in
development teams. We also assessed their development
experience in industrial setting. A student was assessed as:

• novice if she has less than one year of experience in
industrial setup

• experienced if he has more than five years of
experience in industrial setup, and

• limited experience otherwise.

Background data was assessed using a Likert-type scale in
the following manner: above-average (3), average (2),
below-average (1), experienced (3), limited experience (2)
and novice (1).

Table 4, provides a summary of each team’s background
profile. The team score is considered as a percentage of the
maximum score they could have achieved. For example, if
the academic records of a team of six students shows 2
above average students, 3 average and one below average,
the team score would be 55.56% (2*3+3*2 + 1*1 = 13
divided by 6*6).

Professional TrainingTeam Industrial
Experience Score Count

A 58.33% 66.67% 14.2

B 58.33% 72.22% 15.8

C 40.00% 55.56% 10.33

D 41.67% 53.33% 14.5

E 66.67% 77.78% 10

F 55.56% 73.33% 11.4

Table 4: Subjects Background Profiles

The results indicate that there is no apparent correlation
between the score in professional training and quality of the
design. The correlation seems clearer with the industrial
experience.

6 STUDY FINDINGS.
In order to prepare for the next round of the study, we
related our observations to the original research questions.
Findings from this study were used as objective input for
the next round of studies. First we discuss our answer to the
research questions we had at the beginning of the study.
Next we describe the changes we introduced for the next

9

round of studies based on our experience with this study.

Is there an effective way to understand and learn how
to develop applications using frameworks?
Frameworks dictate the solution space and how the solution
can be delivered for the problem addressed by applications
constructed using a framework. The implication is that an
additional process dedicated for framework understanding
is necessary. In our environment, successful strategies have
a uniform process pattern. The pattern consumed different
resources and relied on different documentation depending
on the project lifecycle. Roughly speaking, the pattern was
divided into investigation, integration and testing.

The objective of the investigation stage is to gain
architectural understanding of the framework. Not having
the correct model of how the framework operates lead to
greater numbers of integration problems. All project
members participated equally at this stage. High-level
framework documentation (use cases, high-level design
diagrams) were the source of information at this stage. The
analysis stage starts before project analysis.

The objective of the integration stage is to understand the
interaction details between the framework and the
application. Level of participation of project members
varied depending on their role in the project.
Documentation addressing low-level details of the
framework was the main resource at this stage. Examples,
hooks, and sometimes the framework code were heavily
used. Development of expertise is the key success factor at
this stage; few developers assigned to become framework
experts was a successful strategy. When needed, these
experts provided advise to other project members.

The objective of the testing stage is to ensure the proper
integration of the framework in the application and that the
application specific code is fully tested. The main
emphases in this study was on the development of thorough
acceptance test plans and the requirement that another team
could install the product and properly execute the
acceptance test plan. Test plans had to show that each
major functional requirement was met if the acceptance
tests successfully executed. The development of a testing
tool that could assist the developer in creating test cases for
each hook is still in the research stage and is not yet
available for framework users.

Does the use of hooks improve the understandability
and usability of a framework?
The results for this question were mixed; hooks alone are
not enough to provide the required support for developing
applications from a framework. While hooks proved useful
in supporting the framework usability, they did not improve
the needed architectural understanding of the framework.

Hooks proved useful in pointing developers to the places in
the framework that they needed to extend in order to
produce their applications. While reviewing the design,

hooks help in pointing out defects in the interaction
between the application and the framework. They were less
useful in guiding the developers initially. Examples filled
this role, though they failed when the problem didn’t fit the
example.

Can technical reviews be used effectively to speed the
early stages of framework learning curve?
Technical reviews proved to be useful during the
investigation stage of framework development in a variety
of ways. The formal nature of the meeting set a milestone
for the development teams.

Before the review meeting each developer had to read the
documentation, reflect on their application and prepare
their list of questions and concerns. In our case, the review
session marked the end of the investigation stage and the
start of the integration one.

While preparing for the review, each developer had a
chance to reflect on his/her application and see where it
may interface with the framework. During the meeting,
developers had the chance of voicing their concerns and
asking their questions in a structured way and to ensure that
every point raised is addressed.

Results of the rework phase were used as shared
experiences among development teams. The added FAQ
provided a preliminary experience base around the CSF.

Next Round of Studies
Our plan is to continue the study for more semesters. For
the next round of the study, we have planned to introduce
some changes in the development process as well as
framework documentation to reflect findings and further
test the hypothesis developed in this study. We have added
another section to the framework documentation that
provides developers with guidelines on how to use the
framework.

 On the process side, reviews have been fine-tuned in the
following manner:

• Reviews have been scheduled earlier to give students
enough time to incorporate findings from the design
review in their final product.

• For the design review, material to be reviewed has
been altered to focus primarily to the application’s
interface with the framework and not the entire
application design. This change allows us to study
effects of misunderstanding CSF usage early in the
design process.

Finally to improve the data monitoring, we plan to add a
questionnaire after the first review to collect more
information about the review process and to monitor how
students view and understand the framework before and
after the integration stage.

10

7 CONCLUSIONS AND FUTURE RESEARCH
As we emphasized earlier, the ultimate goal of this study is
to develop and share a continually evolving and expanding
experience base for development using large-grained
software-component. Our study has revealed some lessons-
learned and characterizations that apply to application
development using small frameworks, involving teams of
five to six developers. This study contributes to framework
understanding and usability along two dimensions. First,
the study procedures set an easy-to-replicate example about
framework usability and understanding studies. Second, it
established future objectives about development
documentation and support tools for frameworks.

So far, we have found that no one form of documentation is
sufficient to support the development. We see the need for
a spectrum of documentation. This documentation should
cover i) the purpose or domain of the framework, ii)
limitations placed on applications that use it, iii) how it is
intended to be used both at a concrete and more general
level, and iv) both the design and implementation of the
framework itself. We also found the need for a
documented general process for using the framework that
would provide greater guidance to the new user.
Furthermore, different stages of development need different
types of documentation. Finally, we identified three types
of tools that are required to support the three stages of
framework understanding (investigation, integration and
testing).

To reduce the steep learning curve during analysis stage,
experiences gained from framework users should be
documented, organized and made available to other
developers using the framework. Future users should then
be able to browse and reason about available information to
reach the best solution for the problems they encounter.
Generally two types of experiences are needed: technical
and process experiences. Technical experiences address
particulars of the framework, such as what hooks should be
used in what order. Process experiences, on the other hand,
address the development process in general and hence
should be easily generalized to development efforts using
other frameworks.

During the development phase, application developers need
to relate prescriptive-style documentation (as in hooks) to
how and where changes to the framework typically occur
during application development. Usually, a developer needs
to trace through a set of supporting documentation, such as
use cases and examples, to understand this relation. A tool
that could automatically support such trace activities is of
vital importance.

From our own results and from discussions with
companies, we recognize that testing is a critical issue with
framework use. During the testing stage, problems can be
difficult to track down due to complex
framework/application interactions, and users of the

framework may not know all of the cases that the
framework requires that they test for. We are working on
generating test cases based on how a framework is used.

On the process side, we recommend technical reviews as
best practice for building applications using a framework.
Technical reviews proved useful in reducing the framework
learning curve and for testing design issues related to the
interface between the framework and applications.

We strongly believe that studies such as FrameScan are
sorely needed to better understand the issue related to
framework usability. At the same time, caution must be
followed in interpreting and generalizing results of such
studies. We encourage the research community to replicate
our study using the same framework [14] in order to
validate (or falsify) our hypotheses. Furthermore, similar
studies using large frameworks and/or large team
environment are needed to study the limitation of our
findings.

REFERENCES
1. Basili, V.R. and Reiter, R. Jr. A controlled Experiment

Quantitatively Comparing Software Development
Approaches. IEEE Transactions on Software
Engineering. 7(5), 1981, 299-320.

2. Bassey, M. Case study research in educational
settings, Doing qualitative research in educational
settings series. Open University Press,1999.

3. Baumer, D., Gryczan, G., Knoll, R., Lilienthal, C.,
Riehle, D. and Zullighoven H. Framework
Development for Large Systems. Comm. Of the ACM.
40(10), 1997, 52-59.

4. Bosch, J., Software Product Lines: Organizational
Alternatives. In Proceedings of the 25th ICSE.. 2001,
91-100.

5. Booch G. Object Solutions: Managing the Object-
Oriented Project Addison-Wesley, Reading, MA,
1995.

6. Briand, L., Melo, W. and Seaman, C. A Qualitative
Analysis Method for Auditing Software Maintenance
processes and Organizations. Software Process
Newsletters. No. 4, 1995, 3-5.

7. Brugali, D., Menga, G., and Aarsten, A. The
framework Life Span. Comm. Of the ACM, 40(10),
1997, 65-68.

8. Butler, G., and Denommee, P. Documenting
Frameworks. In Building Application Frameworks.
Fayad, Schmidt and Johnson ed. Wiley Computer
Publishing, New York. 1999, 495-503.

9. Codenie, W. DeHondt, K. Steyaert, P. and
Vercammen, A. From Custom Applications to Domain
Specific Frameworks. Comm. Of the ACM, 40(10),

11

1997, 71-77.

10. Fayed, M.A. and Schmidt, D.C. Object Oriented
Application Frameworks. Comm of the ACM, 40(10),
1997, 32-38.

11. Freedman, D.P. and Weinberg G. Handbook of
Walkthroughs, Inspections and Technical Reviews. 3rd

Ed. Dorset House, NY, 1990.

12. Froehlich, G., Hoover H.J., Liu, L., and Sorenson, P.
Hooking into Object-Oriented Application
Frameworks. In Proceedings of the 1997 International
Conference on Software Engineering (Boston, Mass,
1997), 491-501.

13. Froehlich, G., Hoover H.J., Liu, L., and Sorenson, P.
Reusing Hooks. In Building Application Frameworks.
Fayad, Schmidt and Johson ed. Wiley Computer
Publishing, New York. 1999, 219-235.

14. Froehlich, G. "Client Server Framework (CSF}",
http://www.cs.ualberta.ca/~garry/framework/

15. Gamma, E., Helm, R., Johnson, R. and Vlissides, J.
1995. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, Reading, MA,
1995.

16. Gangopadhyay, D. and Mitra, S. 1995. Understanding
Frameworks by Exploration of Exemplars. In
Proceedings of the 7th International Workshop on
Computer Aided Software Engineering (CASE-95)
(Toronto, Canada, 1995), 90-99.

17. Hakala M., Hautamäki J., Koskimies K., Paakki J.,
Viljamaa A., Viljamaa J.: Annotating Reusable
Software Architectures with Specialization Patterns. In
WICSA 2001.

18. Johnson, R.E. and Foote, B. Designing Reusable
Classes, Journal of Object Oriented Programming.
1(5), 1988, 22-35.

19. Johnson, R.E. Frameworks = Patterns + Components,
Communication of the ACM. 40(10), 1997, 39-42

20. Johnson, R. Documenting Frameworks Using Patterns.
In Proceedings of OOPSLA’92 (Vancouver, Canada,
1992), 63-76.

21. Kolodner, J. Case-Based Reasoning, Morgan
Kaufmann Publishers, CA, 1993.

22. Krasner, G.E., and Pope, S.T. A Cookbook for Using
the Model-View-Controller User Interface Paradigm in
Smalltalk-80. Journal of Object-Oriented
Programming, 1(3), 1988, 26-49.

23. Lajoie, R. and Keller, R. Design and Reuse in Object-
Oriented Frameworks, Patterns, Contracts and Motifs
in Concert. In Proceedings of the 62 Congress of the
Association Canadienne Francaise pour

l’Advancement des Sciences. (Montreal, Canada,
1994).

24. Lange, D.B. and Nakamura, Y. Interactive
Visualization of Design Patterns Can Help in
Framework Understanding. In Proceedings of
OOPSLA’95. (Austin, TX, 1995), 342-357.

25. Leake, D.B. Case-Based Reasoning: Experiences,
lessons and future directions, Chapter 2, The MIT
Press, 1996.

26. Liu, L. Hook Master: A Tool to Support the Enactment
of Hooks. MSc. Thesis, University of Alberta, 1999.

27. McIlory, M.D. Mass Product Software Components. In
Software Engineering Report on A Conference
Sponsored by the NATO Science Committee,
Garmisch, Germany, 1969.

28. Parra, A., Seaman, C.B., Basili, V.R., Kraft, S.,
Condon, S., Burke, S. and Yakimovich, D. The
Package-Based Development Process in the Flight
Dynamics Division. Proc. Of the 22nd Software
Engineering Workshop, NASA/Goddard Space Flight
Center, Software Engineering Laboratory (SEL), 1997,
21-56.

29. Pree, W. Design Patterns for Object-Oriented
Software Development. Addison-Wesley Publishing
Company, Reading, MA, 1995.

30. Pree W., Koskimies K.: Framelets - Small is Beautiful.
In: Building Application Frameworks: Object-Oriented
Foundations of Framework Design (M.E. Fayad, D.C.
Schmidt, R.E. Johnson, ed.), Wiley 1999, 411-414.

31. Schmid, H.A. Creating Appplications from
Components: A Manufacturing Framework Design.
IEEE Software, 13(6), 1996, 67-75.

32. Schmidt, D.C. Applying Patterns and Frameworks to
Develop Object Oriented Communication Software",
Handbook of Programming Languages, MacMillan
Computer Publishing, 1997.

33. Schneider K. and Repenning, A. Deceived by Ease of
Use: Using Paradigmatic Applications to Build Visual
design Environments. Proceedings. Of the Symposium
on. Designing Interactive Systems. 1995.

34. Seaman, C.B. and Basili V.R., Communication and
Organization: An Empirical Study of Discussion in
Inspection Meetings. IEEE Trans. On Soft. Eng. 24(7),
1998, 559-572.

35. Seaman, C. B. Qualitative Methods in Empirical
Studies of Software Engineering. IEEE Trans. On Soft.
Eng.25(4), 1999, 557-572.

36. Shull, F., Lanubile F., and Basili, V.R. Investigating
Reading Techniques for Object-Oriented Framework

12

Learning. IEEE Trans. On Software Engineering.
26(11) 2000, 1101-1118

37. Sparks, S., Benner, K. and Faris, C. Managing Object-
Oriented Framework Reuse. IEEE Computer. 29(9)
1996,52-62.

38. Taligent, Inc. The Power of Frameworks. Addison-
Wesley, New York, 1995.

39. Yin, R.K. Case Study research: design and methods.
Applied Social Research Methods Series, Thousand
Oaks: Sage Publications. 2nd edition, 1994.

