
Building an Experience-Base for Product-line Software Development Process

Amr Kamel, Mark Chandra, Paul G. Sorenson
University of Alberta, Edmonton, Alberta, Canada,

{amr,chandra,sorenson}@cs.ualberta.ca

Abstract

Accumulating and managing development experiences
plays a key role in improving software quality and pro-
cess. The experience factory paradigm provides an or-
ganizational approach for extracting development ex-
periences from current software product-line projects
and supplying the experiences to future projects. The
paradigm relies upon accumulating experiences and
storing them in a repository, the experience base. Due
to the complexity of the software process, it is difficult
to establish and effectively provide operational support
for the experience base.
This paper presents an approach to the implementation
of the experience base along with an automated deci-
sion support system using Case-Based Reasoning. The
paper covers the activities of case acquisition and rep-
resentation. We also describe how this experience base
can be used as a decision support system for software
project managers in day-to-day development activities.
The paper concludes with an evaluation of our approach
to date and a description of future research directions.

Introduction
The concept of quality improvement has permeated the soft-
ware industry since the 1990s. Improving software perfor-
mance, reliability, robustness and time-to-market presented
a growing need to develop and adopt quality improvement
approaches to the software business. The continuous ac-
cumulation of evaluated experiences and associated learn-
ing presented a promising way to manage and improve the
software quality as well as the development process (Basili
1985).

Many researchers (Basili, Caldiera, & Rombach 1994;
Experience Base 1996) recognized the need for and pro-
posed solutions to implement process feedback loops where
information from previous projects is used to improve de-
velopment activities of similar projects. They also identified
the need to build business competencies by packaging suc-
cessful experience for future reuse.

The Experience Factory Paradigm
The software Experience Factory (EF) paradigm (Basili,
Caldiera, & Rombach 1994) was presented to institutional-

Copyright c© 2001 Amr Kamel, Mark Chandra, Paul Sorenson

ize collective learning of the organization. The EF supports
three different organizational units that interact with anex-
perience base(EB): Support, Analysis and Packaging. The
EB contains an integrated set of packaged experiences that
capture past development competencies.

The ultimate goal of the EF is to support the continual
improvement of the software quality by capturing, packag-
ing and evolving sound development experiences as well as
methods for providing packaged experience to the EF poten-
tial users.

Building and Running an EF
Although technology supporting the EF concept has been
studied by many researchers (Althoffet al. 1999a; Hen-
ninger 1997), successful realization of the EF concepts for
the software process is still a challenge (Tautz, Althoff, &
Nick 2000). The challenges vary from defining exactly what
constitutes a process experience and, how can it be cap-
tured, documented and stored, to institutionalizing effective
mechanisms to select the most relevant experience from the
knowledge base.

The EF can be started following two possible approaches
top-down and bottom-up (Basili & McGarry 1996). That is
proceeding either from a well defined ontology, to a schema
for the EB, then collecting concrete experience data or else
collecting concrete experiences and proceeding towards ab-
stracted knowledge.

The rest of the paper is organized as follows. In the next
section we start with an overview of existing approaches
to implement an EF, and an introduction to our approach.
Then, the nature of the software process knowledge and
types of experience packages are discussed. This is followed
by a section discussing our methodology for experience rep-
resentation and acquisition. After that, requirements for the
support system are discussed and an overview of the tool is
given. Finally we conclude with evaluation of our approach
and model to date, conclusions and future directions.

State of the Art
The EF paradigm (Basili, Caldiera, & Rombach 1994) has
inspired a lot of research efforts aiming at building new
EF(ies). Meanwhile, the ESPRIT III project (Experience
Base 1996) researched tailored approaches to introduce EF

concept into organizations. Since the first reported EF at
the Software Engineering Lab (SEL) (Basiliet al. 1992),
many industrial organizations, (e.g. Daimler Benz (Houdek,
Schneider, & Wieser 1998), the Information Technology di-
vision of Union Pacific Railroad (UPRR) (Henninger 1997),
and an Australian communication firm (Koennecker, Jef-
fery, & Low 2000)) reported advances in building their own
EF(ies). Furthermore, different research groups reported
their efforts in building EF(ies) that covered many aspects
of software development. The reported EF(ies) covered the
development process (Althoffet al. 1999b), experimen-
tal software engineering (Althoffet al. 1998) as well as
domain-specific EF(ies) (e.g software development cost es-
timation (Finnie, Wittig, & Desharnais 1997), data mining
applications (Bartlmae 1999) developing CBR applications
(Althoff, Nick, & Tautz 1999; Bergmannet al. 1999), and
ontology deployment (Kalfoglou & Robertson 2000)).

Research efforts in EF(ies) focused mainly on software
knowledge representation and technologies to support cre-
ation and evolution of the EB. Research focusing on soft-
ware knowledge representation aims at finding better ways
to document and characterize experiences. Research focus-
ing on technology aims at developing better ways to provide
the packaged experience to its potential users.

Six types of software experience packages were identified
in (Basili & Caldiera 1991): product, process, relationship,
tool, management and data. Several approaches have been
proposed in the literature to document and characterize these
packages. Informal reports (Basiliet al. 1992; Basili &
McGarry 1996), structured text (Houdek & Kempter 1997;
Birk & Tautz 1998), and formal languages (Ostertag 1992)
have been used to document experiences. Experience pack-
age contents focus also varied from mainly hands-on expe-
riences (Henninger 1997) to lessons learned (Tautz, Althoff,
& Nick 2000).

Technologies suggested to support the EF were based
on the expected size of the EB. Lists and indexed cata-
logues have been used to document experiences in a small
to medium size EB; the experience was made available ei-
ther by general purpose browsers (Griss, J., & Walton 1994)
or through a human consultant (Houdek & Bunse 1999).
For a large EB, Case Based Reasoning (CBR) technology is
recommended (Tautz & Althoff 1997) and used (Henninger
1997) to document and disseminate experience packages.

For reasons of simplicity and ease of use, we studied soft-
ware development experiences, how can they be acquired,
documented, packaged and retrieved when needed. Our long
term goal is to cover all experiences related product-line de-
velopment based on object oriented frameworks, however,
we started by focusing on the product-line process experi-
ences. A process experience package has a life-cycle pro-
cess as its center element, providing information on how to
enact it and lessons learned from previous enactions, e.g.
process models, methods (Basili & Caldiera 1991).

Our Approach
Our goal is to build an EB to support developing many soft-
ware products using a common Object Oriented Framework.
The idea is to develop an EB around the framework that can

be shipped with the framework as a development support
tool. For developing the EB we favored the bottom-up ap-
proach over the top-down for many reasons:

• Top-down approach assumes a relatively stable environ-
ment (Althoff et al. 1999a). This assumption does not
hold true in general, as many organizations favor a dy-
namic development environments to cope with short tech-
nology cycles.

• Building a complete schema for the EB implies making
assumptions about how the organization functions. These
are assumptions that we can’t make because, in general,
we don’t have much information about the environment
of the target organization that will deploy the OO frame-
work.

• For simplicity, we started with the simplest solution that
would work as recommended by newer software develop-
ment methodologies (Beck 1998).

• Our approach focuses on data collected from hands-on ex-
periences. Most of documented EF implementations fol-
lowing the top-down approach are either based on long-
term application (Basiliet al. 1992), or experimental data
(Althoff, Nick, & Tautz 1999).

To further support knowledge abstraction we distinguished
between two types of knowledge: concrete experiences and
best practice. We built an EB, using CBR technology to sup-
port experience documentation and EF functioning. The EB
we developed aimed at supporting an OO Framework called
CSF (Client Server Framework) (Froehlich 1999). The EB
was developed in part from fifteen projects completed in
three consecutive offerings of a senior software engineering
class at the Department of Computing Science, University
of Alberta from January 1999 to April 2000. The developed
projects were required to use the CSF as basis for their self-
chosen application.

Types of Experience Packages
In the context of our work, we view the experience as“prac-
tical knowledge or skill abstracted or directly observed from
participation in particular activity.”We are interested in the
(abstracted knowledge, direct participation) tuple; for sim-
plicity we will refer to the tuple as (knowledge, participa-
tion). This tuple implies that we are especially interested in
knowledge accumulated during everyday’s work in the orga-
nization. However, knowledge and participation need not be
reported in the same package. In fact, participation reports
are viewed as the concrete knowledge from which abstract
knowledge may be deducted.

The (knowledge, participation) tuple implies that devel-
opment knowledge can be divided into:concreteand ab-
stract. Concrete knowledge captures hands-on experiences.
Abstract knowledge supports the decision making process
of a project by offering packaged solutions to its problems.
This knowledge may come from in-house experiences, ex-
perimental results or the software industry at large. Despite
the origin of the abstract knowledge, it should be continu-
ously refined using related concrete packages.

R
ea

l W
or

ld
A

bs
tra

ct
 W

or
ld

Praxis
Package

Abstracts to

Modus
Package

Concrete
Package

Concrete
Package

A
bs

tra
ct

s
to

Modus
Package

Concrete
Package

Concrete
Package

A
bs

tra
ct

s
to

Modus
Package

Concrete
Package

Concrete
Package

A
bs

tra
ct

s
to

Figure 1: Different Levels of Experience Packages

Abstract knowledge is essential for the functioning of
the EF Support unit. Concrete knowledge is essential for
the proper functioning of the Analysis unit. Furthermore,
disseminating concrete knowledge to the project organiza-
tion guides experience consumers (e.g. project manager)
through the usage of the relevant abstract knowledge, espe-
cially when some of the “abstracted out” details are needed.

Process experiences need to be packaged in a variety of
ways to fulfil different interests of its users. For example,
during project planning, experience base users are more in-
terested in exploring options to decide on the set of processes
to use. At this stage, they are interested in process merits and
major risks, inter-process interactions and trade-offs, rather
than how to enact it. When a particular process is chosen,
users’ interests shift to issues like comparing the different
methodologies to enact the process, and how to measure its
success or manage its risks.

While concrete knowledge can be packaged as one type
(concretetype), abstract knowledge needs to be packaged
differently to fulfill different users’ interests. To emphasize
these differences abstract knowledge is packaged as either:
praxisandmodustypes. The three experience package types
can be described as follows:

Praxis. Praxis packages document industry best practices.
Praxis packages are general in nature, documenting for
example, the efficacy of a process, the merits of a tool,
with enaction details abstracted out.

Modus. Modus packages focus on the details of a particular
process or best practice. A modus package may document
a particular methodology for enacting the process and, as
necessary, clarify how to perform its sub-processes.

Concrete. Concrete packages are tightly related to the real
world; they document hands-on experiences. A concrete
package reports on how an abstract package is enacted
in a given organizational context, and whether the prac-
tice was a success or a failure. The package may, but not
necessarily, come with a recommendation of ”what to do

and/or avoid”.

Generally, praxis packages capture the merits of the industry
best practices; modus packages represent methodologies of
enacting these practices and concrete packages describe the
experience gained by participation on process enactions.

The three package types can be viewed as representing
development experiences at different levels of abstraction,
see figure 1. Each enaction of the process is acquired as
a concrete package. By analyzing a set of similar concrete
packages, environment particulars are abstracted out and the
knowledge is represented as one modus package. Details
of the enaction methodology are further abstracted out to be
documented as one praxis package. For example, various
methodologies of performing technical reviews (e.g. Fagen
inspection and IEEE standard review) are represented as dif-
ferent modus packages. However, the merits and risks of
technical reviews (despite the particulars of the methodol-
ogy) are represented as one praxis package.

Experience Representation and Acquisition
Several problems are presented while determining and rep-
resenting experience packages. At the macro level we must
address the question: “What is the proper level of granular-
ity for an experience package?.” At the micro level, the main
question is: “how to characterize different experiences”.

Closely related to experience representation is experience
acquisition. Where to acquire experiences? When to say
that available experience packages are enough for the orga-
nization’s needs?

Experience Representation

An experience package may represent a process-step (e.g.
inspection kick-off meeting), a process (e.g. technical re-
view) or a complete development methodology (e.g. eX-
treme Programming (Marcheli & Succi 2000)). At the con-
crete level, process methodologies are too general to pack-
age. On the other hand, we anticipate that process-steps are
too specific for our purpose. We set the granularity level of
our experience packages at the process level. A process is
defined as (Kamelet al. 1997): a set of process-steps, with
well defined roles, inputs, outputs to serve a common objec-
tive.

The core of a process package is the(objective, descrip-
tion) tuple. Process objectives are the key characteristic that
set processes apart; in a sense they represent the “prob-
lem(s)” addressed by the process. Each process package
must have at least one objective or goal to achieve. For
practical considerations, no other constraints are imposed
on process packages; it is acceptable to include a process
package without well defined input/output or missing a clear
definition of roles, etc.

It is also evident that successful process experiences are
not globally optimum (Shirey 1992).They are optimal with
respect to their enaction environment. Hence, reporting a
process alone is not enough, thecontextof the knowledge
contained in a process package is also important to report,
specially for concrete packages.

The goal of the EB is to categorize packaged experiences
based on certainFeatures. A typical feature may be, chance
of success at first enaction, or type of training required to
perform the process successfully. Process features may not
be clear at first, they are determined following an iterative
process. Selection of new features to represent a package,
is determined by studying the set of available experiences,
studying the discriminatory power of the selected features,
modifying them if necessary, then starting the next iteration.
For example, by analyzing inspection’s concrete packages,
we might find out that formal inspection training increases
the chances of success of the inspection process. Hence,
”requires formal training” would be added as a feature for
the inspection modus package.

Other information about the process (e.g. references,
comments) is also required in the package. The information
in a process package is reported in a structured text format
following an experience template. An experience template
consists of:

Name: a unique identifier for the experience.

Type: Praxis, Modus or Concrete.

Objective: describes the objectives of the process described
in the package.

Description: is a detailed description of the actual experi-
ence.

Context: characterization of the environment from which
the experience was acquired.

Features: features of the experience that make it distinctive
from other experiences in the EB.

Related Experiences:listing of experience packages se-
mantically linked to current experience (e.g. uses, con-
tains), as well as information for navigation among ex-
periences (e.g. linking inspection Modus package with
corresponding inspection concrete packages)

References:Additional material discussing the experience
(books, articles, manuals, etc.).

Comments: any additional information important for using
the experience.

Administration: listing of administrative information.

Experience Acquisition
There are three basic ways to gain abstract experiences (Birk
& Tautz 1998).

• Use available technical knowledge sources.

• Use goal-oriented knowledge acquisition.

• Accumulate knowledge during everyday work.

Ideally praxis and modus packages should come as a re-
sult of an abstraction process of concrete experiences. How-
ever, restricting them to this path is ineffective, as it neglects
the available knowledge accumulated in the industry. Ab-
stract packages may be acquired from experiences internal
or external to the organization. External experience are ac-
quired primarily from software engineering publications. In-
ternal experiences are the result of analyzing and abstracting

different concrete packages. Concrete packages are acquired
directly from development projects.

Candidates for a praxis package are either processes fun-
damental to software development (e.g. configuration man-
agement) or processes which have positive effect on devel-
opment schedule, process visibility and product characteris-
tics (e.g. maintainability or usability). Apart from funda-
mental processes, best practices are usually associated with
a development methodology.

Current Status of the EB

To manage the different levels of knowledge abstraction in
our model, we implemented the EB as a collection of knowl-
edge bases (KB). A KB is dedicated to best practices (praxis
package type). Moving down a level of abstraction, a KB
is dedicated to knowledge about how to enact a particular
process (modus packages). Finally, concrete packages were
collected in yet another KB. We found that partitioning the
knowledge in this manner helps produce manageable size
experience bases, and eases further analysis of the informa-
tion. Currently, we have three KBs:Rapid Development
Best Practices (RDBP), Technical Reviews (TR)and Infor-
mation Swapping Concrete experiences (ISCE).

Packages in the (RDBP) (27 packages) were acquired
from the set of best practices in rapid development method-
ology identified by McConnell (McConnell 1996). These
practices are directly associated with development speed and
process visibility.

To date, all our modus packages are focused on techni-
cal reviews and inspections. A survey of the software engi-
neering literature resulted in acquiring 18 modus packages
representing different inspection, technical review and walk-
through mechanisms proposed by researchers and industry
experts.

The 15 packages in the ISCE were acquired from an ex-
perimental study (Froehlich, Kamel, & Sorenson 2000). The
study was conducted over three consecutive offerings of se-
nior software engineering classes at the Department of Com-
puting Science, University of Alberta. As part of the course
requirements, students were grouped into small teams to de-
velop small software systems as part of a term projects. Each
project group used a common client-server object-oriented
framework (CSF) (Froehlich 1999) as a basis for their soft-
ware project. The study tracked projects performance us-
ing surveys, questionnaires, weekly meetings and examin-
ing projects documentation. The questionnaires, forms and
project documentation are the tools we used to acquire the
concrete packages.

Automated Support for the EB

To support the EF goals a strategy and supporting tools
to capture and disseminate development experiences are
needed. In our approach, experiences are captured using
WWW technology and either browsed or retrieved via a spe-
cialized decision support system. To retrieve an experience
package, the user starts with a problem description, then in-
teractively converges towards the target package.

General Purpose
Browser

Experience
Maintainer

CBR Engine

CaseBase1 CaseBase2 CaseBaseN. . .

Figure 2: Tool Architecture

System Requirements
In addition to the general requirements to support an EB re-
ported in (Althoff, Bomarius, & Tautz 1998)1, we identified
these requirements to match our target environment. A pro-
posed system should:

• interactively guide the user through package retrieval pro-
cess. EB users may not know the built-in knowledge
classification structure. The system must guide the pack-
age selection process by asking specific questions about
the problem context to retrieve the best solution(s) that
matches the problem’s environment characteristics.

• support flexible strategies to acquire information. The
lack of knowledge about the target development environ-
ment assumes that standard acquisition forms may cre-
ate barriers to acquiring new experiences. The acquisition
forms should be flexible enough to integrate easily into
the several development environments without affecting
the system’s internal knowledge representation.

• rely on familiar technologies (e.g. WWW) to acquire
and disseminate information. Learning curve for software
tools is a major reason for rejecting them in practice (Mc-
Connell 1996; Beck 1998). The tool must be easy to use
with familiar look and feel.

• support different execution models (e.g. stand alone,
client server). Due to the lack of knowledge about the
target environment, the tool must integrate easily with dif-
ferent development setups.

In view of the above requirements, we evaluated can-
didate approaches to support the EB (Kamel, Chandra,
& Sorenson 2001) and found that CBR and WWW tech-
nologies are most suitable for our purposes. We used
CASEADVISORTM (Yang, Kim, & Racine 1997) - a com-
mercially available CBR tool - as a CBR engine. Other parts

1Our system is targeting process artifacts rather than all kinds
of software knowledge artifacts

of the system were realized using WWW technology and
scripting using CGI and perl.

System Architecture and Implementation
The system consists of three components:CBR engine,
experience-maintainer, and general purpose browserinter-
acting with a set of case bases (as seen in Fig 2). To date,
three case bases have been built for the RDBP, TR and ISCE
knowledge bases discussed earlier.

CBR Engine
CASEADVISOR c© is an intelligent problem diagnosis and
resolution system for applications in enterprise knowledge
management. The core technology of the system is CBR,
however, it contains more features, e.g. decision trees and
constraint satisfaction algorithms. CASEADVISOR is devel-
oped by the CBR group at Simon Fraser University using
case based reasoning technology. Stand-alone and client-
server versions of the tool are available to work on either
a PC or via an internet connection. The system consists of
two main modules: CASE AUTHORING module to build a
case-base and PROBLEM RESOLUTION to use it. In addition
to the case name, a case is described byproblem descrip-
tion andproblem solution. The nearest neighbor formula is
used to retrieve cases. Case similarity is assessed by ranking
cases based on keyword matching. Feature-value pairs may
be used to increase the ability to distinguish cases in form of
question-answer pairs.

Experience Maintainer Module
The effect of EB maintenance activities can be local (affects
a particular experience package) or global (affects all pack-
ages in the EB). Typical EB maintenance activities for the
EB are (Nick & Althoff 2000):

• Add newly acquired knowledge.

• Remove obsolete packages.

• Add/modify a context parameter or a feature to all pack-
aged experiences.

The Experience Maintainer module is implemented us-
ing perl and CGI scripts. Maintenance processes starts with
extracting experience packages currently stored in the EB.
A summary of the EB information along with maintenance
activities options are presented to the maintainer as in Fig
3. The summery lists all package names, package features
along with the values that feature may take. Depending on
the nature of the required update, the maintainer will be pre-
sented with forms to either update the information in a single
experience package or add a new feature to the EB. If a new
feature is added, the next step is to associate a value for that
feature for the experience packages. Finally, the updated in-
formation is posted back to the EB.

Browser Module
The hierarchical nature of the EB required browsing along
two dimensions: (1) within the same case base or (2) from
one case base to another. Browsing within the same case

Reviews Case Base

Options:

The case base contains the following cases:

1. Active Design Review
2. Cognitive Walkthrough
3. Fagen Inspection
4. Freedman and Weinberg's Walkthrough
5. Gilb Inspection
6. Meeting-less Review
7. Phased Inspections
8. Program Correctness Inspection
9. Programming Walkthrough

10. Round-Robin Review
11. Schneider Inspection
12. Selected Aspect Review
13. Standard IEEE Review
14. Standard NASA Review
15. Structured Walkthrough
16. Technical Walkthrough
17. Verification Based Review

The case base contains the following questions:

1. What is the purpose of the review?

¡ Brainstoriming
¡ Defect Detection
¡ Design Decisions

2. What work product are you reviewing?
¡ High-level Design
¡ Low-level Design

¡

Add an ExpPackage

Remove an ExpPackage

Add a New Feature

Remove a Feature

Page 1 of 1Case Base Viewer

5/9/01file://C:\WINDOWS\Desktop\Case-Base...

Figure 3: EB Maintenance Screen

base is required for the EB support activities. While select-
ing an experience package, the need for mechanisms to nav-
igate through different levels of the EB was evident.

The browser module is realized using full advantage of
CASEADVISOR features. Browsing the same case base is
provided by default in the PROBLEM RESOLUTIONmodule.
For inter case base browsing we used the ”invoking files”
feature in CASEADVISOR case description. In the solution
description, experience packages are set to invoke and run a
new PROBLEM RESOLUTION module using the target case
base. At present, browsing is limited to one step either up or
down the EB hierarchy.

Current Status of the Tool
Currently, a prototype of the tool has been implemented.
The EB has been populated with a total of fifty experience
packages (distributed over 3 case bases). Fourteen features
have been identified and included in the EB. Our immediate
efforts are focused on abstracting more features to increase
the ability of the CBR engine to distinguish the cases.

Usage Scenarios
These scenarios demonstrate how the tool is used in prac-
tice. The first scenario describes how a typical EF customer
would use the tool to find the most similar experience pack-
age. The second scenario describes how the tool is used to
modify the EB.

Selecting an Experience Package
Assume the project manager of a particular project decides
to use some new technique to enhance the product quality.
Querying the RDBP experience base, he concludes that tech-
nical reviews seem like a promising technique.

To find out what technical review process best suites the
project needs, the project manager invokes the TR experi-
ence base and compare different review methodologies to

Add Question

Case Base: Reviews

Enter the question:

Enter all the answers you wish to associate with the question:
(List one answer per line.)

l

Did the staff undergo Review training?

Yes
No

Continue Clear

Page 1 of 1Case Base Editor [Add Question]

5/9/01file://C:\WINDOWS\Desktop\Case%20Base%20Editor%20[Add%20Question].htm...

Figure 4: Add a new question

find the methodology that best suites the project context and
needs. Let us assume he chose code inspection.

Next, the project manager needs to invoke the concrete
Inspection experience base to review hands-on experiences
within the organization. By retrieving these experiences, in-
formation about the effect on the project schedule, and code
quality are retrieved and assessed.

At this point, the project manager might decide that the
inspection process is very human intensive and stretching
beyond the project’s available resources. He can invoke the
RDBP experience base and query it to find out other prac-
tices that can positively affect the product quality and ad-
heres to the project’s constraints.

Add a New Feature
Assume that analyzing available concrete packages for tech-
nical reviews reveals that the chance of successfully enact-
ing certain technical review methodologies highly correlates
with formal staff training. To incorporate this new feature
”requires formal training” in the TR experience base, he be-
gins by adding the question “Did the staff undergo review
training?” and all its plausible answers: “Yes” and “No” -
see screen shot in Figure 4). After hitting continue, the script
will present the domain expert with another form (see screen
shot in Figure 5) that contains all technical review method-
ologies stored in the case base with the option of associating
the new question with all stored cases and individually set-
ting the weights of each answer. Finally, the question and
answer’ weights for all the associations are posted to the ex-
perience base by hitting ‘continue’ button.

Conclusions and Future Directions
Continuous accumulation and reuse of process experiences
is a suitable way to manage and improve the software qual-
ity as well as the development process. In this paper we pre-
sented an approach to capture, structure, store and retrieve
these experiences.

The main concept behind the knowledge structure we
adopted is to simultaneously capture and maintain abstract

Add Question

Case Base: Reviews

Question: Did the staff undergo Review training?

Answers:

1. Yes
2. No

Associate answers to cases by assigning weights (1-100):

answers

1 2

Active Design Review

Cognitive Walkthrough

Fagen Inspection

Freedman and Weinberg's Walkthrough

Gilb Inspection

Meeting-less Review

Phased Inspections

Program Correctness Inspection

Programming Walkthrough

Round-Robin Review

Schneider Inspection

Selected Aspect Review

Standard IEEE Review

Standard NASA Review

Structured Walkthrough

Technical Walkthrough

Verification Based Review

Page 1 of 2Case Base Editor [Add Question]

5/9/01http://www.cs.ualberta.ca/~amr/casebaseweb/newquestion2.cgi...

Figure 5: Associate questions with cases

and concrete process knowledge. The advantages of this
structure is:

• Both the knowledge and its roots are captured and stored
in the knowledge base.

• Experience from internal and external sources can be eas-
ily fitted into the structure. However, only the internal
experiences are supported by concrete knowledge.

• The KB is refined as soon as a concrete experience is cap-
tured, rather than waiting till the experience is abstracted
and packaged into the EB.

• Abstracted knowledge can be continuously reevaluated
based on the accumulation of concrete experiences, sup-
porting the main concept of the EF paradigm.

• Abstract knowledge is packaged in a variety of ways to
fulfil different needs of its users. Abstracted knowledge
may be packaged as, modus or praxis type experience de-
pending on its intended use.

To support the management and use of captured experi-
ences, we implemented an automated decision support sys-
tem using CBR technology to capture reason about and dis-
seminate the concrete experiences. CBR proves to be a pow-
erful tool for reasoning about the software process as KB
can propose solutions without a full understanding of all the

factors affecting the process. Furthermore, encoding experi-
ences as cases is simple and communicating them back and
forth with domain experts is straightforward.

The tool needs more work. A richer KB is need on both
the abstract and concrete levels. We need to include recom-
mended practices from other development methodologies
(e.g. eXtreme Programming). Robust navigation mecha-
nisms and, the ability to integrate the tool with more than
one CBR engine are also required. In addition we plan to in-
tegrate it into the development environment of the software
engineering course (http://peerless.cs.ualberta.ca/cafe401)
to test it in its intended environment.

A more challenging problem that we are addressing right
now is: Given a set of “concrete packages”, what abstrac-
tions can be made to add or modify a modus package us-
ing automated or semi-automated techniques. There is a
need to develop more productive approaches for knowledge
abstraction. Currently we are experimenting with statisti-
cal techniques and qualitative research methodologies to ad-
dress this problem.

References
Althoff, K.-D.; Birk, A.; von Wangenheim, C.; and Tautz,
C. 1998. CBR for experimental software engineering. In
Case Based Reasoning Technology. Springer. chapter 9,
235–254.

Althoff, K.-D.; Birk, A.; Hartkopf, S.; Müller, W.; Nick,
M.; Surmann, D.; and C., T. 1999a. Managing software
engineering experience for comprehensive reuse. InPro-
ceedings of the 11th International Conference on Software
Engineering and Knowledge Engineering (SEKE99)., 10–
19.

Althoff, K.-D.; Bomarius, F.; Mller, W.; and Nick, M.
1999b. Using case based reasoning for supporting continu-
ous improvement processes. In Perner, P., ed.,Proceedings
of the 12th German Workshop on Machine Learning.

Althoff, K.-D.; Bomarius, F.; and Tautz, C. 1998. Using
case-based reasoning technology to build learning software
organizations. InECAI98, workshop on Building, Main-
taining and Using Organizational Memory (OM-98).

Althoff, K.-D.; Nick, M.; and Tautz, C. 1999. CBR-PER:
A tool for implementing reuse concepts of the experience
factory for cbr systems. InProceedings of the 7th German
Conference on Knowledge Based Systems (XPS99) Work-
shop on Case-Based Reasoning.

Bartlmae, K. 1999. An experience factory approach for
data mining. InProceedings of the 2nd Workshop in Data
Mining and Data Warehousing as Basis of Modern Deci-
sion Support Systems.

Basili, V., and Caldiera, G. 1991. Methodological and
architectural issues in the experience factory. InProceed-
ings of the 16th Annual Software Engineering Workshop,
NASA/GSF, Software Engineering Laboratory series.

Basili, V., and McGarry, F. 1996. The experience factory:
How to build and run one. InTutorial at the 18th Interna-
tional Conference on Software Engineering.

Basili, V.; Caldiera, G.; McGarry, F.; Pajerskiand, R.; Page,
G.; and Waligora, S. 1992. The software engineering lab-
oratory – An operational software experience factory. In
Proceedings of the 14th International Conference on Soft-
ware Engineering, 370–378.

Basili, V.; Caldiera, G.; and Rombach, H. 1994. The ex-
perience factory. In Marciniak, J., ed.,Encyclopedia of
Software Engineering.John Wiley & Sons. 468–476.

Basili, V. 1985. Quantitative evaluation of software engi-
neering methodology. InProceedings of the 1st Pan Pacific
Computer Conference.

Beck, K. 1998. Extreme programming: A humanistic
discipline of software development. InFundamental Ap-
proaches to Software Engineering: Proceedings of the 1st
International Conference, FASE98, 1–6.

Bergmann, R.; Breen, S.; Gker, M.; Manago, M.; and
Wess, S. 1999.Developing Industrial Case Based Rea-
soning Applications - The INRECA Methodology, volume
1612 of Lecture Notes in Artificial Intelligence (LNAI).
Springer-Verlag.

Birk, A., and Tautz, C. 1998. Knowledge management of
software engineering lessons learned. InProceedings of the
10th conference on Software Engineering and Knowledge
Engineering (SEKE98).

1996. Experience base. A booklet from the PERFECT
ESPRIT project 9090 handbook edition.

Finnie, G.; Wittig, G.; and Desharnais, J.-M. 1997. Es-
timating software development effort with case based rea-
soning. InProceedings of the 2nd International Conference
on Case Base Reasoning, 13–22. Springer-Verlag.

Froehlich, G.; Kamel, A.; and Sorenson, P. 2000. Explor-
ing O-O framework usage. In22nd International Confer-
ence on Software Engineering, Research Poster.

Froehlich, G. 1999. Client-Server Framework.
http://www.cs.ualberta.ca/∼garry/framework.

Griss, M.; J., F.; and Walton, P. 1994. Managerial and or-
ganizational issues - starting and running a software reuse
program. In Schfer, W.; Prieto-Diaz, R.; and Matsumoto,
M., eds.,Software Reusability. Ellis Horwood Ltd. chap-
ter 3, 51–78.

Henninger, S. 1997. Capturing and formalizing best prac-
tices in a software development organization. InProceed-
ings of the 9th International Conference on Software Engi-
neering and Knowledge Engineering (SEKE97).

Houdek, F., and Bunse, C. 1999. Transferring experi-
ence: A practical approach and its application on software
inspection. InProceedings of the Workshop on Learning
Software Organizations at the 11th International Confer-
ence on Software Engineering and Knowledge Engineering
(SEKE99), 59–68.

Houdek, F., and Kempter, H. 1997. Quality patterns - An
approach to packaging software engineering experience.
Software Engineering Notes22(3):81–88.

Houdek, F.; Schneider, K.; and Wieser, E. 1998. Establish-
ing experience factories at daimler-benz: An experience re-

port. In Proceedings of the 20th International Conference
on Software Engineering, 443–447.
Kalfoglou, Y., and Robertson, D. 2000. Applying experi-
enceware to support ontology deployment. InProceedings
of the International Conference on Software Engineering
and Knowledge Engineering (SEKE00).
Kamel, A.; Voruganti, S.; Hoover, H. J.; and Soren-
son, P. 1997. Software process improvement model for
small organization: An experience report. InProceed-
ings of the Annual Oregon Workshop on Software Metrics
(AOWEM97).
Kamel, A.; Chandra, M.; and Sorenson, P. 2001. Support-
ing knowledge management of product-line software de-
velopment. Technical Report UA-SERL-01.001, Software
Engineering Research Labs, University of Alberta.
Koennecker, A.; Jeffery, R.; and Low, G. 2000. Implement-
ing an experience factory based on existing organisational
knowledge. InProceedings of the Australian Software En-
gineering Conference (ASWEC00).
Marcheli, M., and Succi, G., eds. 2000.eXtreme Pro-
gramming and Flexible Processes in Software Engineering
- XP2000.
McConnell, S. 1996.Rapid Development. Microsoft Press.
Nick, M., and Althoff, K.-D. 2000. The challenge of
supporting repository-based continuous learning with sys-
tematic evaluation and maintenance. In22nd International
Conference on Software Engineering. Workshop on Intelli-
gent Software Engineering (WISE3).
Ostertag, E. 1992.A Classification System for software
Reuse.Ph.D. Dissertation, University of Maryland.
Shirey, G. 1992. How inspections fail. InProceedings
of the 9th International Conference on Testing Computer
Software., 151–159.
Tautz, C., and Althoff, K.-D. 1997. Using case-based rea-
soning for reusing software knowledge. InProceedings of
the 2ndth International Conference on Case Based Reason-
ing (ICCBR97), 156–165.
Tautz, C.; Althoff, K.-D.; and Nick, M. 2000. A case-based
reasoning approach for managing qualitative experience.
In Intelligent Lessons Learned Systems: Papers from the
Workshop at 17th National Conference on AI (AAAI00).,
54–59. The AAAI Press.
Yang, Q.; Kim, E.; and Racine, K. 1997. CASEAD-
VISOR: Supporting interactive problem solving and case
base maintenance for help desk applications. InIJCAI’97,
Workshop on Practical Use of CBR.

