
Preliminary Results on Effort Estimation using Feature Gap
Analysis in Software Product Lines

Sybren Deelstra, Paul Sorenson, H. James Hoover Jan Bosch
University of Alberta University of Groningen

Computing Science Department Department of Computing Science
Edmonton, Alberta, Canada P.O. Box 800

T6G 2H1 9700 AV, Groningen, The Netherlands
+1 780 492 {3118, 2918, 5290} +31 50 363 3941

{sybren, sorenson, hoover}@cs.ualberta.ca jan.bosch@cs.rug.nl

ABSTRACT
Variation points are constructed to accommodate the
variety of features within the products of a software
product line (SPL). As it’s impossible to predict all features
up front however, it’s most likely there will be a mismatch
between some features and the variability provided thru the
variation points and variants. We introduce an extendible
feature gap model (FGM) as a foundation for determining
the capability of a SPL in supporting each product feature
set. We explore it’s potential as an estimation and evolution
tool and present some initial results and experiences.

Keywords
software product lines, variability, variation points,
features, feature support.

1 INTRODUCTION
Software product lines (SPLs) are useful for expressing
commonalties between related software products. Products
within that context tend to vary however and features can
be used to describe those differences on a high level [4]. In
Bosch’ book on SPLs [2] the definition of a feature is
specialized for software systems: “[a feature is] a logical
unit of behavior that is specified by a set of functional and
quality requirements.” Each feature implements many
requirements and a single requirement might cross cut to a
number of features, but “there should at least be an order
of magnitude difference between the number of features
and the number of requirements for a product line
member”. Thus, features are a means to abstract from the
requirements in an n-to-n relation.

During architectural design, a software architect is
challenged with the task of choosing which features to
implement. In an SPL context, it is impossible to predict all
of the features one would want to implement in advance of
development. To circumvent issues arising from choosing a
wrong or incomplete set of features, an architect can delay
the design decision to a later stage. A variation point [4] is
the element of the representation at hand that refers to such
a delayed design decision.

Managing variability including all variation points and
variants for an SPL is regarded as one of the key success
factors for future product development. One way to manage
variability is the use of an O-O framework to implement a
product line architecture [5]. In this case, we can focus the
variability on certain hot spots in the framework and
document how to realize this variability using hook points1.
The problem that still exists even using this well-managed
form of SPL development is the determination of which
features are well supported (i.e., can be easily
implemented) and which features are not supported (i.e.,
will require substantial additional development effort) in
the existing O-O framework.
The aim and contribution of this paper is to introduce a new
form of feature gap for SPLs using O-O frameworks as a
basis of product development. Our approach is at an early
stage of development and experimentation, and therefore
this paper is limited to a description of our basic feature
gap model (FGM) and how we plan to enhance and evolve
this model. Our goal for the FGM is to provide an accurate
effort estimator for work required to develop a product,
based on its identified features, using an O-O framework as
an expression of our SPL architecture. In this sense, we are
proposing a light-weight feature selection technique that is
combined with an effort prediction model. As a selection
technique, it is simpler and more focused on product line
development than SQFD (Software Quality Function
Deployment [8]). Our effort model is much simpler than

1 In other words, hook points are documented variation
points.

2

COCOMO [6], because it is calibrated relative to each
specific product-line framework.

The remainder of this paper is organised as follows. Section
2 provides a short introduction to the Prothos framework,
which is used as the basis for SPL described in this paper.
Section 3 introduces feature support concepts and section 4
describes the feature gap diagram and its use in FGM.
Sections 5, 6 and 7 describe how the FGM can be applied
to software product line selection, initial feature selection
and product line evolution. Section 8 describes our use of a
feature support questionnaire and section 9 presents some
of our initial findings based on the questionnaire results.
Finally, section 10 discusses our plans to validate the FGM
(Feature Gap Model).

2 THE PROTHOS FRAMEWORK
Prothos is an OO framework and part of a product line
architecture for web-delivered database-centric applications
and is used to build commercial production applications.

Prothos provides a minimalist environment for
implementing a web-based client/server RDBMS
application that wraps order processing business classes
into a working product. It supports the selection, display,
editing, and posting of persistent business data that has
been structured into a set of instances of business classes.
The business classes implement the application's business
rules, which are responsible for the application-specific
processing.

The User Interface Manager is a subframework of Prothos
that coordinates the user interface to the set of persistent
business classes. These business classes encapsulate access
to the business services and obtain their persistence by
inheriting from a second Prothos subframework, the
Persistent Object Manager.

3 DEFINING FEATURE SUPPORT
During architectural design, variation points are introduced
in the product line to accommodate the flexibility regarding
changes in future products and product versions. In
Prothos, variation points are realized as hooks in the
framework that indicate how and where variants can be
added in order to develop a new product. Because the
Prothos architects could not possibly predict all future
product requirements and features in advance, there is
inevitably a mismatch between the variability that is well
supported in the framework and the variability needed to
support the requirements and features of the new product.

Example: A good example of a product requirement
that is well supported in the existing Prothos
framework is the creation of a new business class and
the capture of instances of that class (class objects)
during execution. However, if the workflow around
that new business class is rather unique and requires

some special processing not previously supported in
the framework, then the mismatch between existing
framework support and what is required by the
application is large

This variability mismatch translates into feature gaps: a
mismatch between a feature and the support provided by
the product line architecture. To reflect a measure of
support for a particular feature in the product line
architecture we have chosen a five value scale ranging from
‘full’ to ‘good’ to ‘basic’ to ‘weak’ to ‘no’ support.
Unfortunately, there is no common understanding what
defines the amount of support. Froehlich’s Hooks Model
[7] identifies three levels of support for hooks, namely
option, template and open hooks; however we are only just
beginning to determine how we can incorporate these
notions in our FGM and therefore will not be reporting on
that work in this paper. Our report in this paper will explore
the potential of FGM as an estimation tool by applying it in
an after-the-fact study and not as part of an active process
in SPL development. Specifically, we examine how
applicable FGM could be in aiding effort estimation and
product development through an observational study of two
products developed using the common Prothos framework
as a basis for product line development.

4 FEATURE GAP DIAGRAM
 An important part of using the FGM is the ability to
visualize the gap between a framework and a product
feature set. As a consequence, we have plotted the features
against the support classification described above to form a
feature gap diagram (FGD). Examples of FGDs for two
example product developments that are currently using
Prothos are shown in Figures 1a and 1b. The two products,
which are being implemented by two student teams in our
CMPUT 402 course, are Product Team 1, a Strategic
Initiatives Management System (Cafe SIMS), and Product
Team 2, a Conference and Workshop Management System
(Cafe CWMS)

(Note: Product Team 1 choose to record their support
assessment in just three of five categories, because they felt
this was as accurate as they could be in their initial
estimates.)

An FGD depicts the relative importance of a feature against
the perceived support for that feature in the existing
framework. For example, in Figure 1b, feature 2 is viewed
as a key feature that is fully supported in the framework;
whereas, feature 4 is a desired feature that has no support in
the framework. Currently, we are investigating the full
benefits of using this form of gap visualization for
important aspects such as SPL selection, initial feature
selection, and SPL evolution. These aspects are discussed in
the following three sections.

3

5 SOFTWARE PRODUCT LINE SELECTION
Perhaps the most obvious way to use feature gap diagrams
is in early meetings to assist customers in visualizing the
suitability of an SPL architecture with regard to the features
identified in their requirement set. This variability
management technique is relatively easy to implement
without spending significant time in detailed effort
prediction. In the theoretical worst case (in which the SPL
architecture does not support a proposed product) all or
most of the features would fall on the right-most section of
the FGD, while in the optimal case (near perfect SPL
architecture match) all features would fall in the left-most
sections.

We can observe from the feature gap diagrams for both
student products (Figures 1a,b), that the Prothos framework
is reasonably well suited for Product 2 and less well suited
for Product 1. Indeed, further detailed analysis is warranted
before making a decision to use Prothos for Product 1. The
initial feature selection process described below could
certainly be of some help in this regard.

6 INITIAL FEATURE SELECTION
It is typical in the early stages of feature identification for a
new product to come up with many more features than one
could possibly implement in the initial product rollout.
Choices of which features to include in the initial product
depend on several factors that are both customer driven and
technical in nature. Our hypothesis is that fully supported
features generally require less effort to implement than
features that are not well supported. Feature gap diagrams
can be used for initial (coarse grained) feature selection by
selecting and discarding sections as depicted in Figure 2a.
In this case, three categories (fancy/weak, fancy/no,
desired/no) are eliminated and two categories (fancy/basic,
desired/weak) should be considered as candidates for
elimination.

The nature of this selection and discarding of features
undoubtedly depends on the market and/or the culture in
the developing organisation. In a mobile phone market, for
example, the emphasis is on feature-rich products and
therefore the objective is to discard very few features (see
Figure 2b). On the other hand, small organisations (like the
student team product development shown above or
computer game products) would discard features rapidly in
order to get the product released at a precise time (end of
term or in time for the Christmas market).

After this coarse grained selection, a more fine grained ‘per
feature’ effort prediction is often required to add or discard
additional features from the final product feature set, for at
least two reasons. First, choices in the mid-section of the
diagram (e.g., the sections surrounded in a bold line in
Figure 2a) can be difficult. Second, a selected feature can
still consume a large portion of the total effort as the
feature gap diagram does not tell us anything about the
distribution of effort within each section or among the

different kinds of features.

To address these shortcomings we recommend that an
initial FGD be revised in the following way. First,
framework users are asked to provide an initial estimate of
the amount of total effort (in person days) to implement
each feature in the selected feature set, although in reality,
the feature might be implemented in phases. Features that
are not selected are not assigned an effort estimate (i.e.,
their initial estimated defaults to undefined). Each dot
representing a particular feature on the FGD is then sized to
reflect the relative amount of effort to implement that
feature. Feature dots would not appear for features that are
not selected. As an example, Figure 3 depicts the relative
weights for features selected to be in the initial version of
Product 1. By using these initial effort estimates, choices
of which features to include/exclude in a next release can
be decided based on total effort calculations as provided in
the enhanced FGD.

7 PRODUCT LINE EVOLUTION
From time to time we will need to evolve our framework
based on our experiences in trying to deliver several
products from the framework. One way to do this is to
combine FGDs for all products, either with existing feature
sets or sets of predicted feature, into a single (total) FGD
and use the resulting diagram to assist in determining an
evolutionary path for the underlying framework that
supports the SPL.

We are currently investigating how to represent the
timeline and the decision making process. Of particular
concern is that fundamental (cold spots) on the framework
may change. As the framework evolves, the subframeworks
can be refactured and thus the implementation of a feature
can change. Features can appear and disappear. This would
have ramifications on all existing products that have been
built from an old version of the framework

An interesting and promising approach for evolving feature
support in the framework, is to group features based on the
commonality they have with respect to the hooks that
would be enacted to implement the features. We plan to
investigate this approach by applying this analysis across
several feature sets that have been implemented for
Prothos-based products.

8 FEATURE SUPPORT QUESTIONNAIRE
To begin to measure the effectiveness of the FGM
approach, we constructed a questionnaire in which we ask
the framework users to identify for each feature in their
original feature set, the category and the amount of support
for that feature in the product line. In the questionnaire, we
asked the framework users to classify the features into the
three FGD categories that relate to the perceived need for
the feature, namely, “key”, “desired” or “fancy” feature.
Key features are the core features that identify the
application, while fancy features are non-essential, low

4

priority features.

The questionnaire also contained the definitions for the
feature categories and the following guideline to the
‘amount of support’ classification: “A lower amount of
documentation of and/or a less perfect fit with the
corresponding variation point results in a lower amount of
support”. The term ‘fit’ is not further defined; however to
assist in understanding their notion of fit, each subject was
urged to explain their classification of each feature in more
detail.

9 INITIAL RESULTS
We sent by email the questionnaire outlined above to the
two student teams involved in developing separate
applications using the Prothos framework. The results were
sent back with email as well. The teams identified a total of
38 and 26 features2 in their feature set, respectively. The
questionnaire resulted in the class distribution below. Note
that the number of features and, where appropriate, brief
explanations of the classifications provided by the product
teams are included.

Full support (10+10)

• Features already implemented in the framework (18)

• Variants available, but requires small modifications (1)

Good support (0+2)

• Existing variants require minor modification (2)

Basic support(15+4)

• No available documentation on variation point or
variants (5)

• Variants requires modification, but no documentation
available (4)

• Variants not portable and no documentation available
(3)

• Modification of existing variants required (2)

• Adding of functionality to existing variants required (2)

Weak support (0+8)

• Significant amount of modification is required (3)

No support (13+2)

• No variation point exists (8)

• No variation point found (5)

Both student teams identified the amount of documentation

2 E.g. full history logs, a common document repository, list
creation, conference registration

as the major factor in classifying the features. Even if the
variants are available, the feature is classified into the
‘basic’ class. No documentation however, does not imply
that the corresponding variation point does not exist, which
is reflected by the ‘no variation point found’ remark for the
‘no support’ classification. Proper variability management
is the key here and is an area that requires more research,
e.g. on how to describe and represent the variation points
on all abstraction levels.

10 VALIDATION
As an initial step towards validating our FGM approach, we
mapped the set of features chosen by the product teams
using a similar SQFD feature selection strategy onto the
FGDs shown in Figures 5a and 5b. Product Team 1’s initial
feature set is circled. Product Team 2 is proposing three
cycles of product development. The features to be
implemented in the first cycle are circled. The second cycle
features are encased in squares. An initial analysis of these
results suggests some alignment exists between the FGM
approach and SQFD analysis used by the product teams.

As soon as both teams finish the applications we will give
them a similar questionnaire to see how they experienced
the amount of support and if their opinions regarding the
factors have changed. We’ll also ask framework experts to
fill out the same questionnaire for both application feature
sets and have a discussion with industry experts regarding
their point of view on the amount of support for features.

The questionnaire results to date suggest that having good
documentation is very important to assessing perceived
support. We believe other factors such as variant binding
time or type of feature should play an important role as
well. However, none of the team members is a framework
expert, which might explain why the teams value
documentation over other factors. We expect the outcome
of this research will point to several other factors that
influence feature selection and effort estimation, all of
which will allow us to improve our FGM approach.

REFERENCES
1. L. Bass, P. Clements and R. Kazman, Software

Architecture in Practice (Addison-Wesley), ISBN 0-
201-19930-0, May 1999

2. J. Bosch, Design & Use of Software Architectures,
Adopting and evolving a product-line approach
(Addison-Wesley), ISBN 0-201-67494-7

3. J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, H.
Obbink, K. Pohl. "Variability Issues in Software
Product Lines", Proceedings of te Fourth Workshop
on Product Family Engineering, October 2001, to be
published at Springer LNCS

4. J. van Gurp, J. Bosch, M. Svahnberg, "On the notion of
Variability in Software Product Lines", Proceedings of

5

The Working IEEE/IFIP Conference on Software
Architecture (WICSA 2001), pp. 45-55, August 2001.

5. H.J. Hoover, T. Olekshy, G. Froehlich. and P.G.
Sorenson, "Developing Engineered Product Support
Applications", Proceedings of the 1st Software Product
Line Conference, sponsored by the Software
Engineering Institute, Denver, CO, Aug. 2000, pp.
451-476. Published as Software Product Lines -
Experience and Research Directions}, P. Donahoe, ed.,
Kluwer Academic Publishers, 2000.

6. Boehm, B. Software Engineering Economics, Prentice
Hall, 1981.

7. Froehlich, G., Hoover, H.J., Liu L. and Sorenson, P.G.
"Hooking into Object-Oriented Application
Frameworks", Proc. 19th Int'l Conf. on Software
Engineering, Boston, May 1997, pp. 491-501.

8. Haag, S., Raja, M.K., and Schkade, L.L. “Quality
Function Deployment Usage in Software
Development,” CACM, Jan. 1996, vol.39, no.1, pp.
42-49.

6

Figure 1a: Feature Gap Diagram for Product 1

Figure 1b: Feature Gap Diagram for Product 2

5

9

3

7 16 17

35 36

37 38

1 2

11 12

13 29

6

27

4 8 18

26 30

31 32

10

34

19

14 15

20 28

33

22

23 24

25

21

Full Good Basic Weak No

Fancy

Desired

Key

(10) (15) (13)(0) (0)
Feature

Category

Amount of Support

8

21

2 26

6

27

12

13

16

4

22

Full Good Basic Weak No

Fancy

Desired

Key

(10) (6) (2)(2) (8)
Feature

Category

Amount of Support

189
20

5 6

10 14

24

15

1

23

19

11

17

3

25

7

7

Figure 2a: Feature Gap Discard Diagram for Product 2 illustrating aggressive discard strategy legend!

Figure 2b: Feature Gap Discard Diagram for Product 2 illustrating conservative discard strategy

8

21

2 26

6

27

12

13

16

4

22

Full Good Basic Weak No

Fancy

Desired

Key

(10) (15) (13)(0) (0)
Feature

Category

Amount of Support

189
20

5 6

10 14

24

15

1

23

19

11

17

3

25

7

8

21

2 26

6

27

12

13

16

4

22

Full Good Basic Weak No

Fancy

Desired

Key

(10) (15) (13)(0) (0)
Feature

Category

Amount of Support

189
20

5 6

10 14

24

15

1

23

19

11

17

3

25

7

8

Figure 3: Feature Gap Effort Diagram for Product 1 depicting relative weights of selected features

Figure 4: Feature Gap Evolution Diagram in support of Product Line Evolution

5

3

7 17

35 36

37 38
11

6

4
18

30

31 32

10

34

33

22

23 24

25

Full Good Basic Weak No

Fancy

Desired

Key

(9) (14) (8)(0) (0)
Feature

Category

Amount of Support

2

12

13

1

29

16

26

21

27

8

21

2 26

38

27

12

13

16

4

22

Full Good Basic Weak No

Fancy

Desired

Key

(8) (9) (4)(4) (8)
Feature

Category

Amount of Support

189
20

5 56

10

14

24

15

1

23

19

11

17

3

25

7

31

30 40 36

34

9

Figure 5a: Initial Feature Set Selection for Product 1

Figure 5b: First and Second Cycle Feature Selection for Product 2

5

9

3

7 16 17

35 36

37 38

1 2

11 12

13 29

6

27

4 8 18

26 30

31 32

10

34

19

14 15

20 28

33

22

23 24

25

21

Full Good Basic Weak No

Fancy

Desired

Key

(10) (15) (13)(0) (0)
Feature

Category

Amount of Support

8

21

2 26

6

27

12

13

16

4

22

Full Good Basic Weak No

Fancy

Desired

Key

(10) (15) (13)(0) (0)
Feature

Category

Amount of Support

189
20

5 6

10 14

24

15

1

23

19

11

17

3

25

7

