
Published in Transactions on Machine Learning Research (04/2024)

Synthesizing Libraries of Programs with Auxiliary Functions

Habibur Rahman habibur@ualberta.ca
Amii, Department of Computing Science, University of Alberta

Thirupathi Reddy Emireddy emireddy@ualberta.ca
Amii, Department of Computing Science, University of Alberta

Kenneth Tjhia tjhia@ualberta.ca
Amii, Department of Computing Science, University of Alberta

Elham Parhizkar parhizka@ualberta.ca
Amii, Department of Computing Science, University of Alberta

Levi H. S. Lelis levi.lelis@ualberta.ca
Amii, Department of Computing Science, University of Alberta

Reviewed on OpenReview: https: // openreview. net/ forum? id= tP1PBrMUlX

Abstract

A common approach to program synthesis is to use a learned function to guide the search
for a program that satisfies the user’s intent. In this paper, we propose a method that offers
search guidance, through a domain-dependent auxiliary function, that can be orthogonal to
the guidance previous functions provide. Our method, which we call Auxiliary-Based Library
Learning (Aulile), searches for a solution in the program space using a base algorithm. If
this search does not produce a solution, Aulile enhances the language with a library of
programs discovered in the search that optimizes for the auxiliary function. Then, it repeats
the search with this library-augmented language. This process is repeated until a solution
is found or the system reaches a timeout. We evaluate Aulile in string manipulation
tasks. Aulile improved, in some cases by a large margin, the performance of several base
algorithms that use different search and learning strategies: BUS, Bustle, Crossbeam,
and Bee Search. Our results suggest that Aulile offers an effective method of injecting
domain knowledge into existing systems through a library learning scheme that optimizes
for an auxiliary function.

1 Introduction

There is increasing interest in the discovery of programmatic hypotheses, i.e., hypotheses encoded as pro-
grams written in a domain-specific language (Ellis et al., 2023; Singh & Gulwani, 2015). Depending on
the language used, these hypotheses can be interpretable (Medeiros et al., 2022), more amenable to verifi-
cation (Bastani et al., 2018), and generalize to unseen scenarios (Inala et al., 2020). The key difficulty in
synthesizing such hypotheses is the size of the space of the programs. In addition to being large, the program
space is often discontinuous, making it difficult to use gradient descent-based optimization algorithms.

A popular solution to speed up the synthesis process of programmatic hypotheses is to learn functions to
guide the search of algorithms such as Bottom-Up Search (BUS) (Albarghouthi et al., 2013; Udupa et al.,
2013) and Top-Down Search (Wang et al., 2017). Bustle (Odena et al., 2021), Probe (Barke et al., 2020),

1

https://openreview.net/forum?id=tP1PBrMUlX

Published in Transactions on Machine Learning Research (04/2024)

Bee Search (Ameen & Lelis, 2023), and Crossbeam (Shi et al., 2022) enhance BUS with a guiding
function. In addition to learning a guiding function, DreamCoder (Ellis et al., 2023) also learns a library
of programs while solving a set of training tasks. DreamCoder uses a compression scheme to learn a set
of programs that can be reused as part of other hypotheses. Despite all these advances, depending on the
size of the programmatic solution, existing methods still struggle to synthesize effective programs.

In this paper, we consider the scenario in which one is able to encode domain knowledge through an auxiliary
function that can be helpful in guiding the search for programmatic hypotheses. We use the auxiliary function
to learn task-specific libraries of programs. That is, instead of learning libraries of programs for a problem
domain, like DreamCoder does, we learn a library of programs by searching for a solution to a specific task.
We use a base synthesizer to search for a solution to the task. If the search is not successful, we augment
the language with the program encountered in the search that optimizes for the auxiliary function, i.e., the
program becomes a function in the language. The search for a solution is then repeated with the augmented
language. Since the program added to the language can be used through a simple function call, the second
search might still not solve the problem, but it may find yet another program that uses the program inserted
into the language in the previous iteration that better optimizes the auxiliary function. We hypothesize that
the auxiliary function will guide the search through a sequence of augmentation steps that transforms the
synthesis of a complex solution into an easy task, where the last search of the base synthesizer combines the
programs added to the language. We refer to this process as Auxiliary-Based Library Learning (Aulile).

We also hypothesize that, since the auxiliary function is likely different from previously learned guiding
functions, Aulile can provide search guidance that is orthogonal to that provided by existing functions.
That is, using an auxiliary function can increase the number of problems existing systems can solve. To test
this hypothesis, we used Aulile to augment BUS, Bustle, Bee Search, and Crossbeam in string ma-
nipulation tasks (Alur et al., 2013; Odena et al., 2021). Aulile improved the performance of all synthesizers
in terms of the number of tasks solved, in some cases by a large margin, thus supporting our hypothesis.

The empirical results we present in this paper suggest that Aulile offers an effective way to inject domain
knowledge into the synthesis of programmatic hypotheses. The results also suggest future directions for
systems learning how to guide the search in programmatic spaces, as a simple auxiliary function can already
improve the performance of existing systems; would learned auxiliary functions provide even better guidance?

Our implementation is available online.1

2 Problem Formulation

In program synthesis, one searches the space of programs defined by a domain-specific language (DSL),
which is provided in the form of a context-free grammar G. The DSL includes a set of non-terminals (V),
terminals (Σ), and relations (R) that define the production rules and the initial symbol of the grammar (I).
Figure 1 (left) illustrates a DSL where V = {I}, Σ = {<, >, i1, . . . , ik, concat, replace}, and R defines the
production rules (e.g. I → <). A production rule with at least one non-terminal symbol on the right-hand
side is referred to as non-terminal, while a production rule with no non-terminal symbols on the right-hand
side is referred to as terminal. The set of programs G accepts defines the program space. For instance, the
program replace(concat(<, >), <, >) is accepted by G: we start with I and replace it with replace (I, I, I);
then we replace the leftmost I with concat(I, I), the middle non-terminal I with <, and the rightmost
non-terminal with >, etc.

Programs are represented as abstract syntax trees (ASTs). Figure 1 (right) illustrates the AST of the program
replace(concat(<, >), <, >). Every node in the AST represents a production rule. For example, the root
of the AST in Figure 1 represents I → replace(I, I, I). Nodes representing a non-terminal rule have a
number of children corresponding to the number of non-terminal symbols in the rule. Nodes corresponding
to terminal rules are leaves in the AST. Note that each subtree in the AST represents a program. A subtree
rooted at a child of node p is referred to as a subprogram of p. For instance, concat(<, >), <, and > are
subprograms of replace(concat(<, >), <, >).

1https://github.com/lelis-research/aulile

2

https://github.com/lelis-research/aulile

Published in Transactions on Machine Learning Research (04/2024)

I → < | > | i1 | i2 | . . . | ik

| concat(I, I) | replace(I, I, I)

replace

concat

< >

< >

Figure 1: DSL and AST for replace(concat(<, >), <, >).

A program synthesis task consists of a DSL G, a set of inputs I = {I1, . . . , In}, and a set of outputs
O = {O1, . . . , On}. Here, each input Ii and output Oi can each represent a set of values. The goal is to
find a program p ∈ G that correctly maps each input set to its corresponding output set, p(Ii) = Oi, for
i = 1, . . . , n. For example, concat(i1, i2) solves I = {[<, >], [>><, >], [>, >]} and O = {[<>], [>><>], [>>]}, where
i1, and i2 are the input values associated with each input Ii.

3 Base Synthesizers Used in Our Study

In this section, we describe the synthesizers used in our augmentation study: bottom-up search (BUS) (Al-
barghouthi et al., 2013; Udupa et al., 2013), Bustle (Odena et al., 2021), Bee Search (Ameen & Lelis,
2023), and Crossbeam (Shi et al., 2022). All synthesizers used in our experiments are based on the BUS
algorithm. We chose to use these methods because they represent the current state of the art and all repre-
sent improvements over BUS through a learned guiding function. By using our augmentation method with
all of them, we can measure how much our enhancement can improve existing methods from the literature,
i.e., how much the guidance of our approach is orthogonal to the guidance of existing approaches.

In the following sections, we describe the synthesizers used in our study in a level of detail that allows the
reader to understand how the augmentation approach is implemented in each of them. We refer the reader
to the original papers of each method for a more detailed description of the approaches.

3.1 Bottom-Up Search (BUS)

BUS incrementally builds programs of increasing size. The process begins by generating all programs defined
by the terminal symbols of the DSL, which have size 1 in terms of the number of nodes in the program’s
AST. Then, using the programs of size 1, BUS generates the programs of size 2 by applying the production
rules. This process continues using the programs of sizes 1 and 2 to generate programs of size 3, and so on.
The search stops when a program is generated that can map the inputs to the outputs of the task.

Consider a scenario in which we need to synthesize a program that produces the output ><> with the DSL
of Figure 1 (left). The set of inputs for this task is empty and a solution is concat(concat(>, <), >). To
find the solution, BUS begins by generating and evaluating all programs of size 1, which are > and < in this
case. Since neither of these programs correctly generates the output, BUS proceeds to generate the set of
programs of size 2, which is empty in this example, because the programs of size 1 cannot be combined into
programs of size 2 in this DSL. Next, BUS generates all programs of size 3, including concat(<, <), . . . ,
concat(>, >). This process continues until the correct program is generated. This example illustrates how
BUS performs a systematic search to find a solution by increasing the size of the programs it generates.

One of the key features of the synthesizers we use in our study is their ability to perform observational-
equivalence checks. If p1 and p2 produce the same outputs for all inputs in I, we can keep p1 or p2 and
discard the other. Observational-equivalence can dramatically reduce the size of the effective search space.

3.2 Bustle

Bustle performs a cost-guided bottom-up search. Instead of enumerating programs in terms of AST size,
as BUS does, Bustle enumerates them in terms of cost. Here, the cost of a program is determined by a

3

Published in Transactions on Machine Learning Research (04/2024)

cost function, which in Bustle’s case is a trained neural network. Cheaper programs are deemed to be more
likely to be part of a solution to the problem and are evaluated first in the search.

Bustle’s cost function employs a neural network to compute the likelihood that a program is a subprogram
of a solution program. The network receives the input-output pairs (I,O) and the outputs p(I), I ∈ I, of a
program p and returns the probability that p is part of a solution. This neural cost function is determined
through two functions: w and w′. Let p = r(p1, · · · , pk) be a program determined by the production rule r
whose k non-terminal symbols are replaced by programs p1, · · · , pk, the w-value of p is computed as follows:

w(p) = 1 +
k∑

i=1
w′(pi) .

The value 1 represents the cost of the rule r and w′(pi) is the cost of the program pi as given by the following:

w′(p) = w(p) + 5− δ(p), (1)

where δ(p) ∈ {0, · · · , 5} is an integer that is based on the probability of p being part of a solution. The
value of δ(p) is computed by binning the probability value the model returns. Bustle uses the values in
{0.0, 0.1, 0.2, 0.3, 0.4, 0.6, 1.0} as follows: if the probability returned by the model is within the first two
values [0.0, 0.1), δ(p) = 0, if it is within the second and third values [0.1, 0.2), δ(p) = 1, etc. δ penalizes p
according to the probability the neural network assigns to p; lower probabilities result in higher costs.

3.3 Bee Search

Bee Search also performs a cost-based search in the space of programs. However, in contrast to Bustle,
it does not require the cost function to produce integer values. Ameen & Lelis (2023) introduced a variant of
the Bustle cost function, denoted wu, which does not use the binning scheme to discretize the cost values:

wu(p) = 1 +
k∑

i=1
w′

u(pi) (2)

where,
w′

u(pi) = wu(pi)− log2 P(pi).

Similarly to Bustle’s w, Equation 2 assumes that the cost of each production rule is 1 and that the wu-cost
of a program p is given by 1 plus the sum of the w′

u costs of the subprograms of p. The difference between
Bustle’s w-function and wu is that the latter penalizes programs p with P(p), the model’s estimated
likelihood of p being part of a solution, and not with a scheme that bounds the penalty to at most 5.

3.4 Crossbeam

Similarly to BUS, Bustle, and Bee Search, Crossbeam keeps all generated programs in memory so it
can perform observational-equivalence checks. However, instead of generating all combinations of existing
programs with a production rule r as BUS does, Crossbeam samples subprograms pi from the existing set
of programs to determine which programs r(p1, · · · , pk) are generated and evaluated next in search.

Crossbeam trains a model that receives all the programs generated in the search so far, the input-output
pairs, and a production rule r; the model produces a probability distribution over all the programs encoun-
tered in the search to define what the programs pi should be that comprise the next program r(p1, · · · , pk)
to be evaluated. The sampling procedure for programs pi can be performed with Beam Search or Uni-
queRandomizer (Shi et al., 2020). If the sampled program p is observational-equivalent to a previously
seen program, then p is discarded. Crossbeam iteratively goes through all production rules r and samples
programs r(p1, · · · , pk), until a solution is found or the search times out.

4

Published in Transactions on Machine Learning Research (04/2024)

Algorithm 1 Aulile
Require: Input-output pairs I,O, DSL G, auxiliary function a, base synthesizer Y , and a budget B
Ensure: Solution program p or ⊥

1: while not timeout do
2: p, solved ← Y(G, I,O, B, a)
3: if solved then
4: return p

5: G = G ∪ p

6: return ⊥

4 Auxiliary-Based Library Learning

Our language augmentation method based on an auxiliary function, Aulile, is presented in Algorithm 1.
We denote the augmented version of a base synthesizer Y as A-Y . For example, the augmented version of
BUS is denoted A-BUS. Aulile receives a problem specification through input-output pairs I and O, a
DSL G, an auxiliary function a, a base synthesizer Y , and a computational budget B. Aulile returns either
a solution program p or a failure signal ⊥ as output. Aulile repeatedly invokes the base synthesizer Y to
explore the space of programs (line 2). Each search with Y is bounded by a computational budget B (e.g.,
number of programs evaluated in the search). If the base synthesizer finds a solution, then p represents this
solution (line 4). Otherwise, p represents the program encountered in the search that optimizes the auxiliary
function a, in which case p is added to the language so that it can be used in the next iteration of the search.
The base synthesizer is configured to return a program p that was not added to the language in previous
iterations of Aulile. Different base synthesizers handle the addition of p to the language differently. We
discuss how the synthesizers used in our experiments handle language augmentation in Sections 4.1 and 4.2.
Aulile runs while there is available time for synthesis.

4.1 A-BUS, A-Bustle, and A-Bee

The program p added to the language in A-BUS, A-Bustle, and A-Bee is treated as a non-terminal symbol
of the type that p returns. For example, if p returns an integer value, then it can be used as an operation
that returns an integer. This means that all added programs have a cost of 1 (size 1 in the context of BUS),
so they are evaluated early in the search and can be more easily combined with other programs.

4.2 A-Crossbeam

In the context of Crossbeam, the program p used to augment the language is added to the initial set
of programs explored by the search. When sampling the next program p′ to be evaluated in the search,
Crossbeam will be able to use p as one of the subprograms of p′ starting in the first iteration of the search.

The model Crossbeam uses to create the probability distribution on existing programs is trained on-policy.
This means that Crossbeam uses the distribution of programs seen during the search to solve training
problems to train the model. Since the programs p added to the language can be of arbitrary complexity, it
is unlikely that the Crossbeam model has trained on search contexts similar to those A-Crossbeam induces
(i.e. the set of existing programs might contain complex programs even in the first iteration of search). We
empirically evaluate if Crossbeam’s model is able to generalize to the search contexts of A-Crossbeam.

Since Crossbeam uses sampling, it can benefit from random restarts (Hoos & Stützle, 2004). That is,
instead of running the system with a computational budget of X program evaluations, if we use N random
restarts, we would sequentially perform N independent runs of the system with a budget of X

N program
evaluations each. Since A-Crossbeam implicitly performs random restarts, where in each restart it uses an
augmented version of the language, it would not be clear from the results if performance improvements were
due to random restarts or augmentation. Therefore, we also use a version of Crossbeam that uses random
restarts without augmentation as a baseline in our experiments, denoted by Crossbeam(N), where N > 1.

5

Published in Transactions on Machine Learning Research (04/2024)

P1(arg):
arg.replace("-", "")

.replace(".", "")

.replace(
concat(">", " "), "")

Input P1’s Output
801-456-8765 8014568765
<978> 654-0299 <9786540299
978.654.0299 9786540299

P2(arg):
P1(arg)

.replace("<", "")

Input P2’s Output
801-456-8765 8014568765
<978> 654-0299 9786540299
978.654.0299 9786540299

Figure 2: Example of the augmentation process in a string manipulation task.

4.3 Example of A-BUS on the String Manipulation Domain

Consider the example shown in Figure 2. The table on the right-hand side represents both the input-output
pairs of the task and the output of a solution program, P2. Although the solution program is long and
search algorithms such as BUS would not be able to find it due to computational limitations, A-BUS with a
simple auxiliary function finds a solution. In the first iteration of A-BUS, it adds to the language program
P1, which does not solve the problem, but produces output strings that are closer to the output strings of
the problem specification. Among all generated programs, P1 is the one that better optimizes the auxiliary
function (defined in Section 5). In the next iteration, the solution P2 uses P1 as a subprogram.

4.4 Weaknesses of Aulile

The main weakness of Aulile is its requirement of an auxiliary function. In this paper, we evaluate
search algorithms in string manipulation problems, for which there exists an obvious auxiliary function—the
Levenshtein distance (see Section 5). However, there might be no obvious choices for other domains. Future
work will investigate how one can learn auxiliary functions to augment the language. Aulile also inherits
some of the weaknesses of its base synthesizer. For example, BUS algorithms are memory-intensive, and so
will be Aulile if using a BUS algorithm as its base synthesizer. Stochastic local search algorithms (Husien
& Schewe, 2016b; Medeiros et al., 2022) can explore repeated programs because they do not keep a list of
evaluated programs. Aulile will suffer from the same problem if using such algorithms as base synthesizer.

5 Empirical Evaluation

We evaluate Aulile on string manipulation (Alur et al., 2013; Odena et al., 2021) tasks, in which one is
given a set of input-output examples and needs to find a program that maps each input to its corresponding
output. We use two datasets from Odena et al. (2021): one with 89 instances of the SyGuS competition and
another with 38 handcrafted instances. We implemented the DSL for string manipulation, as well as BUS
and Bustle. We use the implementations of Crossbeam and Bee Search provided by their authors.

We perform three sets of experiments. In the first set, we compare the base synthesizers with their augmented
counterparts (Figures 3 and 4). We compare the algorithms in terms of the number of problems solved by
the number of programs evaluated. This is because all algorithms use the same model as a cost function and
thus have a similar per-evaluation computational cost. In the second set, we compare the best performing
systems of each experiment in the first set (Figure 5). Since the algorithms use different models, we use
running time instead of number of evaluations. This is to account for the complexity of the models employed.
For example, Crossbeam uses a more complex and thus slower model than Bustle. We used 14 million
programs evaluated as the budget B of Aulile for A-BUS, A-Bustle, and A-Bee.

In the third set, we perform ablation studies. In Aulile, if the base synthesizer does not solve the problem,
it adds to the language the program p with the best a-value that is different from the programs added in
previous iterations of Aulile. We evaluate a version of A-BUS that adds to the language, in each iteration,

6

Published in Transactions on Machine Learning Research (04/2024)

the best k ≥ 1 programs that are different from the programs added in previous iterations, for k in {1, 2, 3}
(Figure 6). We also present results of A-BUS with auxiliary functions of varied strengths (Figure 7).

The budget B is determined differently for A-Crossbeam due to the restarts we implemented with Cross-
beam. In the first set of experiments, given a computational budget X, which is denoted by the rightmost
point on the x-axis of our plots, we present curves for runs of Crossbeam and A-Crossbeam with differ-
ent values of N . For a given N , the algorithm restarts after X

N evaluations. For legibility, Crossbeam is
abbreviated as CB and A-Crossbeam as A-CB in the plots; the values in brackets denote N . In the second
set of experiments, we used 5 million evaluations as B for A-Crossbeam. We use a smaller budget with
A-Crossbeam because, as we show below, the algorithm can benefit not only from the augmentation of
the language, but also from search restarts due to its sampling process. This is in contrast to A-BUS,
A-Bustle, and A-Bee, which are deterministic and thus tend to benefit from the largest possible B.

We plot the mean and standard deviation over five independent runs for Bustle, A-Bustle, Bee Search,
A-Bee, Crossbeam, and A-Crossbeam because they depend on the random initialization of the weights
of their neural models and also sampling in the case of Crossbeam and A-Crossbeam. BUS and A-BUS
are deterministic, therefore we present the results of a single run. We used 1 CPU at 2.4 GHz and 64 GB of
RAM in all experiments; for Bustle, A-Bustle, Bee Search, A-Bee, Crossbeam, and A-Crossbeam
we also used 1 GPU, since they use a neural model.

Auxiliary Function We use the Levenshtein distance (Levenshtein, 1966) as the auxiliary function. The
Levenshtein distance between two words is the minimum number of single-character edits (insertions, dele-
tions, or substitutions) required to change one word into the other. The higher the distance, the greater
the dissimilarity between the strings. The auxiliary function measures the sum of the distances between the
output of a program p(Ii) and its corresponding output Oi, for all Ii ∈ I. If two or more programs have the
same Levenshtein distance, we arbitrarily select one of them to be added to the language in Algorithm 1.

5.1 Empirical Results: First Set

Figure 3 shows the results for the SyGuS benchmark, while Figure 4 shows the results for the 38 benchmark
set. Each figure shows a plot for a base synthesizer: BUS, Bustle, Bee Search, and Crossbeam. The
y-axis shows the total number of solved problems, and the x-axis shows the number of programs evaluated.
For example, A-BUS solves 87 problems after evaluating 5 × 108 programs. The line CB without brackets
represents Crossbeam as presented in its original paper (Shi et al., 2022).

The auxiliary-based language enhancement increased the number of problems solved by all base synthesizers
evaluated on the SyGuS benchmark, often by a large margin. For example, it increased the number of
problems BUS solved from 74 to 87. The results of Crossbeam show that not only the augmentation
approach is effective, but also simply performing restarts already increases the number of problems the system
can solve. Namely, Crossbeam with no restarts solved an average of 66.2 problems, while Crossbeam with
4 restarts solved an average of 69.0 problems. The best A-Crossbeam, A-CB(8), solved an average of 75.6
problems. Improvements to the 38 benchmark problems are more modest than those observed on the SyGuS
benchmark, but the augmented approach is never worse and sometimes superior (e.g., A-Crossbeam).

5.2 Empirical Results: Second Set

In Figure 5 we compare the best performing algorithms from Figures 3 and 4 in terms of running time, rather
than the number of programs evaluated. We allowed the same computational budget in terms of running
time (x-axis) for both SyGuS and the 38 benchmarks. Note that the results shown in Figure 5 are not
directly comparable to those shown in Figures 3 and 4. This is because the computational budget used in
the first set of experiments can be different from the budget used in this set. This is particularly noticeable
for A-Crossbeam, which uses a much smaller computational budget in Figure 4 than in Figure 5.

The results show that A-Bustle and A-Bee are the best performing systems on the SyGuS benchmark,
while A-Crossbeam is the best performing on the 38 benchmark. Interestingly, A-Bustle and A-Bee
solved almost all instances of the SyGuS benchmark, and A-Crossbeam solved all instances of the 38

7

Published in Transactions on Machine Learning Research (04/2024)

0 5x108 11x108 16x108 21x108

Number of Programs Evaluated

60

67

75

82

90

P
ro
b
le
m
s
S
ol
ve
d

87

74

A-BUS

BUS

0 5x107 10x107 15x107 20x107

Number of Programs Evaluated

60

67

75

82

90

81.4

77.2

A-Bustle

Bustle

0 6x108 11x108 17x108 23x108

Number of Programs Evaluated

60

67

75

82

90

P
ro
b
le
m
s
S
ol
ve
d

87.8

82.0

A-Bee

Bee

0 1x104 2x104 4x104 5x104

Number of Programs Evaluated

60

64

68

72

77
75.6
75.0

71.8

67.8
69.0

66.6
66.2

A-CB(8)

A-CB(4)

A-CB(2)

CB(8)

CB(4)

CB(2)

CB

SyGuS Benchmark

1Figure 3: Number of problems solved per number of evaluations on the SyGuS benchmark for four base
synthesizers: BUS, Bustle, Bee Search, and Crossbeam. This benchmark set has 89 problems.

benchmark. These results suggest that the community may need more difficult string manipulation bench-
marks. Although A-BUS is not the best performing system on the SyGuS benchmark, it is notable that it
performs so well on this set of problems. While A-Bustle, A-Bee, and A-Crossbeam employ a neural
model to guide the search, A-BUS simply relies on the uninformed search of BUS and the augmentation of
the language with the auxiliary Levenstein function.

5.3 Empirical Results: Third Set

Figure 6 shows the results of A-BUS when it adds the best k programs to the language in each Aulile
iteration, for k in {1, 2, 3}. The results on the SyGuS benchmark show that there is no variance in the number
of problems solved for the small values of k used in this experiment. The results on the 38 benchmark show
a small advantage for k = 3, as A-BUS with that number solves 33 problems, while it solves 32 with k = 1
and k = 2. This experiment shows that Aulile is robust to small values of k in these benchmarks.

Figure 7 shows the number of problems A-BUS can solve per number of programs evaluated when using
auxiliary functions of different strengths. We define different auxiliary functions that are based on the
Levenshtein distance. This is achieved with a parameter 0.0 < l ≤ 1.0. The value of l determines the
percentage of the longest of the two strings used to compute the distance. For example, for l = 0.50, we
compute the Levenshtein distance considering only half of the characters of the longest of the two strings.
If l = 1.0, then this metric is exactly the Levenshtein distance. Values of l < 1.0 result in weaker versions
of the distance because it considers less information. As we weaken the auxiliary function by decreasing the
value of l, A-BUS solves fewer problems, thus showing the importance of the auxiliary function used.

8

Published in Transactions on Machine Learning Research (04/2024)

0 1x108 2x108 3x108 5x108

Number of Programs Evaluated

15

20

25

30

36

P
ro
b
le
m
s
S
ol
ve
d

3232

A-BUS

BUS

0 4x107 7x107 11x107 15x107

Number of Programs Evaluated

31.4
30.2

A-Bustle

Bustle

0 18x108 37x108 55x108 74x108

Number of Programs Evaluated

15

20

25

30

36

P
ro
b
le
m
s
S
ol
ve
d 31.4

30.4

A-Bee

Bee

0 1x104 2x104 4x104 5x104

Number of Programs Evaluated

33.0
33.8

32.6

27.2
28.4
29.4
28.4

A-CB(8)

A-CB(4)

A-CB(2)

CB(8)

CB(4)

CB(2)

CB

38 Benchmark

1Figure 4: Number of problems solved per number of evaluations on the 38 benchmark set for four base
synthesizers: BUS, Bustle, Bee Search, and Crossbeam. This benchmark set has 38 problems.

0 2x104 4x104 6x104 9x104

Running Time in Seconds

60

67

75

82

90

P
ro
b
le
m
s
S
ol
ve
d

87

81.4

87.8

84.6

SyGuS Benchmark

A-BUS

A-Bustle

A-Bee

A-Crossbeam

0 2x104 4x104 6x104 9x104

Running Time in Seconds

15

21

27

33

40

32.0

31.431.4

38.0

38 Benchmark

A-BUS

A-Bustle

A-Bee

A-Crossbeam

Figure 5: Number of problems solved per running time on the SyGuS and the 38 benchmark sets for the
best performing system for each base synthesizer, as shown in Figures 3 and 4.

5.4 Discussion

The results of our experiments suggest that our auxiliary-based language augmentation approach offers search
guidance that is orthogonal to that provided by existing methods. This is because it improved the results
of Bustle, Bee Search, and Crossbeam. While Bustle and Bee Search use similar cost functions to
guide the search, Crossbeam uses an entirely different approach. The models of Bustle and Bee Search
are conditioned on the problem to be solved, while Crossbeam’s is conditioned not only on the problem,

9

Published in Transactions on Machine Learning Research (04/2024)

0 5x108 10x108 15x108 19x108

Number of Programs Evaluated

60

67

74

81

89

P
ro
b
le
m
s
S
ol
ve
d

878787

74

SyGuS Benchmark

A-BUS (k = 1)

A-BUS (k = 2)

A-BUS (k = 3)

BUS

0 1x108 2x108 4x108 5x108

Number of Programs Evaluated

20

23

27

31

35

3232
33
32

38 Benchmark

A-BUS (k = 1)

A-BUS (k = 2)

A-BUS (k = 3)

BUS

1Figure 6: Number of problems solved per number of programs evaluated on the SyGuS and on the 38
benchmark sets for A-BUS with different number k of programs added to the language in each Aulile loop.

0 5x108 10x108 15x108 19x108

Number of Programs Evaluated

60

65

71

77

83

89

P
ro
b
le
m
s
S
ol
ve
d

87

79
78

74

SyGuS Benchmark

A-BUS (l = 1.00)

A-BUS (l = 0.75)

A-BUS (l = 0.50)

A-BUS (l = 0.25)

0 1x108 2x108 3x108 4x108

Number of Programs Evaluated

20

25

30

35

32

3030
29

38 Benchmark

A-BUS (l = 1.00)

A-BUS (l = 0.75)

A-BUS (l = 0.50)

A-BUS (l = 0.25)

1Figure 7: Number of problems solved per number of programs evaluated on the SyGuS and the 38 benchmark
sets for A-BUS with an auxiliary function of different strengths, where l = 1.00 is the original Levenshtein
distance; values l < 1.00 represent weakened versions of the function.

but also on the search state (i.e., the set of programs evaluated in search). Despite these differences, our
augmented approach improved the results of all three systems, in addition to the uninformed BUS.

6 More Related Works

The challenge of synthesizing computer programs that meet a given specification has been widely discussed
in the field of Computing Science (Manna & Waldinger, 1971; Summers, 1977), drawing significant attention
from researchers in Artificial Intelligence (Balog et al., 2016; Devlin et al., 2017a; Kalyan et al., 2018; Ellis
et al., 2023) and Programming Languages (Lee et al., 2018; Barke et al., 2020; Ji et al., 2020).

A variety of search methods have been investigated to solve synthesis tasks. One such method is to use
constraint satisfaction algorithms, which convert the synthesis task into a constraint satisfaction problem
that can be solved with an SMT solver (Solar-Lezama, 2009). Additionally, synthesis tasks can be addressed
using stochastic search algorithms, such as Simulated Annealing (Husien & Schewe, 2016a; Medeiros et al.,
2022), stochastic hill climbing (Aleixo & Lelis, 2023), and genetic algorithms (Koza, 1992). In this paper,
we evaluate the augmented approach with algorithms based on BUS, which are enumerative since they
systematically evaluate a set of programs in the space defined by the DSL. Top-down search algorithms are
also enumerative, but search in a tree where the root is given by the initial symbol of the grammar defining
the language; the children of a node in the tree are given by the different ways of how a non-terminal symbol

10

Published in Transactions on Machine Learning Research (04/2024)

can be replaced by other symbols of the grammar. The key disadvantage of top-down algorithms is that all
internal nodes of the search tree are partial programs that cannot be executed, thus only allowing weaker
forms of equivalence checks (Lee et al., 2018; Wang et al., 2017). The ability of removing observational-
equivalent programs justifies our choice for BUS-like algorithms. However, our approach can be used with
stochastic, top-down Chen et al. (2019); Zohar & Wolf (2018); Bunel et al. (2018); Devlin et al. (2017b);
Wang et al. (2017), and other bottom-up base synthesizers (Barke et al., 2020; Fijalkow et al., 2022).

DreamCoder also learns a library of programs, which involves compressing the programs used to solve a
set of training problems (Ellis et al., 2023). Our method differs from DreamCoder in important ways.
First, DreamCoder learns a library of programs for a problem domain given a set of training tasks. Aulile
learns a library of programs for a specific task, without training tasks and no reuse of the library across
tasks. Second, DreamCoder learns a model to guide the search given a library of programs, while our
approach either does not use a model to guide the search (e.g., A-BUS) or simply uses existing models
without retraining for the learned library (e.g., A-Bustle, A-Bee, and A-Crossbeam). DreamCoder
was extended in two different ways. Stitch is a search-based system aimed at improving the performance of
DreamCoder’s compression system in terms of memory and running time (Bowers et al., 2023). Babble
improves the set of learned programs by considering the functionality of the programs despite their potential
syntactical differences (Cao et al., 2023). Aulile differs from Stitch and Babble because it does not use
compression to learn a library of programs, but uses an auxiliary function to learn a task-specific library.

7 Conclusions

In this paper, we introduced Auxiliary-Based Library Learning (Aulile), a system that leverages a domain-
specific auxiliary function to learn task-specific libraries of programs. Aulile uses a base synthesizer to
search for a programmatic solution to a task; in the case of failure, Aulile adds to the language the
program encountered in the search that best optimizes the auxiliary function. The search is then repeated
with the augmented language. The augmentation and search steps are repeated until one of the following
conditions is met: the task is solved, or the system reaches a time out. We evaluated Aulile on string
manipulation tasks. Our results suggest that a simple auxiliary function offers guidance that is orthogonal
to that provided by existing functions. This is because Aulile was able to improve the performance of all
base synthesizers evaluated, in some cases by a large margin. In general, our empirical results suggest that
Aulile can offer an effective way to inject domain knowledge into the synthesis process.

A promising direction for future research is to investigate learning schema for the auxiliary function. We
envision two directions for learning auxiliary functions. The first is to investigate the use of existing cost
functions as auxiliary functions (Odena et al., 2021; Barke et al., 2020). Can the cost function be used
effectively to select the program that is added to the language in Aulile? The second direction is to try to
learn auxiliary functions that provide orthogonal information to what existing cost functions provide.

Acknowledgments

This research was supported by Canada’s NSERC and the CIFAR AI Chairs program, and was enabled in
part by support provided by the Digital Research Alliance of Canada. The authors thank the reviewers for
their helpful suggestions.

References

Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. Recursive program synthesis. In International
Conference Computer Aided Verification, CAV, pp. 934–950, 2013.

David S. Aleixo and Levi H.S. Lelis. Show me the way! Bilevel search for synthesizing programmatic
strategies. Proceedings of the AAAI Conference on Artificial Intelligence, 37(4):4991–4998, Jun. 2023. doi:
10.1609/aaai.v37i4.25626. URL https://ojs.aaai.org/index.php/AAAI/article/view/25626.

11

https://ojs.aaai.org/index.php/AAAI/article/view/25626

Published in Transactions on Machine Learning Research (04/2024)

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo Martin, Mukund Raghothaman, Sanjit Seshia, Rishabh
Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-guided synthesis. pp. 1–17,
10 2013. doi: 10.1109/FMCAD.2013.6679385.

Saqib Ameen and Levi H.S. Lelis. Program synthesis with best-first bottom-up search. Journal of Artificial
Intelligence Research, 2023.

Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. Deepcoder:
Learning to write programs. arXiv preprint arXiv:1611.01989, 2016.

Shraddha Barke, Hila Peleg, and Nadia Polikarpova. Just-in-time learning for bottom-up enumerative
synthesis. Proceedings of the ACM on Programming Languages, 4(OOPSLA):1–29, 2020.

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via policy ex-
traction. In Proceedings of the International Conference on Neural Information Processing Systems, pp.
2499–2509. Curran Associates Inc., 2018.

Matthew Bowers, Theo X. Olausson, Lionel Wong, Gabriel Grand, Joshua B. Tenenbaum, Kevin Ellis, and
Armando Solar-Lezama. Top-down synthesis for library learning. Procedings of the ACM on Programming
Languages, 7(POPL), 2023. doi: 10.1145/3571234. URL https://doi.org/10.1145/3571234.

Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Leveraging gram-
mar and reinforcement learning for neural program synthesis. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=H1Xw62kRZ.

David Cao, Rose Kunkel, Chandrakana Nandi, Max Willsey, Zachary Tatlock, and Nadia Polikarpova.
Babble: Learning better abstractions with e-graphs and anti-unification. Procedings of the ACM on Pro-
gramming Languages, 7(POPL), 2023. doi: 10.1145/3571207. URL https://doi.org/10.1145/3571207.

Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program synthesis. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=H1gfOiAqYm.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and Pushmeet
Kohli. Robustfill: Neural program learning under noisy i/o. In International conference on machine
learning, pp. 990–998. PMLR, 2017a.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel rahman Mohamed, and Pushmeet
Kohli. Robustfill: Neural program learning under noisy i/o. In ICML, 2017b.

Kevin Ellis, Lionel Wong, Maxwell Nye, Mathias Sabl-Meyer, Luc Cary, Lore Pozo, Luke Hewitt, Armando
Solar-Lezama, and Joshua Tenenbaum. Dreamcoder: growing generalizable, interpretable knowledge with
wake–sleep bayesian program learning. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 381, 06 2023. doi: 10.1098/rsta.2022.0050.

Nathanaël Fijalkow, Guillaume Lagarde, Théo Matricon, Kevin Ellis, Pierre Ohlmann, and Akarsh Potta.
Scaling neural program synthesis with distribution-based search. In AAAI, 2022.

H. H. Hoos and T. Stützle. Stochastic Local Search: Foundations & Applications. Elsevier / Morgan
Kaufmann, 2004. ISBN 1-55860-872-9.

Idress Husien and Sven Schewe. Program generation using simulated annealing and model checking. In
Rocco De Nicola and Eva Kühn (eds.), Software Engineering and Formal Methods, pp. 155–171. Springer
International Publishing, 2016a. ISBN 978-3-319-41591-8.

Idress Husien and Sven Schewe. Program generation using simulated annealing and model checking. In
Rocco De Nicola and Eva Kühn (eds.), Software Engineering and Formal Methods, pp. 155–171. Springer
International Publishing, 2016b. ISBN 978-3-319-41591-8.

12

https://doi.org/10.1145/3571234
https://openreview.net/forum?id=H1Xw62kRZ
https://doi.org/10.1145/3571207
https://openreview.net/forum?id=H1gfOiAqYm

Published in Transactions on Machine Learning Research (04/2024)

Jeevana Priya Inala, Osbert Bastani, Zenna Tavares, and Armando Solar-Lezama. Synthesizing program-
matic policies that inductively generalize. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=S1l8oANFDH.

Ruyi Ji, Yican Sun, Yingfei Xiong, and Zhenjiang Hu. Guiding dynamic programing via structural proba-
bility for accelerating programming by example. Proceedings of the ACM on Programming Languages, 4
(OOPSLA):1–29, 2020.

Ashwin Kalyan, Abhishek Mohta, Oleksandr Polozov, Dhruv Batra, Prateek Jain, and Sumit Gulwani.
Neural-guided deductive search for real-time program synthesis from examples. In International Conference
on Learning Representations, 2018.

J. R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT
Press, Cambridge, MA, 1992.

Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. Accelerating search-based program synthesis using
learned probabilistic models. ACM SIGPLAN Notices, 53(4):436–449, 2018.

Vladimir Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. In Soviet
physics doklady, pp. 707–710. Soviet Union, 1966.

Zohar Manna and Richard J Waldinger. Toward automatic program synthesis. Communications of the ACM,
14(3):151–165, 1971.

Leandro C. Medeiros, David S. Aleixo, and Levi H. S. Lelis. What can we learn even from the weakest?
Learning sketches for programmatic strategies. In Proceedings of the AAAI Conference on Artificial
Intelligence. AAAI Press, 2022.

Augustus Odena, Kensen Shi, David Bieber, Rishabh Singh, Charles Sutton, and Hanjun Dai. BUSTLE:
Bottom-up program synthesis through learning-guided exploration. In International Conference on Learn-
ing Representations, 2021. URL https://openreview.net/forum?id=yHeg4PbFHh.

Kensen Shi, David Bieber, and Charles Sutton. Incremental sampling without replacement for sequence
models. In International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pp. 8785–8795. PMLR, 2020.

Kensen Shi, Hanjun Dai, Kevin Ellis, and Charles Sutton. Crossbeam: Learning to search in bottom-
up program synthesis. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=qhC8mr2LEKq.

Rishabh Singh and Sumit Gulwani. Predicting a correct program in programming by example. In Interna-
tional Conference on Computer Aided Verification, pp. 398–414. Springer, 2015.

Armando Solar-Lezama. The sketching approach to program synthesis. In APLAS, 2009.

Phillip D Summers. A methodology for lisp program construction from examples. Journal of the ACM
(JACM), 24(1):161–175, 1977.

Abhishek Udupa, Arun Raghavan, Jyotirmoy V Deshmukh, Sela Mador-Haim, Milo MK Martin, and Rajeev
Alur. Transit: specifying protocols with concolic snippets. ACM SIGPLAN Notices, 48(6):287–296, 2013.

Xinyu Wang, Isil Dillig, and Rishabh Singh. Program synthesis using abstraction refinement. Proceedings of
the ACM on Programming Languages, 2(POPL), 2017. doi: 10.1145/3158151. URL https://doi.org/
10.1145/3158151.

Amit Zohar and Lior Wolf. Automatic program synthesis of long programs with a learned garbage collector.
CoRR, abs/1809.04682, 2018. URL http://arxiv.org/abs/1809.04682.

13

https://openreview.net/forum?id=S1l8oANFDH
https://openreview.net/forum?id=yHeg4PbFHh
https://openreview.net/forum?id=qhC8mr2LEKq
https://openreview.net/forum?id=qhC8mr2LEKq
https://doi.org/10.1145/3158151
https://doi.org/10.1145/3158151
http://arxiv.org/abs/1809.04682

Published in Transactions on Machine Learning Research (04/2024)

0 2 4 6 8 10 12

Number of Iterations

72

74

76

78

80

82

84

86

88

P
ro
b
le
m

S
ol
ve
d

87

74

SyGuS Benchmark

A-BUS

BUS

1 2 3 4

Number of Iterations

28

29

30

31

32 32

38 Benchmark

A-BUS

BUS

1Figure 9: Number of problems solved per number of iterations of A-BUS. BUS is shown with a flat horizontal
line because it does not perform language augmentation.

A Appendix

A.1 DSL for String Processing Domain

Expression, E → S | I | B
String expression, S → Concat(S1, S2) | Left(S, I) | Right(S, I) | Substr(S, I1, I2)

| Replace(S1, I1, I2, S2) | Trim(S) | Repeat(S, I) | Substitute(S1, S2, S3)
| Substitute(S1, S2, S3, I) | ToText(I) | LowerCase(S) | UpperCase(S)
| ProperCase(S) | T | X | If(B, S1, S2)

Integer expression, I → I1 + I2 | I1− I2 | Find(S1, S2) | Find(S1, S2, I) | Len(S) | J
Boolean expression, B → Equals(S1, S2) | GreaterThan(I1, I2) | GreaterThanOrEqualTo(I1, I2)
String constants, T → “” | “ ” | “,” | “.” | “!” | “?” | “(” | “)” | “[” | “]”

| “<” | “>” | “” | “” | “-” | “+” | “_” | “/” | “$” | “#”
| “:” | “;” | “@” | “%” | “0” | string constants extracted from I/O examples

Integer constants, J → 0 | 1 | 2 | 3 | 99
Input, X → x1 | . . . | xk

Figure 8: DSL considered for the string manipulation domain.

A.2 Problems Solved per Iteration of Language Augmentation

Figure 9 shows the cumulative number of problems A-BUS can solve in each iteration of the search for both
the SyGuS and the 38 benchmarks. Although most of the problems are solved in the first iteration of the
search (72 for SyGuS and 28 for the 38 benchmark), many problems are solved with more iterations. In
particular, one of the problems in the SyGuS benchmark is solved after 10 iterations of the Aulile’s language
augmentation loop. We note that the number of problems solved in the first iteration of A-BUS does not
match the number of problems BUS solves due to the limitation of A-BUS’s budget B—each iteration of
A-BUS is limited to evaluating 14 million programs, while the only iteration of BUS evaluates 2.1 billion
programs. The gap we observe between A-BUS and BUS (87 versus 74 problems solved) highlights the
advantage of augmenting the language with programs that optimize the score of the auxiliary function.

A.3 Aulile’s Average Program Size

Figure 10 shows the average program size of the solution program that A-BUS finds in different language
augmentation iterations. The average program size, in terms of the number of nodes in the AST of the
program, is calculated for all solution programs encountered in a given iteration of A-BUS. The plot also

14

Published in Transactions on Machine Learning Research (04/2024)

1 3 5 7 9 11

Number of Iterations

0

14

28

42

57

71

85

100

A
ve
ra
g
e
P
ro
g
ra
m

S
iz
e

SyGuS Benchmark
A-BUS BUS

11 22 3 4

Number of Iterations

0

4

8

12

17

21

25

30
38 Benchmark

A-BUS BUS

1Figure 10: Average program size for the problems solved across different iterations of A-BUS.

presents the average solution program size BUS finds. The size of the solution programs grows rapidly in
the early iterations (1–4 for the SyGuS benchmark and 1 and 2 for the 38 benchmark), but the average
size becomes somewhat constant in both domains in later iterations. The sizes of the ASTs of the solution
programs A-BUS finds are much larger than those of the solution programs BUS finds. Although BUS is
optimal with respect to the AST size, it is unable to solve many of the problems in the two benchmarks
evaluated. Aulile offers the option of trading the simplicity of the solution for more problems solved.

15

	Introduction
	Problem Formulation
	Base Synthesizers Used in Our Study
	Bottom-Up Search (BUS)
	Bustle
	Bee Search
	Crossbeam

	Auxiliary-Based Library Learning
	A-BUS, A-Bustle, and A-Bee
	A-Crossbeam
	Example of A-BUS on the String Manipulation Domain
	Weaknesses of Aulile

	Empirical Evaluation
	Empirical Results: First Set
	Empirical Results: Second Set
	Empirical Results: Third Set
	Discussion

	More Related Works
	Conclusions
	Appendix
	DSL for String Processing Domain
	Problems Solved per Iteration of Language Augmentation
	Aulile's Average Program Size

