
Published as a conference paper at ICLR 2024

UNVEILING OPTIONS WITH NEURAL DECOMPOSITION

Mahdi Alikhasi and Levi H. S. Lelis
Amii, Department of Computing Science, University of Alberta
{alikhasi,levi.lelis}@ualberta.ca

ABSTRACT

In reinforcement learning, agents often learn policies for specific tasks without the
ability to generalize this knowledge to related tasks. This paper introduces an algo-
rithm that attempts to address this limitation by decomposing neural networks en-
coding policies for Markov Decision Processes into reusable sub-policies, which
are used to synthesize temporally extended actions, or options. We consider neural
networks with piecewise linear activation functions, so that they can be mapped to
an equivalent tree that is similar to oblique decision trees. Since each node in such
a tree serves as a function of the input of the tree, each sub-tree is a sub-policy
of the main policy. We turn each of these sub-policies into options by wrapping
it with while-loops of varied number of iterations. Given the large number of op-
tions, we propose a selection mechanism based on minimizing the Levin loss for
a uniform policy on these options. Empirical results in two grid-world domains
where exploration can be difficult confirm that our method can identify useful
options, thereby accelerating the learning process on similar but different tasks.

1 INTRODUCTION

A key feature of intelligent agents that learn by interacting with the environment is their ability to
transfer what is learned in one task to another (André & Markovitch, 2005; Taylor & Stone, 2009).
In this paper, we investigate extracting from neural networks “helpful” temporally extended actions,
or options (Sutton et al., 1999), as a means of transferring knowledge across tasks. Given a neural
network encoding a policy for a task, where a policy is a function that returns an action for a given
state of the task, we decompose the network into sub-networks that are used to create options.

We assume that neural networks encoding policies use two-part piecewise-linear activation func-
tions, such as ReLU (Nair & Hinton, 2010), which is standard in reinforcement learning (Mnih
et al., 2013). As shown in previous work (Lee & Jaakkola, 2020; Orfanos & Lelis, 2023), such
networks can be mapped into oblique decision trees (Breiman et al., 1986), which is a type of tree
where each node encodes a linear function of the input. In this paper, we map networks with piece-
wise linear functions to a structure similar to an oblique decision tree, which we call a neural tree.
Like an oblique decision tree, each internal node in the neural tree is a function of the input of the
network. Unlike an oblique tree, the leaf nodes of neural trees represent the entire output layer of
the network. Thus, each node in the neural tree, including leaf nodes, represents a sub-policy of the
neural policy. We hypothesize that some of these sub-policies can generalize across tasks and we
turn them into options by wrapping them in while-loops that perform different numbers of iterations.

Since the number of sub-policies grows exponentially with the number of neurons in the network,
we introduce a procedure to select a subset of options that minimizes the Levin loss (Orseau et al.,
2018) on a set of tasks that the agent has already mastered. We compute the Levin loss for the uni-
form policy over the options because such a policy approximates the policy encoded in a randomly
initialized neural network representing an agent in the early stages of learning. If the tasks used to
generate and select options are similar to the next task, minimizing the Levin loss can increase the
chances that the agent visits promising states early in learning, thus guiding the agent’s exploration.

Our method of learning options has benefits compared to previous approaches. First, it enables the
extraction of options from neural policies, even when learning options was not the original intention.
This implies the possibility of learning options from “legacy agents”, provided that their networks
use piecewise-linear functions. Second, our method automatically learns from data when to start

1

Published as a conference paper at ICLR 2024

and when to terminate an option, and it also decides the number of options required to accelerate
learning. The disadvantages are that it assumes a sequence of tasks in which the options generalize,
and it involves a combinatorial search problem to select options that minimize the Levin loss.

We empirically evaluated on two grid-world problems, where exploration can be difficult, the hy-
pothesis that neural decomposition can unveil helpful options. We used small neural networks to
allow for the evaluation of all sub-policies; this choice prevented us from possibly conflating a lack
of helpful options with our inability to find them. Compared to a baseline that generates options
from the non-decomposed policy of trained networks, options learned with our decomposition were
more effective in speeding up learning. Our options were also more effective than transfer learning
baselines and three methods that learn options for a specific task. This paper offers a novel approach
to learning options, where options are not intentionally learned, but extracted from existing policies.

The implementation used in our experiments is available online.1

2 RELATED WORK

Options Temporally extended actions have a long history in reinforcement learning. Many pre-
vious works rely on human knowledge to provide the options (Sutton et al., 1999) or components
to enable them to be learned, such as the duration of the options (Frans et al., 2017; Tessler et al.,
2017), the number of options to be learned (Bacon et al., 2017; Igl et al., 2020), or human supervi-
sion (Andreas et al., 2017). Our decomposition-based method learns all options components from
data generated by the agent interacting with the environment. Other approaches use specific neu-
ral architectures for learning options (Achiam et al., 2018), while we show that options can “occur
naturally” in neural policies, even when it was not intended to learn them. Options have also been
used to improve exploration in reinforcement learning (Machado et al., 2018; Jinnai et al., 2020;
Machado et al., 2023). We minimize the Levin loss for the uniform policy with the goal of guiding
exploration in the early stages of learning. However, instead of covering the space, we equip the
agent with the ability to sample sequences of actions that led to promising states in previous tasks.

Transfer Learning Transfer learning approaches are represented by different categories such as
regularization-based, such as Elastic Weight Consolidation (Kirkpatrick et al., 2017), which pre-
vent the agent from becoming too specialized in a given task. Others focused on adapting the
neural architecture to allow for knowledge transfer across tasks, while retaining the agent’s ability
of learning new skills. Progressive Neural Networks (Rusu et al., 2016), Dynamically Expandable
Networks (Yoon et al., 2017), and Progress and Compress (Schwarz et al., 2018) are representative
methods of this approach. Previous work also stored past experiences as a way to allow the agent to
learn new skills while retaining old ones (Rolnick et al., 2019). Previous work has also transferred
the weights of one model to the next (Narvekar et al., 2020). One can transfer the weights of a
policy (Clegg et al., 2017), of a value network, or both (Shao et al., 2018). SupSup (Wortsman et al.,
2020) and Modulating Masks (Ben-Iwhiwhu et al., 2022) also transfer knowledge by learning masks
for different tasks. The use of masks is particularly related to our approach because they also allow
the agent to use sub-networks of a network, but to learn policies instead of options.

Compositional Methods Compositional method attempts to decompose the problem so that one
can train sub-policies for the decomposed sub-problems (Kirsch et al., 2018; Goyal et al., 2019;
Mendez et al., 2022). These methods assume that the problem can be decomposed and often rely on
domain-specific knowledge to perform such a decomposition. π-PRL learns sub-policies in earlier
tasks, and these sub-policies are made available as actions to the agent (Qiu & Zhu, 2021). We also
learn policies in earlier tasks as a means of learning options, but we consider all sub-policies of a
policy to learn options, instead of considering only the final policy as an option, as in π-PRL.

We use representative baselines of these categories in our experiments, including Option-Critic (Ba-
con et al., 2017), ez-greedy (Dabney et al., 2021), and DCEO (Klissarov & Machado, 2023). We
also use Progressive Neural Networks, and a variant of our method that does not use decomposition
and therefore resembles the skill learning process used in π-PRL and H-DRLN (Tessler et al., 2017).

1https://github.com/lelis-research/Dec-Options

2

https://github.com/lelis-research/Dec-Options

Published as a conference paper at ICLR 2024

3 PROBLEM DEFINITION

We consider Markov decision processes (MDPs) (S,A, p, r, γ), where S represents the set of states
and A is the set of actions. The function p(st+1|st, at) encodes the transition model, since it gives
the probability of reaching state st+1 given that the agent is in st and takes action at at time step t.
When moving from st to st+1, the agent observes the reward value of Rt+1, which is returned by
the function r; γ in [0, 1] is the discount factor. A policy π is a function that receives a state s and an
action a and returns the probability in which a is taken in s. The objective is to learn a policy π that
maximizes the expected sum of discounted rewards for π starting in st: Eπ,p[

∑∞
k=0 γ

kRk+t+1|st].
Let P = {ρ1, ρ2, · · · , ρn} be a set of MDPs, which we refer to as tasks, for which the agent learns
to maximize the expected sum of discounted rewards. After learning policies for P , we evaluate the
agent while learning policies for a set of tasks P ′ with P ′ ∩ P = ∅. This is a simplified version of
scenarios where agents learn continually; we focus on transferring knowledge from P to P ′ through
options (Konidaris & Barto, 2007).

4 LEARNING OPTIONS WITH NEURAL NETWORK DECOMPOSITION

We use the knowledge that the agent generates while learning policies π for tasks in P to learn
temporally extended actions that use “parts” of π that can be “helpful”. We hypothesize that these
temporally extended actions can speed up the learning process of policies for P ′. We consider the
options framework to define temporally extended actions (Sutton et al., 1999). An option ω is a
tuple (Iω, πω, Tω), where Iω is the initiation set of states in which the option can be selected; πω

is the policy that the agent follows once the option starts; Tω is a function that receives a state st
and returns the probability in which the option terminates in st. We consider the call-and-return
execution of options: once ω is initiated, the agent follows πω until it terminates.

Here is an overview of our algorithm for learning options.

1. Learn a set of neural policies {πθ1 , πθ2 , · · · , πθn}, one for each task in P .

2. Decompose each neural network encoding πθi into a set of sub-policies Ui (Section 4.1).

3. Select a subset from ∪ni=1Ui to form a set of options Ω (Section 4.2).

4. Use A∪Ω as the set of actions that the agent has available to learn a policy for tasks in P ′.

We can use any algorithm that learns a parameterized policy πθ, such as policy gradient (Williams,
1992) and actor-critic algorithms (Konda & Tsitsiklis, 1999) in Step 1 above. In Step 4, we can use
any algorithm to solve MDPs, because we augment the agent’s action space with the options learned
in Steps 1–3 (Kulkarni et al., 2016). The process of decomposing the policies into sub-policies
is described in Section 4.1 (Step 2) and the process of defining and selecting a set of options is
described in Section 4.2 (Step 3). Since we use the set of options Ω as part of the agent action space
for the tasks in P ′, Step 3 only defines πω and Tω for all ω in Ω, and Iω is set to be all states S. Due
to its process of decomposing trained neural networks, we call DEC-OPTIONS both the algorithm
and the options it learns.

4.1 DECOMPOSING NEURAL POLICIES INTO SUB-POLICIES

We consider fully connected neural networks with m layers (1, · · · ,m), where the first layer is
given by the input values X and the m-th layer the output of the network. For example, m = 3
for the network shown in Figure 1. Each layer j has nj neurons (1, · · · , nj) where n1 = |X|.
The parameters between layers i and i + 1 of the network are indicated by W i ∈ Rni+1×ni and
Bi ∈ Rni+1×1. The k-th row vector of W i and Bi, denoted W i

k and Bi
k, represent the weights

and the bias term of the k-th neuron of the (i + 1)-th layer. In Figure 1, n1 = 2 and n2 = 2. Let
Ai ∈ Rni×1 be the values the i-th layer produces, where A1 = X and Am is the output of the
model. A forward pass in the model computes the values of Ai = g(Zi), where g(·) is an activation
function and Zi = W i−1 · Ai−1 + Bi−1. In Figure 1, the neurons in the hidden layer use ReLU as
the activation function, and the output neuron uses a Sigmoid function.

3

Published as a conference paper at ICLR 2024

Neural Network Neural Tree

x1

x2

A2
1

A2
2

A3
1

2

−
2

1

−1

−1

1

2x1 + x2 + 1

−2x1 − x2 + 1

σ(1) σ(−2x1 − x2 + 2)

−2x1 − x2 + 1

σ(−2x1 − x2) σ(−4x1 − 2x2 + 1)

≤ 0 > 0

≤ 0 > 0 ≤ 0 > 0

Figure 1: A neural network with two inputs, two ReLU neurons in the hidden layer, and one Sigmoid
neuron in the output neuron is shown on the left. All bias terms of the model are 1; for simplicity, we
omit bias values. The neural tree representing the same function encoded in the network is shown on
the right. The root of the tree represents the neuron A2

1, the nodes in the second layer represent the
neuron A2

2, and the leaf nodes represent the output neuron A3
1, where σ(·) is the Sigmoid function.

The colors of the neurons match the colors of the nodes in the tree that represent them.

Let (N,E) be a binary tree, which we call a neural tree. Here, N represents the nodes in the tree
and E the connections between them. Given a network with two-part piecewise linear activation
functions (e.g., ReLU), we can construct an equivalent neural tree, where each internal node of the
tree represents a neuron in the layers [2, · · · ,m − 1] of the network (all neurons, but those in the
output layer). The neurons in the output layer are represented in each leaf node of the tree. Like
oblique decision trees, each internal node of neural trees defines a function P ·X+v ≤ 0 of the input
X . Unlike oblique decision trees, each leaf node represents the computation of the output layer of
the network. In the case of a neural policy for an MDP with |A| = 2 actions, so that the number of
output neurons is nm = 1, each leaf node returns the Sigmoid value of P ·X + v. If the number of
actions is |A| > 2, so that nm = |A|, then each leaf node returns the probability distribution given
by the Softmax values of P ′ ·X + V , where P ′ ∈ Rnm×n1 and V ∈ Rn1×1. In continuous action
spaces, each leaf returns the parameterized distribution from which an action can be sampled. Once
the parameters of the internal and leaf nodes are defined, inference is made starting at the root of the
tree, and if P ·X + v ≤ 0, then we follow the left child; otherwise, we follow the right child. This
process is repeated until a leaf node is reached, where the leaf computation is performed.

If a neuron uses a two-part piecewise linear function g(·), its output value is determined by one of
the two linear functions composing g. For example, a neuron employing a ReLU function, expressed
as g(z) = max(0, z). The neuron’s output is either 0 or z. When the input of a ReLU network is
fixed, each neuron is either inactive (yielding 0) or active (yielding z). This leads to the concept
of an activation pattern, an ordered set composed of binary values representing each node in the
network. It signals whether a node is active or inactive for an input X (Montúfar et al., 2014;
Zhang et al., 2018; Lee & Jaakkola, 2020). Every path in a neural tree corresponds to an activation
pattern, excluding those in the output layer. For example, if P · X + v ≤ 0 is true for the root of
the tree, then the left sub-tree of the root represents the scenario in which the first neuron of the
network is inactive. In contrast, the right sub-tree represents the scenario in which the first neuron
is active. Choosing a path in the neural tree means that every neuron represents a linear function.
Consequently, combining multiple linear functions results in another linear function. This allows us
to define the function of the output layer in each tree as a linear function of the input X .

Example 1 Consider the example in Figure 1, where the neural network represents a neural policy
with two actions, given by the Sigmoid value of the output neuron. Figure 1 also shows the neural
tree that represents the neural network. The tree accounts for all activation patterns in the neural
network. For example, if both neurons in the hidden layer are inactive, then A2

1 = A2
2 = 0 and the

output of the network is σ(0 ·−1+0 ·1+1) = σ(1); this activation pattern is represented by the left
branch of the tree. If the first neuron (from top to bottom) in the hidden layer is active and the second
is inactive, the neural network produces the output σ(−1·(2x1+x2+1)+1·0+1)) = σ(−2x1−x2);
this activation pattern is given by following the right and then left branch from the root.

Since all nodes in the neural tree represent a function of the input, each sub-tree of the neural tree
represents a sub-policy of the policy the network encodes. A neural network with d neurons and
a single hidden layer decomposes into 2d+1 − 1 sub-policies, one for each node in the tree. Note,
however, that the order in which neurons are represented along the paths of the neural tree could

4

Published as a conference paper at ICLR 2024

result in different sub-policies. In our running example, the sub-programs we obtain if A2
1 is the root

of the tree are different from the programs we obtain if A2
2 is the root. The total number of different

sub-policies for a network with a single hidden layer with d neurons is
∑d

i=0

(
d
i

)
·2i. In our example,

this sum results in 1+4+4 = 9. To give intuition, the value of 1 for i = 0 represents the sub-policy
that is identical to the original policy. The value of 4 for i = 1 is the number of sub-policies given
by trees rooted at the children of the root of the tree: the root of the tree can represent 2 different
neurons and each of them has 2 children, for a total of 4. Finally, the sub-policies given by the leaf
nodes are identical independently of order of the earlier nodes, and they are exactly 4. In this paper,
we consider small neural networks with one hidden layer, so we can evaluate all sub-policies of a
neural policy. This is to test our hypothesis that these sub-policies can result in “helpful” options.

4.2 SYNTHESIZING AND SELECTING OPTIONS

Let {πθ1 , πθ2 , · · · , πθn} be the set of policies that the agent learns for each task in P . Let Ui be
the set of sub-policies obtained through the neural tree of πθi , as described in the previous section,
and U = {U1, U2, · · · , Un}. Let {(s0, a0), (s1, a1), · · · , (sT , aT)} be a sequence of state-action
pairs observed under π and a distribution of initial states µ for a task ρ, where s0 is sampled from
µ and, for a given state st in the sequence, the next state st+1 is sampled from p(·|st, at), where
at = argmaxa π(st, a). The use of the argmax operator over π reduces the noise in the selection
process of the DEC-OPTIONS because the options also act greedily according to the sub-policies
extracted from π. If ρ is episodic, sT+1 is a terminal state; T +1 defines a maximum horizon for the
sequence otherwise. Ti is a set of such sequences for πθi and ρi’s µ. Finally, T = {T1, T2, · · · , Tn}.
The sub-policies U do not offer temporal abstractions as they are executed only once. We turn
these sub-policies into options by wrapping each π in U with a while-loop of z iterations. Once
the resulting option ω is initiated, it will run for z steps before terminating. We denote as ωz the
z-value of ω. In each iteration of the while loop, the agent will execute in the environment the
action argmaxa π(s, a), where π is the sub-policy and s is the agent’s current state. The argmax
operator ensures that the policy is deterministic within the loop. Let Tmax be the length of the
longest sequence in T , then we consider options with z = 1, · · · , Tmax for each sub-policy in U . Let
Ω = {Ω1,Ω2, · · · ,Ωn} be the set of all while-loop options obtained from U . Each Ωi has Tmax · |Ui|
options for ρi, one for each z. Our task is to select a subset of “helpful” options from Ω.

We measure whether a set of options is helpful in terms of the Levin loss (Orseau et al., 2018) of
the set. The Levin loss measures the expected number of environmental steps (calls to the function
p) an agent needs to perform with a given policy to reach a target state. The Levin loss assumes
that p is deterministic and the initial state is fixed; the only source of variability comes from the
policy. The Levin loss for a sequence Ti and policy π is L(Ti, π) = |Ti|∏

(s,a)∈Ti
π(s,a) . The factor

1/
∏

(s,a)∈Ti
π(s, a) is the expected number of sequences that the agent must sample with π to

observe Ti. We assume that the length of the sequence the agent must sample to observe Ti is known
to be |Ti| and therefore is fixed, so the agent performs exactly |Ti| steps in every sequence sampled.

Let πu be the uniform policy for an MDP, that is, a policy that assigns equal probability to all actions
available in a given state. Furthermore, let πΩ

u be the uniform policy when we augment the MDP
actions with a set of options Ω. There are two effects once we add a set of options to the set of
available actions. First, the Levin loss can increase because the probability of choosing each action
decreases, including the actions in the target sequence. Second, the Levin loss can decrease because
the number of decisions the agent needs to make can also decrease, potentially reducing the number
of multiplications performed in the denominator of the loss. Our task is then to select a subset of
options from the set Ω generated with decomposed policies such that we minimize the Levin loss.

argmin
Ω′⊆ΩT

∑
Ti∈TV

L(Ti, πΩ′

u) . (1)

We divide the set of tasks P into disjoint training and validation sets to increase the chances of
selecting options that generalize. For example, an option that encodes πθi with a loop that iterates for
z steps, where z is equal to the length of the sequences in Ti, is unlikely to generalize to other tasks,
as it is highly specific to ρi. In Equation 1, ΩT is the set of options extracted from the policies learned
for the tasks in the training set and TV are the sequences obtained by rolling out the policies learned
for the tasks in the validation set. We consider uniform policies in our formulation because they

5

Published as a conference paper at ICLR 2024

approximate neural policies in the first steps of training, since the network’s weights are randomly
initialized. By minimizing the Levin loss, we reduce the expected number of sequences that the
agent samples to observe high reward values. Solving the subset selection problem in Equation 1 is
NP-hard (Garey & Johnson, 1979), so we use a greedy approximation to solve the problem.

4.2.1 GREEDY APPROXIMATION TO SELECT OPTIONS

The greedy algorithm for approximating a solutions to Equation 1 initializes Ω′ as an empty set
and, in every iteration, adds to Ω′ the option that represents the largest decrease in Levin loss. The
process stops when adding another option does not decrease the loss, so it returns the subset Ω′.

Due to the call-and-return model, we need to use a dynamic programming procedure to efficiently
compute the values of L while selecting Ω′. This is because it is not clear which action/option the
agent would use in each state of a sequence so that the probability

∏
(s,a)∈Ti

π(s, a) is maximized.
For example, an option ω returns the correct action for ωz states in the sequence starting in s1. While
ω′ does not return a1 in s1, it returns the correct action in the sequence for ω′

z states from s2. If
ωz < ω′

z and using ω in s1 prevented us from using ω′ in s2 because ω would still be executing in
s2, then using a1 in A for s1 and then starting ω′ in s2 could maximize

∏
(s,a)∈Ti

π(s, a).

Algorithm 1 COMPUTE-LOSS

Require: Sequence S = {s0, s1, · · · , sT+1} of states of a trajectory T , probability pu,Ω, options Ω
Ensure: L(T , πΩ

u)
1: M [j]← j for j = 0, 1, · · · , T + 1 # initialize table assuming only primitive actions
2: for j = 0 to T + 1 do
3: for ω in Ω do
4: if ω is applicable in sj then
5: M [j + ωz]← min(M [j + ωz],M [j] + 1) # ω is used in sj for ωz steps
6: if j > 0 then
7: M [j]← min(M [j − 1] + 1,M [j])
8: return |T | · (pu,Ω)−M [T+1]

Algorithm 1 shows the computation of L. The procedure receives a sequence S of states from a
trajectory T ; the sequence includes T ’s terminal state sT+1. It also receives the probability pu,Ω =

1
|A|+|Ω| of choosing any of the available actions under the uniform policy when the action space is
augmented with the options in Ω. Finally, it also receives the set of options Ω and returns L(T , πΩ

u).

To compute the Levin loss, one needs to decide whether each transition si to si+1 in T is covered
by an action in A or an option in Ω. Algorithm 1 verifies all possibilities for each of these pairs such
that the Levin loss is minimized. It uses a table M with one entry for each state in S, which stores
the smallest number of decisions the agent must make to reach each state in the sequence. Initially,
the procedure assumes that the agent reaches all states with primitive actions (line 1): M [j] = j for
all j. Then, it updates the entries of M (lines 5 and 7) by verifying which options ω can be applied
to each state. At the end of the computation (line 8), M [j] stores the smallest number of decisions
that the agent must make to reach sj , for all j, including T + 1. The minimum loss for pu,Ω and Ω
is based on the smallest number of decisions needed to reach the end of the sequence, sT+1 (line 8).

Algorithm 1 computes the Levin loss for a set of options Ω in O(|Ω| · T) time steps; its memory
complexity is O(T). We present in Appendix A an example of the computation of Algorithm 1.

5 EXPERIMENTS

We conducted experiments to evaluate the hypothesis that neural networks encoding policies for
MDPs may contain useful underlying options that can be extracted through neural decomposition.

In our experiments, we consider a set of tasks P , all of which share a common state representation
and output structure, but may differ in terms of reward functions and dynamics. The primary ob-
jective is to evaluate an agent that uses an action space augmented with DEC-OPTIONS synthesized
from P on a new set of tasks P ′. We use Proximal Policy Optimization (PPO) (Schulman et al.,

6

Published as a conference paper at ICLR 2024

(a) Simple Crossing (b) Four Rooms (c) ComboGrid 1 (d) ComboGrid 2

Figure 2: Representative images of the problem domains used in our experiments.

2017) in the set of tasks P , implemented using the Stable-baselines framework (Raffin et al., 2021).
The policy network was configured as a small feed-forward neural network with ReLU neurons.
We use small neural networks to be able to evaluate all sub-policies in the greedy selection step of
DEC-OPTIONS. This way, we are able to evaluate our hypothesis without the added complexity of
searching in the space of sub-policies. We use larger networks for the value function, as the value
network is not used in DEC-OPTIONS. The task of learning policies for the set P ′ does not have to
be solved with actor-critic algorithms. This is because the DEC-OPTIONS are used to augment the
action space of the agents and any learning algorithm can be used. Thus, we evaluate both the Deep
Q-Network (DQN) (Mnih et al., 2013) algorithm alongside PPO. Additional details, including agent
architectures, hyperparameter settings, and used libraries are provided in the Appendix.

Baselines If the DEC-OPTIONS are helpful, then the option-augmented agent should be more
sample-efficient than DQN and PPO operating in the original action space (Vanilla-RL). To demon-
strate the importance of the decomposition and selection steps of DEC-OPTIONS, we also consider
a baseline where the action space of the agents is augmented with the neural policies learned from
the tasks P (Neural-Augmented). We also consider a variant of DEC-OPTIONS where we only
perform the generation and selection steps, without performing decomposition, i.e., we consider
the non-decomposed policies for P while generating options (Dec-Options-Whole). This compari-
son serves as evidence that neural decomposition facilitates transfer learning compared to using the
complete policy. We also consider a baseline where both the value and policy models are trained in
a task and initialized with the weights of the previously learned model when learning to solve a new
task (Transfer-PPO). Since masking methods also access sub-policies of a network, we consider
Modulating-Mask as a baseline. We use PNN, Progressive Neural Networks, as a representative
baseline of methods that adapt the neural architecture. To demonstrate the impact of knowledge
transfer, we consider Option-Critic, ez-greedy, and DCEO as representative algorithms for learn-
ing options directly in tasks P ′, without using knowledge of the policies learned for tasks in P .

5.1 PROBLEM DOMAINS

We use two domains where exploration can be difficult and it is easy to generate similar but different
tasks: MiniGrid (Chevalier-Boisvert et al., 2023) and ComboGrid, which we introduce in this paper.

MiniGrid The first domain is based on Minigrid environments. In MiniGrid, the agent is restricted
to a partial observation of its surroundings, determined by a view size parameter. We select a set of
simple tasks as set P and a set of more challenging tasks as set P ′. In P , we use three instances of
the Simple Crossing Environment with 9× 9 grids and one wall, as shown in Figure 2a. For the test
set P ′, we use three configurations of the Four Rooms Environment, as illustrated in Figure 2b. In
Four Rooms, the agent navigates a 19× 19 grid divided into four rooms. In the first task, the agent
and the goal point are in the same room. In the second task, they are located in neighboring rooms,
and in the third task, which is shown in Figure 2b, they are located in two non-neighboring rooms.

ComboGrid In this environment, the agent has full observational capabilities. The agent’s move-
ments are determined by a combination of actions (combo). Four unique combinations, each corre-
sponding to a move to a neighboring cell, dictate the agent’s navigation. If the agent successfully
executes the correct series of actions corresponding to a valid combo, it moves to the corresponding
neighboring cell. Failing to execute the correct combo results in the agent remaining in its current
position and the history of previous combo actions being reset. The state contains not only the grid,
but also the agent’s current sequence of actions. A reward of −1 is assigned in the environment,

7

Published as a conference paper at ICLR 2024

0.0 0.3 0.6 0.9 1.2
Time steps (x105)

0.00

0.25

0.50

0.75

1.00

Re
tu

rn

Four Rooms 1 (PPO)

0.0 0.3 0.6 0.9 1.2
Time steps (x105)

Four Rooms 2 (PPO)

0.0 0.3 0.6 0.9 1.2
Time steps (x105)

Four Rooms 3 (PPO)

Dec-Options
Dec-Options-Whole
Neural-Augmented
Modulating-Mask
PNN
Vanilla-RL
Transfer-PPO
ez-greedy

0.00 0.25 0.50 0.75
Time steps (x106)

0.00

0.25

0.50

0.75

1.00

Re
tu

rn

Four Rooms 1 (DQN)

0.00 0.25 0.50 0.75
Time steps (x106)

Four Rooms 2 (DQN)

0.00 0.25 0.50 0.75
Time steps (x106)

Four Rooms 3 (DQN)

Dec-Options
Option-Critic
Vanilla-RL
DCEO

Figure 3: Performance of different methods on MiniGrid Domain.

with a reward of 0 granted once the terminal point is reached. We evaluate DEC-OPTIONS and the
baselines on four versions of ComboGrid, each differing in grid size: (3×3), (4×4), (5×5), (6×6).
For the set P , we use four instances of each grid size; Figure 2c shows one of the tasks in P for size
6 × 6. Tasks in P differ in their initial and goal positions, which can cause interference for algo-
rithms that do not decompose policies while transferring knowledge. Figure 2d shows the instance
in P ′ for grid size 6× 6. The agent receives a reward of 10 for collecting each green marker.

5.2 EMPIRICAL RESULTS

0.0 0.2 0.4 0.6
Time steps (x105)

0

10

20

30

40

Re
tu

rn

3x3 ComboGrid (PPO)

0.0 0.2 0.4 0.6
Time steps (x105)

4x4 ComboGrid (PPO)

0.0 0.4 0.8 1.2
Time steps (x105)

5x5 ComboGrid (PPO)

0.0 0.4 0.8 1.2
Time steps (x105)

6x6 ComboGrid (PPO)

Dec-Options
Dec-Options-Whole
Neural-Augmented
Modulating-Mask
PNN
Vanilla-RL
Transfer-PPO
ez-greedy

0.0 0.4 0.8 1.1
Time steps (x105)

0

10

20

30

40

Re
tu

rn

3x3 ComboGrid (DQN)

0.0 0.8 1.6 2.4
Time steps (x105)

4x4 ComboGrid (DQN)

0.0 0.9 1.8 2.7
Time steps (x105)

5x5 ComboGrid (DQN)

0 2 4 6
Time steps (x105)

6x6 ComboGrid (DQN)

Dec-Options
Option-Critic
Vanilla-RL
DCEO

Figure 4: Performance of different methods on ComboGrid Domain.

8

Published as a conference paper at ICLR 2024

Figure 3 shows the learning curves of agents equipped with DEC-OPTIONS and of the baselines.
The first row shows the results for agents using PPO, while the second row shows the results for
agents using DQN. Each plot shows the average return the agent receives over 24 independent runs
of each system; the plots also show the 95% confidence interval of the runs. Since the domain is
not discounted, the maximum reward is 1.0. Each instance of Four Room: 1, 2, and 3, represents
a domain in which the agents using transfer learning attempt to learn after learning a policy for
tasks in P . Similarly to Figure 3, Figure 4 shows the results for the ComboGrid domain. Here, the
maximum return the agent can obtain is 40, 10 for each marker the agent collects.

In Minigrid, Vanilla-RL fails to learn a good policy with the number of samples used in our experi-
ments. The dynamics of the environment, where the agent needs to turn and then move, contributes
to this difficulty. Transfer-PPO and PNN also faced difficulties due to interference caused by dif-
ferences between tasks (Kessler et al., 2022). In contrast, DEC-OPTIONS, Dec-Options-Whole,
Neural-Augmented, and Modulating-Mask performed well in Four Rooms 1. Regarding the DQN
agents, Option-Critic, DCEO, and DEC-OPTIONS outperformed Vanilla-RL. As the complexity of
the task increases, most of the baselines do not converge to an optimal policy. In particular, only the
DEC-OPTIONS agent learned optimal policies in Four Rooms 3.

In the smallest ComboGrid, most of the baselines yield similar performance. Similarly to Minigrid,
as we increase the size of the grid, we start to notice differences among the methods. For grids of
size 4 × 4, DEC-OPTIONS and Dec-Options-Whole converge quicker to an optimal policy than the
other methods. For grid of size 6× 6, DEC-OPTIONS converges quicker than all other methods. For
the DQN experiments, we also observe similar results to those observed in MiniGrid, where the gap
between DEC-OPTIONS and other methods increases as the grid size increases.

Although we compare DEC-OPTIONS with other option-learning algorithms, we note that DEC-
OPTIONS solves a fundamentally different problem than the other methods evaluated. For example,
DCEO focuses on exploration while learning options for a target task. In contrast, we learn options
on a set of tasks and evaluate whether these options are helpful in downstream problems. Future
research might investigate the use of some of these baselines in the context of transfer learning.

Examples DEC-OPTIONS learned long options for MiniGrid. The sequence below shows the ac-
tions from state to goal (left to right) of the DEC-OPTIONS agent in the Four Room 3 environment.
Here, 0, 1, and 2 mean ‘turn right’, ‘turn left’, and ‘move forward’, respectively. The curly brack-
ets show what is covered by one of the options learned. The options reduce the number of agent
decisions from 39 to only 10 in this example.

0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2︸ ︷︷ ︸
Option 1

, 1, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0︸ ︷︷ ︸
Option 1

, 2, 2, 2, 2, 2, 0, 2, 2, 2︸ ︷︷ ︸
Option 1

We show a sub-sequence of an episode of the DEC-OPTIONS agent in the 4×4 ComboGrid. Option
2 learns sequences of actions that move the agent to another cell on the grid (e.g., “Down” and
“Right”). Option 1 is shorter than Option 2 and it applies in many situations. For example, calling
Option 1 twice can move the agent up, or even finish a left move to then move up.

Down︷ ︸︸ ︷
0, 2, 2, 1︸ ︷︷ ︸

Option 2

,

Right︷ ︸︸ ︷
1, 2, 1, 0︸ ︷︷ ︸

Option 2

,

Up︷ ︸︸ ︷
0, 0︸︷︷︸

Option 1

, 1, 1︸︷︷︸
Option 1

,

Left︷ ︸︸ ︷
1, 0, 2, 2︸ ︷︷ ︸

Option 2

,

Down︷ ︸︸ ︷
0, 2, 2, 1︸ ︷︷ ︸

Option 2

Down︷ ︸︸ ︷
0, 2, 2, 1︸ ︷︷ ︸

Option 2

,

Down︷ ︸︸ ︷
0, 2, 2, 1︸ ︷︷ ︸

Option 2

,

Left︷ ︸︸ ︷ Up︷ ︸︸ ︷
1, 0, 2︸︷︷︸

Option 1

, 2, 0︸︷︷︸
Option 1

0, 1, 1︸︷︷︸
Option 1

6 CONCLUSIONS

In this paper, we showed that options can “occur naturally” in neural network encoding policies
and that we can extract such options through neural decomposition. We called the resulting options
DEC-OPTIONS. Our decomposition approach assumes a set of related tasks where the goal is to
transfer knowledge from one set of tasks to another. Since the number of options we can extract
from neural networks grows exponentially with the number of neurons in the network, we use a
greedy procedure to select a subset of them that minimizes the Levin loss. By minimizing the Levin
loss, we increase the chances that the agent will apply sequences of actions that led to high-reward
states in previous tasks. We evaluated our decomposition and selection approach on hard-exploration
grid-world problems. The results showed that DEC-OPTIONS accelerated the learning process in a
set of tasks that are similar to those used to train the models from which the options were extracted.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

This research was supported by Canada’s NSERC and the CIFAR AI Chairs program, and was
enabled in part by support provided by the Digital Research Alliance of Canada. We thank the
reviewers for the discussions and their suggestions, Marlos Machado for helpful comments on an
early draft of this work, and Martin Klissarov for answering questions we had regarding DCEO.

REFERENCES

Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational option discovery
algorithms. arXiv preprint arXiv:1807.10299, 2018.

David André and Shaul Markovitch. Learning representations for the transfer of learning. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence, volume 5, pp. 415–420,
2005.

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with
policy sketches. In International conference on machine learning, pp. 166–175. PMLR, 2017.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
the AAAI conference on artificial intelligence, volume 31, 2017.

Eseoghene Ben-Iwhiwhu, Saptarshi Nath, Praveen K Pilly, Soheil Kolouri, and Andrea Soltoggio.
Lifelong reinforcement learning with modulating masks. arXiv preprint arXiv:2212.11110, 2022.

Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J Stone. Classification and
regression trees. CRC press, 1986.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld:
Modular & customizable reinforcement learning environments for goal-oriented tasks. CoRR,
abs/2306.13831, 2023.

Alexander Clegg, Wenhao Yu, Zackory Erickson, Jie Tan, C Karen Liu, and Greg Turk. Learning to
navigate cloth using haptics. In 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 2799–2805. IEEE, 2017.

Will Dabney, Georg Ostrovski, and Andre Barreto. Temporally-extended ε-greedy exploration. In
International Conference on Learning Representations, 2021.

Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. Meta learning shared
hierarchies. arXiv preprint arXiv:1710.09767, 2017.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

Anirudh Goyal, Shagun Sodhani, Jonathan Binas, Xue Bin Peng, Sergey Levine, and Yoshua Ben-
gio. Reinforcement learning with competitive ensembles of information-constrained primitives.
arXiv preprint arXiv:1906.10667, 2019.

Maximilian Igl, Andrew Gambardella, Jinke He, Nantas Nardelli, N Siddharth, Wendelin Böhmer,
and Shimon Whiteson. Multitask soft option learning. In Conference on Uncertainty in Artificial
Intelligence, pp. 969–978. PMLR, 2020.

Yuu Jinnai, Jee W. Park, Marlos C. Machado, and George Konidaris. Exploration in reinforcement
learning with deep covering options. In International Conference on Learning Representations,
2020.

Samuel Kessler, Jack Parker-Holder, Philip Ball, Stefan Zohren, and Stephen J Roberts. Same state,
different task: Continual reinforcement learning without interference. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 7143–7151, 2022.

10

Published as a conference paper at ICLR 2024

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Louis Kirsch, Julius Kunze, and David Barber. Modular networks: Learning to decompose neural
computation. Advances in neural information processing systems, 31, 2018.

Martin Klissarov and Marlos C. Machado. Deep laplacian-based options for temporally-extended
exploration. In Proceedings of the International Conference on Machine Learning. JMLR.org,
2023.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. In S. Solla, T. Leen, and K. Müller (eds.),
Advances in Neural Information Processing Systems, volume 12, pp. 1008–1014. MIT Press,
1999.

George Konidaris and Andrew Barto. Building portable options: Skill transfer in reinforcement
learning. In International Joint Conference on Artificial Intelligence, pp. 895–900, 2007.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation. In D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 29, 2016.

Steven M LaValle, Michael S Branicky, and Stephen R Lindemann. On the relationship between
classical grid search and probabilistic roadmaps. The International Journal of Robotics Research,
23(7-8):673–692, 2004.

Guang-He Lee and Tommi S. Jaakkola. Oblique decision trees from derivatives of relu networks. In
International Conference on Learning Representations, 2020.

Marlos C. Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and Murray
Campbell. Eigenoption discovery through the deep successor representation. In International
Conference on Learning Representations, 2018.

Marlos C. Machado, André Barreto, Doina Precup, and Michael Bowling. Temporal abstraction in
reinforcement learning with the successor representation. Journal of Machine Learning Research,
24:1–69, 2023.

Jorge A Mendez, Harm van Seijen, and Eric Eaton. Modular lifelong reinforcement learning via
neural composition. arXiv preprint arXiv:2207.00429, 2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Guido Montúfar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of lin-
ear regions of deep neural networks. In Proceedings of the International Conference on Neural
Information Processing Systems, pp. 2924–2932, Cambridge, MA, USA, 2014. MIT Press.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the International Conference on International Conference on Machine Learning,
pp. 807–814, 2010.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor, and Peter Stone.
Curriculum learning for reinforcement learning domains: A framework and survey. The Journal
of Machine Learning Research, 21(1):7382–7431, 2020.

Spyros Orfanos and Levi H. S. Lelis. Synthesizing programmatic policies with actor-critic algo-
rithms and relu networks, 2023.

Laurent Orseau, Levi H. S. Lelis, Tor Lattimore, and Théophane Weber. Single-agent policy tree
search with guarantees. In Proceedings of the International Conference on Neural Information
Processing Systems, pp. 3205–3215, 2018.

11

Published as a conference paper at ICLR 2024

Wenjie Qiu and He Zhu. Programmatic reinforcement learning without oracles. In International
Conference on Learning Representations, 2021.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. Advances in Neural Information Processing Systems, 32, 2019.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye
Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for contin-
ual learning. In International conference on machine learning, pp. 4528–4537. PMLR, 2018.

Kun Shao, Yuanheng Zhu, and Dongbin Zhao. Starcraft micromanagement with reinforcement
learning and curriculum transfer learning. IEEE Transactions on Emerging Topics in Computa-
tional Intelligence, 3(1):73–84, 2018.

Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research, 10:1633–1685, 2009.

Chen Tessler, Shahar Givony, Tom Zahavy, Daniel Mankowitz, and Shie Mannor. A deep hierarchi-
cal approach to lifelong learning in minecraft. In Proceedings of the AAAI conference on artificial
intelligence, volume 31, 2017.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari,
Jason Yosinski, and Ali Farhadi. Supermasks in superposition. Advances in Neural Information
Processing Systems, 33:15173–15184, 2020.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. arXiv preprint arXiv:1708.01547, 2017.

Liwen Zhang, Gregory Naitzat, and Lek-Heng Lim. Tropical geometry of deep neural networks. In
Jennifer Dy and Andreas Krause (eds.), Proceedings of the International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pp. 5824–5832. PMLR,
2018.

12

Published as a conference paper at ICLR 2024

A EXAMPLE OF THE ALGORITHM FOR COMPUTING THE LEVIN LOSS

Let S = {s0, s1, s2, s3, s4, s5} be a sequence of states and Ω = {ω1, ω2} be a set of options. ω1 can
start in s0 and it terminates in s2; ω2 can start in s1 and it terminates in s4. Next, we show how the
table M in Algorithm 1 changes after every iteration of the for-loop in line 2.

Iterations M

initialization 0, 1, 2, 3, 4, 5

0 0, 1, 1, 3, 4, 5
1 0, 1, 1, 3, 2, 5
2 0, 1, 1, 3, 2, 5
3 0, 1, 1, 2, 2, 5
4 0, 1, 1, 2, 2, 5
5 0, 1, 1, 2, 2, 3

The value of 3 of M [5] at the end of the last iteration indicates that the state s5 can be reached with
three actions: a primitive action from s0 to s1, ω2 from s1 to s4, and another primitive action from
s4 to s5. If pu,Ω = 0.25, then the optimal Levin loss value returned in line 8 of Algorithm 1 for T
and Ω is 6

0.253 = 384.

B EXPERIMENTS DETAILS

B.1 OPTIONS SELECTION PROCESS

In our methodology, we employ an approach to select options based on a set of sequences denoted
T = {T1, T2, · · · , Tn}, as described in Section 4.2. This selection process is driven by a greedy
algorithm, facilitating the identification of options that can be “helpful”. However, it is the case
that when decomposing the policy πθi , the resulting sub-policies will have a low Levin loss on
sequence Ti. To mitigate this bias, we compute the Levin loss for sub-policies derived from the
neural decomposition of πθi on the set T \ {Ti}.

B.2 PLOTS

Figures shown in Section 5 were generated using a standardized methodology. To ensure robustness,
we applied a systematic procedure to all our baselines. We began the process by performing a
hyperparameter search, as outlined in B.3, to select the best hyperparameters for each baseline.
Subsequently, we perform 30 independent runs (seeds) for each baseline. We discarded the 20% of
the independent runs with the poorest performance. We computed the mean and 95% confidence
intervals over the remaining 24 seeds.

B.3 ARCHITECTURE AND PARAMETER SEARCH

For algorithms utilizing the Proximal Policy Optimization (PPO) framework, including Vanilla-
RL PPO, Neural-Augmented, Transfer-PPO, PNN, ez-greedy, Dec-Options-Whole, and Dec-
Options baselines, we used the stable-baselines library (Raffin et al., 2021). A comprehensive
parameter search was conducted, encompassing the clipping parameter, entropy coefficient, and
learning rate. These parameters are reported for each domain in their respective sections. In the
case of PNN, we leveraged the library provided in https://github.com/arcosin/Doric,
while still relying on the PPO algorithm from stable-baselines for training. For the ez-greedy algo-
rithm, we integrated the temporally-extended ε-greedy algorithm with the PPO algorithm from the
stable-baselines. We set the ε to be equal to 0.01 and the µ to be equal to 2, as ez-greedy’s original
work. For Option-Critic implementations, we used the implementation in https://github.
com/lweitkamp/option-critic-pytorch and the best parameters found for the learning
rate and the number of options in a hyperparameter sweep process. For the DCEO baseline, we
used the implementation from the original paper (https://github.com/mklissa/dceo/).

13

https://github.com/arcosin/Doric
https://github.com/lweitkamp/option-critic-pytorch
https://github.com/lweitkamp/option-critic-pytorch
https://github.com/mklissa/dceo/

Published as a conference paper at ICLR 2024

(a) Simple Crossing - Seed 0 (b) Simple Crossing - Seed 1 (c) Simple Crossing - Seed 2

Figure 5: MiniGrid Simple Cross Tasks

The parameter search is then applied to the learning rate, the number of options, and the probability
of executing an option. As for the Modulating-Mask method, we used the code provided by the
original authors (https://github.com/dlpbc/mask-lrl). In scenarios where the Deep
Q-Network (DQN) was employed, such as Vanilla-RL DQN and Dec-Options DQN baselines, we
adhered to the stable-baselines. Similarly to PPO, we performed a parameter search, this time tar-
geting Tau and the learning rate, while keeping other parameters fixed. All the parameter searches
mentioned were performed using the grid search method (LaValle et al., 2004).

For tasks within the MiniGrid domain, we employed a feedforward network. The policy network
structure consisted of a single hidden layer comprising 6 nodes, while the value network used three
hidden layers with 256 neurons each. As tasks transitioned to P ′, we expanded the policy network
to encompass three hidden layers with 50 neurons in each layer. In the Transfer-PPO method,
we also used a policy network with three hidden layers with 50 neurons in each across all tasks in
both P and P ′. Regarding the Modulating-Mask approach, we retained the structure of the neural
network as in its original implementation. This structure featured a shared feature network with
three hidden layers, each with 200 neurons, followed by one hidden layer with 200 neurons for the
policy network and another hidden layer also with 200 neurons for the value network. For DQN-
based methods, including Vanilla-RL DQN and Dec-Options DQN, as well as Option-Critic and
DCEO, the neural network had three hidden layers, each with 200 neurons.

In the ComboGrid domain, the architectural and parameter search aspects mirrored those of the
MiniGrid domain for DEC-OPTIONS. The policy network structure featured one hidden layer with
6 nodes for tasks in P , and we increased it to 16 nodes for tasks in P ′. Transfer-PPO maintained a
uniform policy network structure of one hidden layer with 16 nodes across all tasks inP andP ′. The
value network is a network with 3 hidden layers with 200 neurons each for tasks in P and P ′. As
for the Modulating-Mask method, the structure of the neural network is as before. For DQN-based
methods and Option-Critic, we adopted a two-layer configuration with 32 neurons in the first layer
and 64 neurons in the second hidden layer.

C DOMAINS

C.1 MINIGRID

As described in Section 5, we leveraged the MiniGrid implementation provided by Chevalier-
Boisvert et al. (2023). For our experiments, we opted for the Simple Crossing tasks, which
formed the training set denoted as P . Notably, we selected three different variants of ‘MiniGrid-
SimpleCrossingS9N1-v0’, as illustrated in Figure 5. For the test set P ′, we chose three versions
of the Four Rooms domain, as depicted in Figure 6. In these environments, actions for interacting
with object are not needed and were not available to the agent. The agent had access to three prim-
itive actions: ‘Action Left’ (represented by 0) for left turns, ‘Action Right’ (represented by 1) for
right turns, and ‘Action Forward’ (represented by 2) for forward movement. At each step, the agent
views a small field in front of itself, making the environment partially observable. Also, its view
is obstructed by walls where applicable. Regarding the representation of the state, we employed

14

https://github.com/dlpbc/mask-lrl

Published as a conference paper at ICLR 2024

(a) Four Rooms 1 (b) Four Rooms 2 (c) Four Rooms 3

Figure 6: MiniGrid Four Rooms Tasks

a modified version of the original MiniGrid observation. At each time step, the agent’s view is
constrained to a 5×5 grid in front of itself. This observation was then transformed into a one-hot
encoding format. The one-hot encoding encapsulated various elements, including the goal, walls,
and empty floor spaces. Additionally, we incorporated the agent’s directional orientation into the ob-
servation, consistent with the conventions of the original MiniGrid. This directional indicator served
as a compass for the agent, aiding it in determining its current facing direction. This representation
aimed to streamline observations without altering the fundamental dynamics of the original library.
To maintain consistency across our experiments, we set a maximum episode length of 1000 for tasks
in set P and 361 for tasks in set P ′. In terms of rewards, we assigned a value of -1 for each step in
tasks within set P , except at termination points. Tasks in set P ′ were designed with rewards of 0 for
all states, except upon reaching the terminal state, where a reward of 1 was granted.

Parameter Search In pursuit of reasonable hyperparameters, we performed a parameter search
for all methods used in our experiments. We have outlined the search spaces for each method below.

For methods using the PPO algorithm, we explored the following hyperparameter ranges:

• Learning Rate: 0.005, 0.001, 0.0005, 0.0001, 0.00005

• Clipping Parameter: 0.1, 0.15, 0.2, 0.25, 0.3

• Entropy Coefficient: 0.0, 0.05, 0.1, 0.15, 0.2

For methods relying on the Deep Q-Network (DQN) paradigm, our parameter search encompassed
the following hyperparameter lists:

• Learning Rate: 0.01, 0.005, 0.001, 0.0005, 0.0001

• Tau: 1., 0.7, 0.4, 0.1

In the case of the Option-Critic method, we explored the following hyperparameter combinations:

• Learning Rate: 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005

• Number of Options 2, 3, 4, 5, 6

For the DCEO baseline, we explored the following hyperparameter combinations:

• Learning Rate: 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005

• Number of Options: 3, 5, 10

• Option Probability: 0.2, 0.7, 0.9

The hyperparameter values used in our experiments with MiniGrid problems are given in Tables 1,
2, 3, 4, 5, and 6.

15

Published as a conference paper at ICLR 2024

Clipping Parameter Entropy Coefficient Learning Rate
Vanilla-RL 0.15 0.05 0.0005

Neural-Augmented 0.2 0.2 0.0005
Transfer-PPO 0.15 0.15 0.0001

PNN 0.1 0.0 0.0001
Modulating-Mask 0.15 0.1 0.001

ez-greedy 0.15 0.05 0.0005
Dec-Options-Whole 0.3 0.15 0.0005

Dec-Options 0.25 0.1 0.0005

Table 1: Four Rooms 1 - PPO

Tau/Number of Options Learning Rate
Vanilla-RL 0.7 0.0001

Option-critic 2 0.0001
Dec-Options 0.7 0.0005

DCEO 5 (Probability: 0.9) 0.0005

Table 2: Four Rooms 1 - DQN

Clipping Parameter Entropy Coefficient Learning Rate
Vanilla-RL 0.1 0.2 0.0005

Neural-Augmented 0.15 0.0 0.0005
Transfer-PPO 0.1 0.05 5e-05

PNN 0.25 0.0 0.005
Modulating-Mask 0.2 0.0 0.01

ez-greedy 0.1 0.0 0.0001
Dec-Options-Whole 0.25 0.05 0.0005

Dec-Options 0.2 0.1 0.001

Table 3: Four Rooms 2 - PPO

Tau/Number of Options Learning Rate
Vanilla-RL 1.0 0.0005

Option-critic 2 0.0001
Dec-Options 1.0 0.001

DCEO 10 (Probability: 0.9) 0.001

Table 4: Four Rooms 2 - DQN

C.2 COMBOGRID

In the ComboGrid environment, the agent’s movement is dictated by a sequence of actions, which
we refer to as “combos”. These action sequences are described in the list below, for Down, Up,
Right, and Left.

• Moving Down: 0, 2, 2, 1

• Moving Up: 0, 0, 1, 1

• Moving Right: 1, 2, 1, 0

• Moving Left: 1, 0, 2, 2

16

Published as a conference paper at ICLR 2024

Clipping Parameter Entropy Coefficient Learning Rate
Vanilla-RL 0.2 0.0 5e-05

Neural-Augmented 0.1 0.0 0.001
Transfer-PPO 0.1 0.05 0.0001

PNN 0.15 0.0 0.001
Modulating-Mask 0.1 0.0 0.005

ez-greedy 0.25 0.05 0.0005
Dec-Options-Whole 0.15 0.05 0.001

Dec-Options 0.2 0.1 0.001

Table 5: Four Rooms 3 - PPO

Tau/Number of Options Learning Rate
Vanilla-RL 0.7 0.001

Option-critic 3 0.0001
Dec-Options 0.1 0.0005

DCEO 10 (Probability: 0.9) 0.0001

Table 6: Four Rooms 3 - DQN

In our experiments, we conducted tests under four settings of the ComboGrid environment, each
varying in size. The tasks in P , of sizes 5× 5 and 6× 6, are shown in Figure 7. Across all tasks in
the set P , we established a uniform reward structure, with a value of -1 assigned for every step taken
in the environment, except when reaching the terminal state, where the reward was set to 0. The tasks
in set P ′ for different grid sizes are also presented in Figure 8. These tasks adhered to a different
reward structure, with a reward value of 0 assigned for all states except those corresponding to goal
points, where the reward was set to 10. There were four distinct goal points on the grid, which
added to the maximum cumulative reward attainable in a single episode of 40. The action space
and the fully observable state space remained fixed for all tasks, regardless of the size of the grid,
encompassing tasks in both sets, P and P ′.

Agents are presented with primitive actions represented by integers 0, 1, and 2, resulting in the cre-
ation of combinations (“combos”) according to the specifications described above. For example, to
move down, the agent needs to perform the sequence 0, 2, 2, 1. At each time step, the agent is pro-
vided with a complete view of the grid in the form of a one-hot representation. This representation
encapsulated the position of the agent as well as the positions of the goals within the grid. Conse-
quently, the dimension of the observation space was proportional to the size of the grid, resulting in
a representation of size W 2×2, where W is the size of the grid. Additionally, the agent received the
sequence of past combo actions, also in a one-hot encoding format, as part of its input. We enforce
a maximum episode length of W 2 × 80 steps for tasks in set P and W 2 × 16 steps for tasks within
set P ′.

Parameter Search Similarly to MiniGrid, we performed a parameter search for all methods used
in our experiments. We have outlined the search spaces for each method below.

For methods utilizing the PPO algorithm, we explored the following hyperparameter values.

• Learning Rate: 0.05, 0.01, 0.005, 0.001
• Clipping Parameter 0.05, 0.1, 0.15, 0.2, 0.25, 0.3
• Entropy Coefficient: 0.0, 0.05, 0.1, 0.15, 0.2

For methods relying on the Deep Q-Network (DQN) paradigm, our parameter search encompassed
the following hyperparameter values.

• Learning Rate: 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001
• Tau: 1., 0.7, 0.4, 0.1

17

Published as a conference paper at ICLR 2024

(a) Grid 5x5 - Task 1 (b) Grid 5x5 - Task 2 (c) Grid 5x5 - Task 3 (d) Grid 5x5 - Task 4

(e) Grid 6x6 - Task 1 (f) Grid 6x6 - Task 2 (g) Grid 6x6 - Task 3 (h) Grid 6x6 - Task 4

Figure 7: ComboGrid tasks. In this depiction, the agent is highlighted in red, while the goals are
denoted in green, and the walls are represented in grey.

(a) ComboGrid 3x3 (b) ComboGrid 4x4 (c) ComboGrid 5x5 (d) ComboGrid 6x6

Figure 8: ComboGrid P ′ tasks

In the case of the Option-Critic method, we explored the following hyperparameter values.

• Learning Rate: 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005

• Number of Options 2, 3, 4, 5, 6

For the DCEO baseline, we explored the following hyperparameter values.

• Learning Rate: 0.01, 0.005, 0.001, 0.0005, 0.0001

• Number of Options: 3, 5, 10

• Option Probability: 0.2, 0.7, 0.9

As for the Modulating-Mask method, we explored the following hyperparameters values.

• Learning Rate: 0.005, 0.001, 0.0005, 0.0001, 0.00005

• Clipping Parameter 0.1, 0.15, 0.2, 0.25

• Entropy Coefficient: 0.0, 0.05, 0.1, 0.15, 0.2

The hyperparameter values used in our experiments with ComboGrid problems are given in Tables 7,
8, 9, 10, 11, 12, 13, and 14.

18

Published as a conference paper at ICLR 2024

Clipping Parameter Entropy Coefficient Learning Rate
Vanilla-RL 0.15 0.1 0.01

Neural-Augmented 0.25 0.05 0.01
Transfer-PPO 0.3 0.05 0.001

PNN 0.2 0.1 0.01
Modulating-Mask 0.1 0.1 0.0005

ez-greedy 0.15 0.05 0.005
Dec-Options-Whole 0.15 0.05 0.005

Dec-Options 0.2 0.05 0.005

Table 7: ComboGrid 3x3 - PPO

Tau/Number of Options Learning Rate
Vanilla-RL 1. 0.001

Option-critic 2 0.001
Dec-Options 1. 0.001

DCEO 10 (Probability: 0.2) 0.0005

Table 8: ComboGrid 3x3 - DQN

Clipping Parameter Entropy Coefficient Learning Rate
Vanilla-RL 0.1 0.0 0.005

Neural-Augmented 0.3 0.0 0.005
Transfer-PPO 0.05 0.2 0.001

PNN 0.2 0.1 0.005
Modulating-Mask 0.25 0.15 0.0001

ez-greedy 0.2 0.05 0.005
Dec-Options-Whole 0.25 0.05 0.01

Dec-Options 0.25 0.0 0.005

Table 9: ComboGrid 4x4 - PPO

Tau/Number of Options Learning Rate
Vanilla-RL 0.7 0.0005

Option-critic 3 0.0005
Dec-Options 1. 0.0005

DCEO 3 (Probability: 0.2) 0.0005

Table 10: ComboGrid 4x4 - DQN

D QUALITATIVE ANALYSIS OF RESULTS

D.1 MINIGRID

In our study, we used heatmaps to visually represent the distribution of cells visited within the
MiniGrid environment during training. These heatmaps provide information on the states that the
agent frequents at different training steps. By comparing the heatmaps of the DEC-OPTIONS method
with those of Vanilla-RL in Figure 9, we can see different exploration patterns, which can be related
to the performance of the methods shown in Figure 3.

19

Published as a conference paper at ICLR 2024

Clipping Parameter Entropy Coefficient Learning Rate
Vanilla-RL 0.25 0.1 0.005

Neural-Augmented 0.15 0.0 0.005
Transfer-PPO 0.1 0.2 0.001

PNN 0.25 0.05 0.005
Modulating-Mask 0.2 0.05 0.001

ez-greedy 0.2 0.15 0.005
Dec-Options-Whole 0.2 0.05 0.005

Dec-Options 0.2 0.05 0.005

Table 11: ComboGrid 5x5 - PPO

Tau/Number of Options Learning Rate
Vanilla-RL 0.7 0.001

Option-critic 4 0.0001
Dec-Options 1. 0.001

DCEO 5 (Probability: 0.7) 0.001

Table 12: ComboGrid 5x5 - DQN

Clipping Parameter Entropy Coefficient Learning Rate
Vanilla-RL 0.1 0.05 0.005

Neural-Augmented 0.2 0.05 0.005
Transfer-PPO 0.3 0.05 0.001

PNN 0.05 0.0 0.005
Modulating-Mask 0.15 0.0 0.005

ez-greedy 0.2 0.05 0.005
Dec-Options-Whole 0.2 0.0 0.001

Dec-Options 0.15 0.05 0.005

Table 13: ComboGrid 6x6 - PPO

Tau/Number of Options Learning Rate
Vanilla-RL 0.7 0.001

Option-critic 2 0.005
Dec-Options 0.7 0.001

DCEO 3 (Probability: 0.9) 0.0001

Table 14: ComboGrid 6x6 - DQN

D.2 COMBOGRID

To illustrate the DEC-OPTIONS learned in the ComboGrid problems, we sampled the trajectories of
the policy trained to use the options. The following sequences are partial trajectories of the agents
that highlight the use of the learned options. We present trajectories on ComboGrid problems of
sizes 3× 3, 5× 5, and 6× 6 (trajectories for the grids of size 4× 4 are already presented in the main
text). We present only partial trajectories for grids of sizes 5× 5 and 6× 6 to improve readability.

In grids of size 3 × 3, the learned options almost exactly match the dynamics of the problem. The
exception is Option 4, which only partially executes the sequence of actions that allow the agent to
move left. For grids of size 5× 5 and 6× 6, DEC-OPTIONS learns longer options. For example, for
5× 5, Option 2 can almost complete the sequence of actions to go up twice, while for 6× 6, Option
2 can perform the sequence of actions to go left twice.

20

Published as a conference paper at ICLR 2024

Figure 9: This figure shows the heatmap of cells visited in the Four Rooms 1 environment for
both the DEC-OPTIONS and Vanilla-RL methods. The first row shows the heatmap of the DEC-
OPTIONS’s method, while the second row shows the Vanilla-RL method. The first, second, and
third columns show the heatmap after 1, 3200, and 12800 steps, respectively.

ComboGrid 3x3 (full trajectory):
Down︷ ︸︸ ︷

0, 2, 2, 1︸ ︷︷ ︸
Option 3

,

Up︷ ︸︸ ︷
0, 0, 1, 1︸ ︷︷ ︸

Option 2

,

Up︷ ︸︸ ︷
0, 0, 1, 1︸ ︷︷ ︸

Option 2

,

Right︷ ︸︸ ︷
1, 2, 1, 0︸ ︷︷ ︸

Option 2

,

Down︷ ︸︸ ︷
0, 2, 2, 1︸ ︷︷ ︸

Option 4

,

Left︷ ︸︸ ︷
1, 0, 2, 2︸ ︷︷ ︸

Option 2

,

Left︷ ︸︸ ︷
1, 0, 2, 2︸ ︷︷ ︸

Option 4

ComboGrid 5x5:
Up︷ ︸︸ ︷ Up︷ ︸︸ ︷ Right︷ ︸︸ ︷ Right︷ ︸︸ ︷ Down︷ ︸︸ ︷ Down︷ ︸︸ ︷

0, 0, 1, 1, 0, 0, 1︸ ︷︷ ︸
Option 2

, 1, 1︸︷︷︸
Option 1

, 2, 1, 0︸ ︷︷ ︸
Option 5

, 1, 2, 1︸ ︷︷ ︸
Option 5

, 0, 0︸︷︷︸
Option 4

, 2, 2︸︷︷︸
Option 4

, 1, 0︸︷︷︸
Option 4

, 2, 2︸︷︷︸
Option 3

, 1

ComboGrid 6x6:
Left︷ ︸︸ ︷

1, 0, 2, 2,

Left︷ ︸︸ ︷
1, 0, 2, 2︸ ︷︷ ︸

Option 2

,

Up︷ ︸︸ ︷
0, 0︸︷︷︸

Option 3

, 1, 1︸︷︷︸
Option 1

,

Up︷ ︸︸ ︷
0, 0︸︷︷︸

Option 3

, 1, 1︸︷︷︸
Option 1

,

Up︷ ︸︸ ︷
0, 0︸︷︷︸

Option 3

, 1, 1︸︷︷︸
Option 1

,

Right︷ ︸︸ ︷
1, 2, 1︸ ︷︷ ︸
Option 4

, 0

E BASELINE SELECTING RANDOM OPTIONS

We also considered a baseline where we ignore steps 1 and 2 of DEC-OPTIONS and randomly select
an option that performs a fixed set of actions of length M . We then add K of such options to the
agent’s action set. Note that this approach requires domain knowledge, as the values of M and K
are not known a priori. By contrast, DEC-OPTIONS discovers them automatically.

We ran experiments on the Combo domain where we chose M to be 6, which is the average number
of options DEC-OPTIONS chooses and K to be 4, which is the number of directions the agent can
move. We present the results in Figure 10. DEC-OPTIONS performs better than this baseline. Even
when we manually set the values of M and K, there are many options to choose from, and it is
unlikely that helpful options would be selected this way.

21

Published as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6
Time steps (x105)

0

10

20

30

40

Re
tu

rn

3x3 ComboGrid (PPO)

0.0 0.2 0.4 0.6
Time steps (x105)

4x4 ComboGrid (PPO)

0.0 0.4 0.8 1.2
Time steps (x105)

5x5 ComboGrid (PPO)

0.0 0.4 0.8 1.2
Time steps (x105)

6x6 ComboGrid (PPO)

Dec-Options
Vanilla-RL
Random

Figure 10: Comparison of DEC-OPTIONS with Vanilla-RL, and the Random baseline.

22

	Introduction
	Related work
	Problem Definition
	Learning Options with Neural Network Decomposition
	Decomposing Neural Policies into Sub-Policies
	Synthesizing and Selecting Options
	Greedy Approximation to Select Options

	Experiments
	Problem Domains
	Empirical Results

	Conclusions
	Example of the Algorithm for Computing the Levin Loss
	Experiments Details
	Options Selection Process
	Plots
	Architecture and Parameter Search

	Domains
	MiniGrid
	ComboGrid

	Qualitative Analysis of Results
	MiniGrid
	ComboGrid

	Baseline Selecting Random Options

