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Abstract

Cost-guided bottom-up search (BUS) algorithms use a cost function to guide the search
to solve program synthesis tasks. In this paper, we show that current state-of-the-art cost-
guided BUS algorithms suffer from a common problem: they can lose useful information
given by the model and fail to perform the search in a best-first order according to a
cost function. We introduce a novel best-first bottom-up search algorithm, which we call
Bee Search, that does not suffer information loss and is able to perform cost-guided
bottom-up synthesis in a best-first manner. Importantly, Bee Search performs best-first
search with respect to the generation of programs, i.e., it does not even create in memory
programs that are more expensive than the solution program. It attains best-first ordering
with respect to generation by performing a search in an abstract space of program costs.
We also introduce a new cost function that better uses the information provided by an
existing cost model. Empirical results on string manipulation and bit-vector tasks show
that Bee Search can outperform existing cost-guided BUS approaches when employing
more complex domain-specific languages (DSLs); Bee Search and previous approaches
perform equally well with simpler DSLs. Furthermore, our new cost function with Bee
Search outperforms previous cost functions on string manipulation tasks.

1. Introduction

Synthesizing computer programs that satisfy a specification is a long-standing problem in
Computing Science (Waldinger & Lee, 1969; Manna & Waldinger, 1979; Fraňová, 1985;
Deville & Lau, 1994; Colón, 2004; Solar-Lezama et al., 2006; Singh & Gulwani, 2012)
that has received much attention from the Artificial Intelligence (Balog et al., 2016; Devlin
et al., 2017a; Kalyan et al., 2018; Shin et al., 2019; Ellis et al., 2020) and the Programming
Language communities (Albarghouthi et al., 2013; Udupa et al., 2013; Lee et al., 2018; Barke
et al., 2020; Ji et al., 2020). In this paper, we consider programming-by-example problems
in which a system receives a set of input-output examples and it attempts to synthesize a
program that maps each input to the desired output.

One approach to solving program synthesis tasks is to search for a solution over the
space of programs defined by a domain-specific language (DSL). The program space that
DSLs induce can be very large, and a considerable amount of research has been devoted
to developing more effective search algorithms to solve program synthesis tasks (Odena
et al., 2021; Barke et al., 2020; Lee et al., 2018; Alur et al., 2017; Albarghouthi et al.,
2013). Bottom-up search (BUS) is a successful search strategy that starts with the smallest
possible DSL programs and iteratively generates larger programs by combining the smaller
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ones generated by the algorithm (Albarghouthi et al., 2013; Udupa et al., 2013; Alur et al.,
2013).

One of the key advantages of BUS over other search algorithms such as top-down search
approaches (Lee et al., 2018; Alur et al., 2017) is that BUS generates complete programs
during the search, which means that the programs can be executed and evaluated. The
ability to execute programs allows one to discard observational equivalent programs (Al-
barghouthi et al., 2013); two programs are observational equivalent if they produce the
same output value for a given set of input values. The detection of observational equivalent
programs can substantially reduce the number of programs generated during the search.

However, due to the size of the search space, BUS is only able to find solutions to
problems that can be solved with short programs. Cost-guided BUS algorithms are able to
solve more problems than BUS because they use a cost function to guide the search toward
more promising programs (Shi, Bieber, & Singh, 2020). A cost function receives a program
and returns a cost value. Programs with low-cost values are deemed more promising than
programs with high-cost values and are given preference to be used as subprograms of other
programs, thus biasing the search. Several systems use cost-guided BUS algorithms: TF-
Coder (Shi et al., 2020), Probe (Barke et al., 2020), Bustle (Odena et al., 2021), and
Heap Search (Fijalkow et al., 2022).

In this paper, we show that, despite their superior performance to BUS, the guided
search algorithms used in TF-Coder, Probe, and Bustle suffer from the same problem:
they can lose some of the information given by the cost function because they round off the
costs of the programs. As a result, they do not necessarily perform the search in best-first
order with respect to the cost of the programs and might evaluate more expensive programs
before evaluating cheaper ones. Heap Search is an existing cost-guided BUS algorithm
that searches in best-first order with respect to a cost function. However, Heap Search
searches in a best-first order with respect to the evaluation of the programs. This means that
it can generate a very large number of programs that are more expensive than the solution
program. Moreover, as we show in this paper, Heap Search sacrifices the detection of
observational equivalent programs to attain its best-first ordering and it is only able to
search in best-first order while using some of the cost functions from the literature.

In our work, we present a taxonomy for the cost functions used in previous work, where
we divide them into two families of functions: pre-generation and post-generation. Pre-
generation functions are those able to evaluate the cost of a program before the program is
even created in memory. Post-generation functions require the program to be in memory so
that the program can be executed as part of the computation of its cost.

In addition to our taxonomy, another contribution of this paper is a best-first bottom-up
search algorithm we call Bee Search, which overcomes the weaknesses of previous cost-
guided BUS algorithms. Bee Search performs search in a best-first ordering according
to cost functions from both the pre-generation and post-generation families of functions.
Moreover, Bee Search’s best-first search is with respect to the generation of programs.
That is, Bee Search does not even create in memory programs that are more expensive
than the solution program. Note that other best-first algorithms such as A* (Hart et al.,
1968) and Dijkstra’s algorithm (Dijkstra, 1959) can generate states that are more costly than
the goal state, which can hurt performance in domains with a large branching factor. Bee
Search’s generation-time best-first search is achieved by searching in an abstract cost-tuple
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space. Each state in the cost-tuple space informs which programs should be generated next
in search, such that the best-first ordering of programs is attained. Unlike Heap Search,
Bee Search performs observational equivalence checks as regular BUS algorithms.

To highlight Bee Search’s ability to use a wide range of cost functions, we introduce
a novel cost function based on the neural network model used in the Bustle system. In
contrast to Bustle’s cost function, our cost function “relies” more on the prediction of the
neural model and less so on the size of the evaluated programs.

We hypothesize that Bee Search is able to solve more problems than Probe and
Bustle due to the information these algorithms lose during search. To evaluate our hy-
pothesis, we compare the number of problems Bee Search solves while using the same
cost functions Probe and Bustle used in a set of string manipulation tasks and in a set
of bit-vector manipulation tasks. The results show that Bee Search is never worse than
Probe and Bustle and it can solve more problems than them when searching in larger
program spaces. We also evaluate Bee Search’s generation-time best-first search by com-
paring it with Heap Search and with a search algorithm based on the best-first search
algorithm used in Brute, an Inductive Logic Programming system (Cropper & Dumančic,
2020). Both Heap Search and Brute perform best-first search, but not with respect to
the generation of programs, as Bee Search does. Bee Search outperforms both Heap
Search and Brute by a large margin in all the settings evaluated. Finally, the results also
show that Bee Search with our novel cost function outperforms all systems tested in the
string manipulation domain.

This paper is organized as follows. We start by defining the program synthesis prob-
lem (Section 2), then we present existing uninformed and cost-guided bottom-up search
algorithms for synthesis and discuss the limitations of a few contemporary cost-guided BUS
algorithms (Sections 3 and 4). In Section 4.1, we discuss two cost functions and use them
to describe the taxonomy of the cost functions used in the literature, then we present our
bottom-up best-first search algorithm Bee Search (Section 5) and prove the guarantees
it provides. In Section 6, we present empirical results, followed by related work (Section 7)
and conclusions (Section 8). In Appendix A, we present the DSLs we used.

2. Problem Formulation

In program synthesis tasks, one is given a DSL in the form of a context-free grammar
G = (V,Σ, R, I). Here, V , Σ, and R are sets of non-terminals, terminals, and relations
defining the production rules of the grammar, respectively. I is G’s initial symbol. Figure 1
shows a DSL with V = {I}, Σ = {concat, 1, 2, · · · , 1000}, R represents the production
rules (e.g., I → 1); we call non-terminal a production rule whose righthand side contains at
least one non-terminal symbol and we call terminal a production rule whose righthand side
does not contain a non-terminal symbol. The arity of a non-terminal rule is the number
of non-terminal symbols on the rule’s righthand side. For example, the arity of rule I →
concat(I, I) is 2. The arity of terminal rules is 0. The programs G accepts determine the
programs space. For example, G accepts concat(concat(1, 2), 3): I is replaced with
concat(I, I); then the leftmost I with concat(I, I) and the rightmost I with 3, and so
on. The DSL of this example treats all numbers as strings and concat(concat(1, 2), 3)
returns 123.
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I →concat(I, I)| 1 | 2
| · · · | 1000

concat

concat

1 2

3

Figure 1: DSL and AST for concat(concat(1, 2), 3), which produces the output 123.

Search algorithms represent programs as abstract syntax trees (ASTs). Figure 1 shows
the AST of the program concat(concat(1, 2), 3). Each node in the AST represents a
production rule. Nodes representing a non-terminal rule have a number of children equal
to the number of non-terminal symbols in the rule. For example, concat has two children
because the rule I → concat(I, I) contains two symbols I. Nodes representing production
rules of terminals are leaves in the AST. Note that each subtree in the AST represents
a program. We call the subtrees rooted at a child of node p the subprograms of p. For
example, concat(1, 2) and 3 are subprograms of the root node of the tree in Figure 1. We
say that a program is generated in search when the program’s AST is created and stored in
memory. We say that a program is evaluated when it is executed.

In addition to a DSL, a program synthesis task is composed of a set of input values
I and output values O. The task is (i) to derive a program that G accepts and (ii) to
correctly map each of the input values to its corresponding output value. For example,
consider a DSL represented with a grammar G that is identical to the one shown in Figure 1
but augmented with the rules I → in1|in2, where in1 and in2 are two input values. The
program concat(in1,in2) correctly produces the output value for the following problem:
I = {[1, 2], [10, 10]} and O = {[12], [1010]}.

3. Uninformed Bottom-Up Search (BUS)

BUS solves program synthesis tasks by enumerating all programs of size i before enumerating
programs of size i+1, where size is the number of nodes in the program’s AST. BUS starts
by generating all programs defined by the terminal symbols of the DSL (size 1). Then, it
uses the programs of size 1 to generate programs of size 2 through the production rules of
the DSL; then it uses the programs of size 1 and 2 to generate programs of size 3, and so
on. The search stops when it generates a program that maps the inputs to the outputs
or it times out. Instead of size, BUS can also be height-based, where the height of the
program’s AST is considered. Since it has been shown that size-based BUS is more effective
than height-based BUS in the string manipulation domain (Barke et al., 2020), which we
consider in this paper, we only consider the size-based version in our work and call it BUS.

Example 1. Consider an example where we need to synthesize a program that produces
the output 100010001000 with the DSL shown in Figure 1 (the input set is empty). The
solution to this problem is concat(concat(1000, 1000), 1000). BUS first generates and
evaluates all programs of size 1: {1, 2, · · · , 1000}. Since none of these programs correctly
generates the desired output, BUS generates the set of programs of size 2, which is empty.
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Algorithm 1 Uninformed Bottom-Up Search (BUS)

Procedure: Uninformed-BUS(G, (I,O))
Require: G = (V,Σ, R, I), and a set of input-output examples (I,O).
Ensure: Solution program p or ⊥
1: s← 1
2: while not timeout do
3: for p in Next-Program(G, B, s) do
4: o← Execute(p, I)
5: if o equals O then
6: return p

7: if p is not equivalent to any program in B then
8: B[s].add(p)
9: s← s+ 1

10: return ⊥
Procedure: Next-Program(G, B, s)
Require: G = (V,Σ, R, I), programs bank B, and program size s.
Ensure: Program of size s
11: for r ∈ R do
12: if arity(r) = 0 and size(r) = s then
13: yield r
14: else if arity > 0 and size(r) < s then
15: for (p1, · · · , pk) in B × · · · ×B do #operation over the values of the dictionary B
16: if size(r(p1, · · · , pk)) = s and (p1, · · · , pk) is type-consistent with r then
17: yield r(p1, · · · , pk)

Next, BUS generates all programs of size 3: {concat(1, 1), · · · , concat(1000, 1000)}.
This process stops when the solution is generated while BUS produces programs of size 5.

The pseudocode for the uninformed bottom-up search is given in Algorithm 1. It receives
a grammar G = (V,Σ, R, I), and set of input-output examples (I,O) and returns a program
p that is able to map the inputs to the outputs. A failure ⊥ is returned if no solution
program is found. BUS starts by initializing the size s = 1 (line 1), then it enters the main
loop, where, in each iteration, it calls Next-Program procedure to generate programs of
size s. The variable s is incremented by one for the next iteration (line 9).

Next-Program receives the grammar G, bank of programs B, which are indexed by the
AST size of the programs, and the size of the target program s. Next-Program generates
programs of size s using the production rules of the grammar r ∈ R (lines 11-19). Next-
Program returns the production rule r if it is terminal (lines 12-13). Otherwise, if r’s
arity is greater than 0, it generates programs with production rule r by taking the Cartesian
product of all programs in the bank of programs B such that the following constraints are
satisfied: (i) size(r(p1, · · · , pk) = s, where function size(·) returns the number of nodes in
the program’s AST, k represents the arity of the production rule r, and (ii) (p1, · · · , pk) is
type-consistent with rule r, i.e., the type of subprograms, p1, · · · , pk matches the type of the
arguments required by r (e.g., concat can only take arguments of the string type).
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Pr Cost

I → concat(I, I) 0.00005 14.28771
| 1 | 2 | · · · | 999 0.00099984 9.966013
| 1000 0.00110895 9.816589

Figure 2: A probabilistic context-free grammar (PCFG) for string manipulation task with probability
of each rule (Pr) and its cost which is negative log of the probability (-log(Pr)).

Once a program p is yielded to the main loop, Uninformed-BUS executes p (line 4)
and, if the output o of p matches the desired output O, Uninformed-BUS returns the
program p as a solution to the problem. Otherwise, it checks for observational equivalence,
i.e., whether the search has previously seen a program with the same output set o. If not,
the search adds the program p to the bank of programs B, indexed by the program size s.
The search continues while it has not timed out and a solution program is not found.

4. Guided Bottom-Up Search

TF-Coder (Shi et al., 2020), Probe (Barke et al., 2020), Heap Search (Fijalkow et al.,
2022), and Bustle (Odena et al., 2021) use a cost function w to guide the bottom-up
search. The function w these systems employ favors programs that are “more likely” to lead
to a solution. For example, in the problem described above, a cost function could favor
programs that produce outputs with digits 1 and 0 as they appear in the desired output.
In this section, we explain existing cost functions and then explain Probe, Bustle, Heap
Search, and Brute, which are used as baselines in our experiments. Since TF-Coder’s
cost function requires a manually crafted set of weights for each operation of the language,
we did not consider it in our experiments.

4.1 Cost Functions

We divide the cost functions from the literature into two types: pre-generation and post-
generation. Pre-generation cost functions define the cost of a program p based on the
production rule used to generate p and on the subprograms of p. For example, considering
the DSL in Figure 1, a pre-generation function would determine the cost of the program
concat(1, 2) as a function of the cost of the production rule I → concat(I, I) and
of the subprograms 1 and 2. The cost functions used in TF-Coder, Probe, and Heap
Search are pre-generation functions where the cost of a program p is given by the sum
of the cost of the production rule used to generate p and the cost of p’s subprograms. We
call these functions pre-generation because one can compute the cost of a program before
generating the program. Post-generation functions determine the cost of a program p while
using information that requires the execution of p. The cost function used in Bustle is
post-generation because it uses the output of p to compute its cost. We call these functions
post-generation because the AST of the program must be in memory to compute its cost.
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4.1.1 Probe Cost Function (wProbe)

Probe uses a pre-generation cost function (wProbe) based on a probabilistic context-free
grammar (PCFG). The PCFG assigns a value to each production rule r denoting the proba-
bility that r is part of a solution. Consider the PCFG shown in Figure 2, Probe transforms
the probability of a rule r, denoted by Pr, into cost by taking − log2(Pr). The cost of each
rule is shown in the column “Cost”. The cost of a program p = r(p1, · · · , pk), denoted by
w(p), is given by the sum of the costs of its subprograms and the rule r used to derive it:

w(p) = w(r) +

k∑
i=1

w(pi) (1)

Example 2. Consider program p = concat(1, 2). The cost of the program is given as
w(p) = 14.28771 + 9.966013 + 9.966013 = 34.219736 because the cost of concat, 1, and 2
is -log(0.00005) = 14.28771, -log(0.00099) = 9.96601, and -log(0.001108) = 9.81658 respec-
tively. Similarly, the cost of p = concat(1000, 1000) is w(p) = 14.28771 + 9.816589 +
9.816589 = 33.920888. Furthermore, Probe rounds off the cost of the programs to the
nearest integer. For example, the cost of p = concat(1, 2) would be 34 as given by wProbe.

The cost function wProbe rounds off the cost value to the nearest integer because Probe
enumerates the programs in increasing order of integer w values: first it enumerates all the
programs of cost 1, then the ones with integer w-values of 2 and so on, until a solution is
found. Probe learns the PCFG while searching. It runs the search until a budget Lim is
exhausted and uses the partial solutions encountered in this search to train the PCFG. A
partial solution is a program p, which maps at least one input from the input set I to its
corresponding output in the set O. The budget Lim is defined as a constant d, which is
defined manually, multiplied by the highest cost l of a production rule in the current PCFG.

Lim = l× d, where l = max
r∈R

(w(r)) .

After training the PCFG with partial solutions, the search is restarted with the updated
PCFG. The parameter d allows one to define how often the system trains the PCFG model
and restarts the search; Barke et al. used d = 6. If the search cannot find a solution
after restarting and no partial solution is found, then the budget is increased to Limi =
Limi−1 + l× d, where Limi−1 is the budget of the previous iteration.

Probe’s PCFG starts with a uniform probability distribution to all production rules,
and it updates the probability distribution with partial solutions (programs) as follows.
Probe selects a subset of partial solutions from all the partial solutions encountered in the
current iteration that satisfy the following: (i) it is the first cheapest program according to
the current cost model, (ii) satisfies a unique subset of input-output examples, and (iii) was
not encountered in previous iterations. Then it updates the probability of all production
rules r ∈ R, P(r) with

P(r) =
Pu(r)

1−Fit

Z
where Fit = max

{p∈PSol|r∈tr(p)}

|o(p) ∩ O|
|O|

Here, Pu(r) represents the probability of rules as given by the uniform distribution, Z
represents the normalization factor, PSol indicates a subset of partial solutions selected
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using the aforementioned criteria, tr(p) represents the trace of a program, which is the
sequence of production rules used to derive the program p, o(p) indicates the output of
the partial program p, and Fit indicates the highest proportion of input-output examples
solved by any partial solution p ∈ PSol derived using production rule r. This way, Probe
increases the probability of production rules r that solve the maximum number of input-
output examples. Once Probe updates the PCFG, it stores PSol in memory and maintains
it across the restarts to ensure that partial solutions selected in previous iterations are not
selected again to update the grammar. Therefore, PCFG is only updated when a set PSol
with novel partial solutions is found. Due to Probe’s update rule, the probabilities are in
the open interval (0.0, 1.0). This way, the model is never “certain” that a symbol must or
must not be used in the solution of a problem; no symbol in the language costs 0 and w is
monotonically increasing.

4.1.2 Bustle Cost Function (wBustle)

Bustle’s cost function, wBustle, uses a neural network to compute the probability that a
program is part of a solution. The network is a binary classification model that receives the
input-output pairs (I,O) of the task and the output of a program p to each of the input
values in I and returns the probability that p is a subprogram of a solution to the task.

Bustle’s cost function is defined using two functions: w and w′. For program p =
r(p1, · · · , pk) the function w(p) is defined as

w(p) = 1 +
k∑

i=1

w′(pi) .

Here, 1 is the cost of production rule w(r) used to generate p (Bustle assumes all operators
to cost 1), and w′(pi) is the cost of the subprogram pi as given by the following equation.

w′(p) = w(p) + 5− δ(p) where δ(p) ∈ {0, · · · , 5} (2)

The value of δ(p) is an integer value that is based on the probability of p being a subpro-
gram of a solution that the neural model returns. The integer value δ(p) returns is defined
according to a binning scheme. Consider the values {0.0, 0.1, 0.2, 0.3, 0.4, 0.6, 1.0}; if the
probability that the neural model returns is within the first two values, i.e., [0.0, 0.1), then
δ(p) = 0, if it is within the second and third values, then δ(p) = 1, and so on. The value
of δ is used to penalize p by changing its cost according to the probability given by the
neural network; lower probabilities will result in higher costs. For example, consider p with
probability 0.05, then δ(p) = 0, and w′(p) = w(p) + 5. This will delay the use of the
subprogram p to generate further programs. Note that similarly to Probe, Bustle uses
a discretization scheme to ensure that the cost values w and w′ are integers. wBustle also
increases monotonically.

Example 3. Consider the generation of concat(concat(1, 3), 2). Bustle computes its
w-value as 1+w′(concat(1, 3))+w′(2), i.e., the cost of 1 for the operator concat plus
the w′-costs of its subprograms concat(1, 3) and 2. Once the program concat(concat(1,
3), 2) is generated, a neural network is used to calculate its w′-value, which is used when it
appears as a subprogram in another program.
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io_pairs = [("hello world", "hello"),
("FOO BAR", "foo"),
("switch", "switch")]

ps = [lambda inp, out: out.lower() in inp.lower(),
lambda inp, out: out in inp,
lambda inp, out: len(inp) < len(out)]

Figure 3: A set of input output pairs (io_pairs) and property signature list (ps). The first
property returns True for all pairs; the second property returns True for the first and third pairs
and False for the second pair; and the third property returns False for all pairs.

Property Signatures The binary classification model that defines wBustle receives as
input the set of input-output pairs, which could be of varied length. Instead of training a
recurrent model to handle inputs of varied size, wBustle uses property signatures (Odena &
Sutton, 2020) to define the input to a simpler fully connected feed-forward neural model. A
property is defined as a function f that takes as input the input-output pair of a program p
and returns a Boolean: f(i, o)→ {0, 1}. A property is used to define some aspect of p. For
example, given an input-output pair (hello world, hello), a property function f(i, o)
that checks whether o is in i returns True to the input-output pair. Similarly, when a list of
input-output pairs of a program p is evaluated with a list of k properties, we get a feature
vector of length k, where each entry indicates the result of a property for all input-output
pairs. Each entry of this vector has a value in {−1, 0, 1}, where the values of −1 and 1
indicate that the property returned either False or True, respectively, to all input-output
pairs; the value of 0 indicates that the property returned True to some pairs and False to
others.

Example 4. Consider the set of input-output pairs and three properties, written in Python,
shown in Figure 3. The first lambda function returns True and the third False to all pairs.
The second property returns True to the first and third pairs and False to the second. Thus,
this set of input-output pairs have the property signature vector [1, 0,−1].

The model wBustle receives an input of size fixed by a number of properties. That way,
the number of input-output pairs can vary, but the input size remains the same.

4.1.3 Cost Functions for Bee Search

In this section, we show how we adapt wProbe and wBustle to Bee Search. We also
introduce a novel cost function to be used with Bee Search, which is based on wBustle.

The difference between Probe’s w and Bee Search’s version of it is that in the latter
the costs are not rounded off. We denote both versions of the cost function by wProbe. If
used in the context of Bee Search, then we refer to the function that does not truncate
the values; we refer to the original function of Probe in all other contexts.

Since Bee Search handles real-valued cost functions, we adapt the w function of Bus-
tle by interpolating the values of δ from 0 to 5 according to Bustle’s binning scheme. We
interpolate x = {0.00, 0.15, 0.25, 0.35, 0.50, 1.00} and y = {0, 1, 2, 3, 4, 5} by pairing the val-
ues x and y: (0.00, 0), (0.15, 1), (0.25, 2), (0.35, 3), (0.50, 4), (1.00, 5) and using a cubic spline
to obtain an interpolant. Then, given a probability value returned by the model, the inter-
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polant returns the δ-value used to obtain w′, as shown in Equation 2. In the context of Bee
Search, we use wBustle to refer to the interpolated version of the original wBustle.

We also introduce a novel cost function based on wBustle defined as follows.

wu(p) = 1 +
k∑

i=1

w′
u(pi) (3)

where,
w′

u(pi) = wu(pi)− log2 P(pi) (4)

P(pi) is the probability that pi is part of a solution according to Bustle’s neural network.
This function computes the cost w of a program as the sum of the costs w′ of its subprograms
added to 1, the cost of a production rule; the cost wu(p) for all terminal symbols p is 1.
The cost w′

u(pi) is given by wu(pi) added to the negative of the log of the probability that
pi is part of a solution. Bustle’s cost function limits how much the neural model can
change the cost of a program by mapping the probabilities to a value between 0 and 5. Our
cost function leaves the influence of the neural model unbounded by using − log2 P(p). The
subscript u in wu stands for “unbounded”.

We call wBustle and wu penalizing functions because the post-generation w′-value is not
smaller than the w-value. We call wProbe, wBustle, and wu additive cost functions because
the w-value of a program p is computed by adding the cost of the subprograms of p. The
adapted versions of wProbe and wBustle, and wu are monotonically increasing cost functions.

In the next section, we describe a generic cost-guided bottom-up search algorithm that
can be used to instantiate Probe and Bustle by changing the cost function the search
uses. Heap Search and Brute are described in Sections 4.3 and 4.4, respectively.

4.2 Generic Cost-Guided Bottom-Up Search

In cost-guided bottom-up search, programs are enumerated in the order of increasing cost
c. The cost is assigned by a cost function w, such that programs that are more likely to
lead to the solution have a lower cost. The search enumerates all programs of cost c before
enumerating programs of cost c+ 1. It begins by enumerating all programs of cost 1, then
in the second iteration, it uses the production rules r ∈ R to combine the programs with
cost 1 and generate programs of cost 2, and so on. The search continues until the solution
program p is found, or the search budget is exhausted and a failure ⊥ is returned.

Example 5. Consider the DSL shown in Figure 2 along with the cost of each production
rule r ∈ R, where the goal is to synthesize the program concat(concat(1000, 1000),
1000). Costs are assigned in a way that they bias the search toward the solution (the
symbol 1000 is cheaper than 1, 2, · · · , 999). The cost of program p = r(p1, · · · , pk) given
by rule r is equal to the sum of the costs of its subprograms p1, · · · , pk and the production
rule r. Furthermore, the cost of each program is rounded to the nearest integer value; for
instance, the cost 9.816589 for program 1000 is rounded to 10. Cost-guided BUS will start
by enumerating all programs with cost 10: {1, 2, · · · , 1000}, since it is the cheapest set of
programs that can be generated. No program can be generated with costs in [1, 9]. Next, it
generates programs with cost 34: {concat(1, 1), concat(1, 2), · · · , concat(1000,
1000)}. For example, the cost of concat(1000, 1000) is calculated as follows. Since
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Algorithm 2 Generic Cost-Guided Bottom-Up Search
Procedure: Cost-Guided-BUS(G, (I,O), w)
Require: G = (V,Σ, R, I), set of input-output examples (I,O), and a cost function w.
Ensure: Solution program p or ⊥
1: c← 1
2: while not timeout do
3: for p in Next-Program(G, B, c, w) do
4: o← Execute(p, I)
5: if o equals O then
6: return p

7: if p is not equivalent to any program in B then
8: if post-generation cost function then
9: c← w′(p)

10: B[c].add(p)
11: c← c+ 1

12: return ⊥
Procedure: Next-Program(G, B, c, w)
Require: G = (V,Σ, R, I), programs bank B, cost c, and a cost function w.
Ensure: Program of cost c
13: for r ∈ R do
14: if arity = 0 and w(r) = c then
15: yield r
16: else if arity > 0 and w(r) < c then
17: for (p1, · · · , pk) in B × · · · ×B do #operation over the values of the dictionary B
18: if w(r(p1, · · · , pk)) = c and (p1, · · · , pk) is type-consistent with r then
19: yield r(p1, · · · , pk)

the cost of concat is 14.28771 and the cost of 1000 is 9.8165, which gives 14.28771 + 2×
9.8165 = 33.920888 ≈ 34. In the third iteration, it generates programs of cost 58 and it finds
the solution program concat(concat(1000, 1000), 1000).

Unlike the size-based enumeration, the cost-guided BUS is biased toward cheaper pro-
grams according to the cost function w, which often allows the search to solve the problem
while possibly generating many fewer programs compared to the size-based methods.

The pseudocode for generic cost-guided BUS is given in Algorithm 2. It receives a
grammar G, a set of input-output examples (I, O), and a cost function w to guide the
search. It starts by initializing cost c = 1, and in each iteration of the main loop (lines
2-11), it calls the procedure Next-Program to generate programs with a target w-value
of c. The cost c increases by one after each iteration (line 11). Next-Program procedure
iterates over all the rules r ∈ R of grammar G to generate programs with the target cost c.
If the arity of the rule r is 0, i.e., it is a terminal rule, and the cost of the rule w(r) = c, then
it returns the program given by rule r (lines 14-15). Otherwise, if the arity of the production
rule is greater than 0, and the cost of the rule is less than the desired cost w(r) < c, then
Next-Program generates all programs with the target cost c given by the rule r with
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the parameters given by the Cartesian product of all programs in the bank B. Similarly to
Algorithm 1, Next-Program considers only the programs p1, · · · , pk from B that are type-
consistent with r. For example, when generating programs p with rule I → concat(I, I),
Next-Program only considers programs that return strings as subprograms of p.

Once the program p is yielded to the Cost-Guided-BUS procedure, the program is
executed (line 4) and, if it satisfies the desired output O, then it is returned as a solution
to the task. Otherwise, the algorithm checks for observational equivalence, if p is not obser-
vational equivalent to any other program in the bank B, then p is stored in B indexed by
its cost c. Post-generation functions, such as the one used in Bustle, use a temporary cost
w(p) during the generation of programs p in Next-Program (line 16) and assign a new
cost w′(p) once the program is generated (line 9). The new cost w′(p) is then used to store
the programs in B. Once the program p is added to B, the main loop is repeated until the
search finds the solution program p or it exhausts the time allowed for synthesis.

Algorithm 2 generalizes Probe, Bustle, and TF-Coder. It is equivalent to Probe
if it receives the cost function of Probe. We note that Probe learns a cost function
during the search, while Algorithm 2 assumes a fixed pre-generation cost function. It is
equivalent to Bustle if it receives the post-generation cost function of Bustle. Finally, it
is equivalent to TF-Coder if it receives TF-Coder’s hand-crafted cost function, which is
also a pre-generation function.

4.2.1 Lack of Best-First Ordering for Probe and Bustle

Both Probe and Bustle lose information because they round off the costs of the programs.
As a result, the order in which they search over programs of a given cost is arbitrary, not
best-first. In the PCFG given in Figure 2, 1000 has a lower cost than 1 , 2 , · · · , 999,
but when rounded, their costs become equal, i.e., 10, and they are enumerated in an arbitrary
order, while according to the cost function 1000 should be evaluated before 1, 2, · · · , 999.
Since the number of programs with the same rounded cost can increase rapidly as the search
grows, the algorithms’ rounding off scheme can substantially slow down the synthesis process.
In the example of synthesizing concat(concat(1000, 1000), 1000), depending on
how the ties are broken, Probe might evaluate more than 910,000,000 programs before
finding the solution. By contrast, Bee Search evaluates 1,001,001 programs to find the
solution.

One could achieve a “near best-first search” if the costs were multiplied by a large constant
(e.g., 1,000,000) before being rounded off. The issue with this approach is that, due to the
large number of different costs, there would be many iterations of Probe and Bustle that
no program would be generated (similar to how Algorithm 2 did not generate any program
with cost [1, 9] in Example 5); we refer to these iterations as sterile iterations. Probe
and Bustle still pay the computational cost of checking whether there are programs to be
generated of a particular cost. Given that the target program cost of a given iteration is
c and that the production rule r with k non-terminal symbols costs c′, Probe checks all
combinations of programs (p1, · · · , pk) whose added cost is c− c′, so that the non-terminal
symbols of r can be replaced by (p1, · · · , pk) and the total cost of the generated program
is c; Bustle follows the same approach, but using its cost function. The task of finding
a subset of numbers that adds to a target value is NP-Complete (Garey & Johnson, 1990)
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and finding such subsets is exponential in the number of non-terminals k. Although k can
be small (e.g., for concat k = 2), computing the subsets can still hamper the performance
of the algorithm if the subsets have to be computed many times during the search.

We performed preliminary experiments with a modified version of Probe that uses the
“large-constant trick” and discovered that the approach is too slow to be practical: most of
the computational effort is spent computing the subsets with target cost values for which
no program can be generated. The algorithm we introduce in this paper, Bee Search,
bypasses the NP-Complete problem of finding a subset of numbers that adds to a target
value by performing a search in a cost-tuple space (see Section 5 for details).

4.3 Heap Search

Heap Search (Fijalkow et al., 2022) performs best-first bottom-up synthesis with respect
to a cost function w defined with a PCFG. It achieves best-first enumeration by using a set
of priority queues, which we denote as Heap, one for each non-terminal symbol T . We say
that the programs derived from T are of type T . Each queue in Heap contains programs of
type T that are sorted according to the programs’ costs. Heap Search also uses a set of
programs already seen in search (Seen) and a hash table (Succ), to store the successors of
all programs of type T seen in search. The successor of a program p, denoted p′, is the next
cheapest program of type T to be generated, i.e., a program generated with a production
rule for T with w(p′) > w(p) such that there is no p′′ with w(p′) > w(p′′) > w(p).

Example 6. Consider an example of Heap Search using the following DSL.

I → 1 | 2 | I + I .

Here, w(1) < w(2) < w(I → I + I), and similarly to Probe, the cost of a program p is
given by the sum of the cost of the production rule and its subprograms pi. Heap Search
first generates programs 1, 2, and 1+1 (the cheapest program which can be generated using
I + I) and add them to HeapI , a heap structure storing programs of type I (this DSL
only has programs of type I). The programs are sorted according to their cost w. Then,
it first evaluates 1 (cheapest program), followed by the next cheapest program, 2. Once 2
is removed from the heap, Heap Search sets 2 as the successor of 1 in the Succ hash
table, i.e., Succ[1] = 2. Next, it pops 1+1 out and 1+1 is assigned as the successor of 2.
Since 1+1 was derived from a non-terminal production rule (I → I + I), Heap Search
generates 1+1’s children by replacing each subprogram p of 1+1 with p’s successor. That is,
it first replaces 1 (the first subprogram) with its successor (2) to generate 2+1. Then, Heap
Search replaces the second subprogram with its successor and 1+2 is generated. Both of
these programs are added to HeapI . In the next iteration, Heap Search pops out the next
program from HeapI and continues the search until a solution program p is removed from
HeapI or it times out and it returns failure.

The pseudocode for Heap Search, adapted from Fijalkow et al. (2022), is shown in
Algorithm 3. The algorithm starts by initializing all data structures HeapT , SeenT , and
SuccT with the programs given by the terminal symbols p of G. The structures are also
initialized with the cheapest program of each type T , which is given by production rules
T → r(T1, · · · , Tk). Each subprogram of type Ti in r(T1, · · · , Tk) is given by the cheapest
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Algorithm 3 Heap Search Algortihm
Procedure: HeapSearch(G, (I,O), w)
Require: G = (V,Σ, R, I), input-output examples (I,O), and a cost function w.
Ensure: Solution program p or ⊥
1: for all non-terminal symbols T ∈ V do
2: Create an empty min heap HeapT

3: Create an empty hash table SuccT

4: Create an empty set SeenT

5: for all derivation rules of T → p do
6: Add p to HeapT with priority w(p)
7: Add p to SeenT

8: for all derivation rules T → r(T1, · · · , Tk) do
9: p← r(HeapT1 .top(), · · · ,HeapTk

.top())
10: Add p to HeapT with priority w(p)
11: Add p to SeenT

12: p← ∅
13: T ← I
14: while not timeout do
15: p← Query(p, T )
16: o← Execute(p, I)
17: if o equals O then
18: return p

19: T ← type(p)
20: return ⊥
Procedure: Query(p, T )
Require: A program p, and type T of the program.
Ensure: Next cheapest program p′

21: if p is a key in SuccT then
22: return SuccT [p]
23: else
24: p′ ← pop(HeapT ) # p′ is of form r(p1, · · · , pk)
25: SuccT [p]← p′

26: for all i ∈ [1, · · · , k] do
27: yi = Query(pi, Ti)
28: p′i = r(p1, · · · , pi−1, yi, pi+1, · · · , pk)
29: if p′i is not in SeenT then
30: Add p′i to HeapT with priority w(p′i)
31: Add p′i to SeenT

32: return p′

program generated with a terminal symbol of type Ti. For example, for type Ti we use
HeapTi .top() as all heaps are already initialized by the terminal symbols. In our example,
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the rule I → I + I generated the program 1 + 1 because program 1 was the cheapest
program generated with a terminal symbol.

Heap Search invokes Query while there is still time allowed for synthesis. Query
receives a program p and its type T as input; it returns the successor of p. Heap Search
initially calls Query with an empty program and the initial symbol of the grammar, I.
Then, it calls Query with the program it returned on its last call. Each call to Query
returns the next program according to the best-first ordering of the programs given by w.
Each program Query returns is evaluated and, if it represents a solution, the program is
returned; Heap Search returns failure, ⊥, if it times out before finding a solution.

The Query procedure returns the successor of the program p passed as input and it
recursively generates the children of p’s successor. The base case of the recursion is when
the successor of p is already stored in SuccT [p] (lines 21 and 22). If the successor p′ is not
in SuccT , then it is removed from HeapT and p′ is set as the successor of p in SuccT .
In Example 6, the successor of 2 is 1 + 1; the latter was popped out of HeapT when
Query was invoked for 2. Query then generates all children of p′, by replacing each of
p′’s k subprograms with the successors of its subprograms. The subprogram successors are
obtained by calling Query recursively (line 27). In our example, the children of 1 + 1
were 2 + 1 and 1 + 2. The subprogram 2 of 2 + 1 was obtained by calling Query with
the program 1; program 2 was returned as the base case of the recursion as SuccT [1] = 2.

Heap Search only inserts a newly generated program if it has not been added to a
Heap before. This is achieved by storing in the hash table Seen all programs generated
in search (lines 29–31). Note that Heap Search only does not re-insert in a Heap the
exact programs that were seen before. This is different from the equivalence check BUS
algorithms perform. While BUS algorithms would disregard the program 1 + 1 because it
is observational equivalent to 2, Heap Search considers both programs in search. Heap
Search provably evaluates programs in a best-first ordering according to a pre-generation
cost function.

4.3.1 Limitations of Heap Search

Heap Search sacrifices the ability of remove observational equivalent programs to attain
best-first ordering with respect to a pre-generation cost function. If Heap Search per-
formed equivalence check, it would no longer be a complete algorithm as it could fail to find
a solution even for solvable problems. In our example, 1 + 1 would be eliminated as it is
observational equivalent to 2 and Heap Search would not generate the children of 1 +
1, which cannot be generated through another branch of the search.

Moreover, Heap Search is guaranteed to evaluate programs in a best-first order, but
it does not generate programs in the best-first order. Whenever Query is called, it returns
a single program that is evaluated, however, it generates many other programs (lines 26-31)
that might never be evaluated because they are more expensive than the cost of a solution
program.

In addition, Heap Search was not designed to search with post-generation functions
such as wBustle. If the algorithm is modified to handle post-generation cost functions,
then it would not be able to search in a best-first order as its proof implicitly assumes a
pre-generation cost function.
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Algorithm 4 Brute Search
Procedure: Brute(G, (I,O), w)
Require: G = (V,Σ, R, I), input-output examples (I,O), and a cost function w.
Ensure: Solution program p or ⊥
1: n0 ← {T |T ∈ Σ ∧ I → T}
2: if a program p in n0 is a solution then
3: return p

4: Add n0 to Q with priority 0 (highest priority possible)
5: B = {}
6: while not timeout do
7: n← Q.pop() # node n can represent one or multiple programs
8: for each child program p of n do
9: o←Execute(p, I)

10: if o equals O then
11: return p

12: if o not in B then
13: B.add(p, o)
14: Add node representing p to Q with priority w(p)

15: return ⊥

4.4 Brute Search

Brute is a best-first search algorithm we adapted to inductive program synthesis that is
loosely inspired by the inductive logic programming system of the same name (Cropper &
Dumančic, 2020). Let us consider an example with the DSL from Example 6: I → 1 | 2 | I+I.

In Brute, the root of the tree represents all programs given by symbols appearing in
terminal production rules. In our example, the root represents the programs 1 and 2. The
root is the only node representing multiple programs; all other nodes in the tree represent one
program. The set of children of a node n in the Brute search tree is defined as follows. For
each non-terminal production rule we generate all possible programs given by the Cartesian
product of all programs seen in search where at least one of the subprograms of the children
is given by a program n represents. In our example, the children of the root are given by
the Cartesian product of programs 1 and 2 with rule I → I + I: 1 + 1, 1 + 2, 2 +
1, and 2 + 2. The children nodes representing programs 1 + 1 and 2 + 1 are pruned
because they are observational equivalent to 2 and 1 + 2, respectively. The next layer of
the tree is generated following the same procedure. For example, the children of the node
representing 1 + 2 are given by the Cartesian product of all programs observed in search
as subprograms of the production rule I → I + I, where at least one subprogram is 1 +
2. The children of the node representing 1 + 2 are: 1 + (1 + 2), 2 + (1 + 2), (1
+ 2) + 1, (1 + 2) + 2, (1 + 2) + (2 + 2), (2 + 2) + (1 + 2); after pruning
observational equivalent programs, we obtain: 2 + (1 + 2) and (1 + 2) + (2 + 2).

The pseudocode of Brute is shown in Algorithm 4. The root of the tree, n0, is defined as
the set of programs given by the terminal rules (line 1); if any of these programs p represents
a solution, then p is returned. Otherwise, n0 is added to a priority queue Q. In every
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iteration of the algorithm, Brute pops the cheapest node n from Q (line 7) and generates
its children, as illustrated in our example above. Each child of n represents a program p. If
p is a solution, then it is returned. Otherwise, if p is not observational equivalent to another
program in B (line 12), then (i) Brute adds p to the bank of programs B (line 13) and (ii)
a node representing p is added to the queue with priority w(p) (line 14).

4.4.1 Limitations of Brute

Similarly to Heap Search, Brute only evaluates programs in best-first order and does not
generate programs in best-first order. In each iteration, it evaluates a single program but
possibly generates many more. In Brute the branching factor can be very large compared to
Heap Search since it considers all the programs evaluated so far in the Cartesian product
used to generate the children of a node. This can substantially slow down the synthesis
process and increase its memory usage because it generates many programs that will never
be evaluated, as they can be more expensive than the solution program.

5. Best-First Bottom-Up Search (Bee Search)

Bee Search attains best-first ordering with respect to the generation of programs by
performing a search in a cost-tuple space, which is explained in the next section.

5.1 Cost-Tuple Space

Bee Search searches over a set of cost-tuple spaces to determine the next program to
be generated during search. We define one cost-tuple space for each non-terminal rule. A
state in a cost-tuple space is defined by a tuple with k integers in N (we use 1 as the index
of the first element of an array), where k is the number of non-terminal symbols in the
production rule. For example, (i1, i2) represents a state in the cost-tuple space of the rule
I → concat(I, I); i1 and i2 represent indexes in an ordered set C that contains the cost of
all programs generated in search and it is sorted from the smallest to the largest cost. We
use the words ‘state’ and ‘cost-tuple state’ interchangeably. Since each state is related to a
production rule r, we denote by n.r the production rule associated with n.

Each cost-tuple state represents a set of programs that are to be generated. For example,
the state (1, 1) of the space for I → concat(I, I) represents all programs that can be
generated by replacing the first and second non-terminal symbols of concat by the cheapest
programs encountered in search. According to the costs of the PCFG shown in Figure 2,
1000 is the program with the lowest w-value encountered in the space defined by the DSL
(w-value of 9.8165). Initially, C = {9.8165} and the cost-tuple state n = (1, 1) for I →
concat(I, I) represents the program concat(1000, 1000) and the cost-tuple state’s
w-value can be computed as w(n) = 14.28771 + 9.8165 + 9.8165 = 33.92071. For additive
cost functions, the w-value of the state is equal to the w-value of the programs that the state
represents. Although only 1000 costs 9.8165, each state n = (i1, i2, · · · , ik) can represent
multiple programs, as there might be multiple programs with the i-th cost in C.

Bee Search uses a priority queue Q that is initialized with one cost-tuple state (1, · · · , 1)
for each non-terminal rule, where the size of the tuple matches the number of non-terminal
rules on the right-hand side of the rule. Each cost-tuple state represents a set of programs
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with a given cost w; therefore, the priority queue is sorted according to the w-value of
each cost-tuple state. In every iteration, Bee Search pops the cheapest cost-tuple state
n = (i1, i2, · · · , ik) from Q and generates all programs n represents. If none of these programs
represents a solution to the program synthesis task, then the children of n are generated and
inserted in Q. The children of n are given by the set of states that differ from n with the
addition of 1 to an entry of n: {(i1+1, i2, · · · , ik), (i1, i2+1, · · · , ik), · · · , (i1, i2, · · · , ik+1)}.
We say that a cost-tuple state n is expanded when its children are generated.

Let us consider the following example.

Example 7. Table 1 shows a trace of Bee Search for the problem of synthesizing the
program concat(1000, concat(1000, 1000)). In this example, we will consider the
cost function wProbe described in Figure 2. The table shows updates to the Bee Search’s
cost list C and priority queue Q, programs generated, and the number of programs generated
in each iteration (Count). The entries in column Q are cost-tuples of the form [cost, cost-
tuple]; costs are truncated to four decimal places and the name of production rule is omitted
from the cost-tuple for brevity. The number of entries in a cost-tuple indicates the arity of
the production rule; the empty cost-tuple ( ) represents all programs generated with a terminal
rule and cost-tuples with two entries, e.g., (1, 1), represent states for concat.

Itr. # C Q Programs Count

1 {9.8165} {[9.9660, ( )], [33.9207, (1, 1)]} 1000 1

2 {9.8165, 9.9660} {[33.9207, (1, 1)]} 1, 2, · · · , 999 999

3
{9.8165, 9.9660,

33.9207} {[34.0702, (2, 1)], [34.0702, (1, 2)]} concat(1000,1000) 1

4
{9.8165, 9.9660,
33.9207, 34.0702}

{[34.2197, (2, 2)], [58.0249, (1, 3)],
[58.0249, (3, 1)]}

concat(1000, 1),
. . . concat(999, 1000)

1998

5
{9.8165, 9.9660,
33.9207, 34.0702,

34.2197}

{[58.0249, (1, 3)], [58.0249, (3, 1)],
[58.1744, (3, 2)]}

concat(1, 1),
. . .concat(999, 999)

998001

6
{9.8165, 9.9660,
33.9207, 34.0702,
34.2197, 58.0249}

{[58.1744, (3, 2)], [58.1744, (2, 3)],
[58.1744, (4, 1)], [58.1744, (1, 4)]}

concat(1000,
concat(1000, 1000))

1

Table 1: The table shows the trace of Bee Search for finding concat(1000, concat(1000,
1000)) with the cost function described in Figure 2. The table shows the cost list C, priority queue
Q, the generated programs, and the count of programs generated at each iteration.

Bee Search starts by initializing C with the cost of the cheapest program generated with
a terminal rule. Q is initialized with empty cost-tuple states, with one state for each terminal
rule that is not the cheapest, and with one cost-tuple state for each non-terminal rule. In this
example, all programs generated with production rules I → j for j ∈ {1,2, · · · ,999} are rep-
resented in state [9.9660, ()], while state [33.9207, (1, 1)] represents the program concat(1000,
1000).1 In the first iteration, Bee Search pops the cheapest node of Q, which repre-
sents the program 1000, whose cost is 9.8165. In the second iteration, it removes the state

1. Bee Search would actually insert one cost-tuple state for each program generated with a terminal
rule: [9.9660, (),1], [9.9660, (),2], · · · , [9.9660, (),999]. For the interest of space we represent all these
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[9.9660, ()] and generates 999 programs 1, · · · , 999 with cost 9.9660; both costs are added
to C.

Next, the search removes n = [33.9207, (1, 1)] from Q and generates concat(1000,
1000) with a cost of 33.9207. Here, 1 in the cost-tuple refers to the first index of the cost set
C and the only program we have with that cost is 1000; (1, 1) indicates that both arguments
of concat should be of cost 9.8165, hence the program concat(1000, 1000) whose cost
equals the sum of the costs of the subprograms 1000 and the cost of the operation concat.
Since n represents a non-terminal rule, the node is expanded, thus generating the cost-tuple
states {[34.0702, (2, 1)], [34.0702, (1, 2)]}. Similarly, in fourth and fifth iterations, the search
generates all programs with cost 34.0702 and 34.2197, respectively. After generating all
programs of each node, it adds their children to Q. Bee Search finds the solution program
with cost 58.0249 in iteration 6. Note that there are other programs with similar cost (i.e.,
58.1744) and Bee Search is able to distinguish them from the solution node. The programs
with cost 58.1744 are not even generated in memory, but only their cost-tuple states.

Bee Search’s ability to distinguish programs with similar cost values (e.g., 58.0249
and 58.1744) can make a substantial difference in terms of search running time. As an
example, Probe is unable to distinguish 58.0249 (used in the sixth iteration of the example)
and 58.1744 (the next cheapest cost) as both values are truncated to 58. As a result,
Probe evaluates approximately one billion programs to find the solution for our example.
By contrast, Bee Search evaluates only approximately one million programs to find the
solution.

Further, the search in the cost-tuple space allows for a best-first search with respect to the
generation of programs. At each iteration, Bee Search only generates the programs with
the next cheapest possible cost. Unlike other best-first search algorithms such as Brute
and Heap Search, Bee Search does not have to generate the programs to identify the
ones that will be evaluated next in the search. This is achieved at the cost of generating
cost-tuple states that might never be evaluated in search (i.e., cost-tuple states for which
we do not generate their programs). This feature is an advantage because the branching
factor in the cost-tuple space is much smaller than the branching factor in the program
space. We show empirically the advantages of performing best-first search with respect to
the generation of programs.

5.2 Search Algorithm

Algorithms 5 and 6 show the pseudocode for Bee Search. The algorithm receives a DSL,
a set of input-output examples, and a monotonically increasing cost function w; it returns
a solution p or failure ⊥. The search starts by adding in C the w-value of the cheapest
program generated with a terminal rule and initializing a priority queue Q with one state
(1, · · · , 1) for each non-terminal rule (line 4 of Algorithm 5). Q also receives one state for
each terminal rule; these states do not have a tuple associated with them (line 6) because
they do not generate children in the cost-tuple space. The ordering of Q is defined by the
w-values of the cost-tuple states.

cost-tuple states as [9.9660, ()] in this example. Bee Search would also spend one iteration with each
of these states, which we also simplify in this example to a single iteration.
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Algorithm 5 Bee Search

Procedure: BeeSearch(G, (I,O), w)
Require: G = (V,Σ, R, I), input-output examples (I,O), and a monotonically increasing

cost function w.
Ensure: Solution program p or ⊥
1: C ← {minT∈Σw(T )}
2: Q← ∅ # Sorted according to the w-values
3: for each non-terminal rule S in G do
4: Q.push([S, (1, · · · , 1)])
5: for each terminal symbol S in G do
6: Q.push([S])
7: while not timeout do
8: p, c← Next-Program(B,Q)
9: o← Execute(p, I)

10: if o equals O then
11: return p

12: B[c].add(p)
13: return ⊥

In every iteration of the algorithm (iteration of the while loop in Algorithm 5), it gen-
erates the next program p (see Algorithm 6), which is executed with the input values I,
thus obtaining the outputs o. If o matches the desired output O, then p is a solution, and
it is returned (line 11). If p is not a solution, it is added to the bank of programs B, which
is indexed by the cost of the programs c (line 12). This process continues until either a
solution is found or the search times out, in which case failure ⊥ is returned (line 13).

Algorithm 6 defines the program that is evaluated next in search. We remove a state
n with the smallest w-value from Q (line 1). If the state represents a terminal rule, then
the state has no children (i.e., it does not have non-terminal symbols that can be used to
generate new programs). In this case, we just return the program n.r and its cost w(n)
(line 5 of Algorithm 6), where function r returns the righthand side of the rule state n
represents. We expand n if it represents a non-terminal rule, i.e., we generate all children
n′ of n and we add them to Q if they were not already inserted in Q (lines 6–10).

If n represents a non-terminal rule, we generate the set of programs n represents and
we return each program p as an iterator to Algorithm 5.2 The programs n represents are
generated by replacing each non-terminal symbol of n’s rule with a program from B. Let
n[j] be the j-th value of n, the j-th non-terminal symbol of n.r is replaced by a program
with cost C[n[j]]. Given that B is indexed by the programs’ cost, we obtain the pro-
grams (p1, · · · , pk) that replace the non-terminals of n.r by taking the Cartesian product
B[C[n[1]]]× · · · ×B[C[n[k]]] (line 11). Similarly to Algorithms 1 and 2, Bee Search per-
forms type checking while generating programs with the Cartesian product operation. We
denote newly generated programs as n.r(p1, · · · , pk). Since all programs B[C[n[i]]] have the

2. An iterator is implemented with the keyword “yield” and it allows a function f1 return a value to a
function f2 and, once f2 calls f1 again, the execution in f1 continues from the last “yield” executed.
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Algorithm 6 Next-Program procedure
Procedure: Next-Program(B,Q)
Require: Bank of programs B, priority queue Q
Ensure: Next cheapest program p of cost c
1: n← Q.pop()
2: if pre-generation cost function then
3: C ← C ∪ w(n)

4: if n represents a terminal symbol then
5: return n.r, w(n)
6: for i in {1, · · · , k} do
7: n′ ← n
8: n′[i]← n′[i] + 1
9: if n′ is not a duplicate then

10: Q.push(n′)
11: for (p1, · · · , pk) in B[C[n[1]]]× · · · ×B[C[n[k]]] do
12: if (p1, · · · , pk) is type-consistent with n.r then
13: p← n.r(p1 · · · , pk)
14: if p is equivalent to any program in B then
15: continue
16: if post-generation cost function then
17: Insert w′(p) in C while keeping C sorted
18: if w′(p) < C[i], where i = maxj{j ∈ n|n ∈ Q} then
19: Heapify Q

20: yield p, w′(p)
21: else
22: yield p, w(p)

same cost, the w-value of all programs n.r(p1, · · · , pk) matches the w-value of n. We discard
observational equivalent programs (lines 14 and 15).

Bee Search treats post-generation and pre-generation functions differently. For pre-
generation functions, the w-value of all programs generated from state n is identical to the w-
value of n. Thus, the cost of the programs can be added to the set C before generating them
(lines 2 and 3). For post-generation functions, the w′-values are known only after generating
the programs, so they are inserted in C in line 17. While for pre-generation functions the
cost values are inserted in increasing order in C and they can simply be appended at the
end of C, the costs w′ are not necessarily generated in increasing order (programs generated
from the same tuple n can have different w′-values). Bee Search maintains C sorted with
post-generation functions by inserting the w′-values in their correct positions in C. Let i be
the largest index in a cost-tuple state in Q. If the w′-value inserted in C is smaller than the
i-th value in C (denoted C[i] in the pseudocode), then Q needs to restore its heap structure
through a “heapify” operation. This is because, once the w′-value is inserted in C, some of
the indexes j in the cost-tuple states in Q might not refer to the same C[j] they referred to
prior to the insertion of the new w′-value. In the worst case, the insert operation is linear in
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the size of C. The heapify operation is more expensive because it is linear in the size of Q
and Q tends to be much larger than C. However, in practice, the heapify operation is rarely
performed. By keeping C sorted and Q with a valid heap structure, we can prove that Bee
Search is a best-first search algorithm also for post-generation functions (see Section 5.3).
Each program and its cost are returned as an iterator in lines 20 and 22. If the w′ function
is encoded in a neural network, instead of evaluating one program at a time, we evaluate all
programs generated from n in a batch for efficiency; the batch evaluation is not shown in
the pseudocode.

5.3 Theoretical Guarantees

Bee Search is complete, correct, and performs best-first bottom-up search with respect to
an additive cost function w that can be either of the pre-generation or the post-generation
type. In this section, we provide the proofs for these properties.

Lemma 1. Let w be an additive cost function. If the values in C are sorted from smallest
to largest, then the w-values of the cost-tuple states increase monotonically in Bee Search.

Proof. The children n′ of a state n = (i1, i2, · · · , ik) are identical n, except for one entry j
in n that is incremented by 1. For additive functions we have w(n) = K +

∑k
i=1C[i], where

K is the cost of the production rule n represents. Then, we have the following.

w(n) = K +

k∑
i=1

C[i]

= K + C[j] +
k∑

i=1
i ̸=j

C[i]

< K + C[j + 1] +
k∑

i=1
i ̸=j

C[i]

= w(n′) .

The inequality is due to C being sorted from smallest to largest and the values in C being
unique.

The following theorems state that Bee Search performs a best-first search with respect
to the generation of programs for a family of w functions that includes wProbe (Theorem 1)
and for a family of w functions that includes wBustle and wu (Theorem 2).

Theorem 1. Bee Search generates programs in best-first order with respect to an additive
pre-generation cost function w.

Proof. We prove by induction in the iterations of search that Bee Search expands all
cost-tuple states n in best-first order with respect to w, which implies that the programs p
generated from n are evaluated in best-first order because w is additive and thus w(p) = w(n)
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for all p. The base case is Bee Search’s first iteration when C is initialized with the w-value
of a terminal symbol with the smallest w value. Since w is additive, no state n can have
a value of w lower than C[1]. The inductive hypothesis states that all cost-tuple states up
to the j-th expansion (excluding the j-th expansion) are processed in best-first order with
respect to w. Since w is a pre-generation function, the cost values w(n) are added to C once
a cost-tuple state n is expanded, so C must be sorted in increasing order prior to the j-th
expansion.

For the inductive step, we consider the j-th expansion. In the j-th expansion, Bee
Search expands a cost-tuple state n1 with the smallest w-value in Q. Let us suppose that
there is another state n2 that was not expanded before n1 and w(n2) < w(n1) (i.e., Bee
Search would have to expand n2 instead of n1 to attain best-first ordering). Since C is
sorted from smallest to largest (inductive hypothesis) and w(n) < w(n2) < w(n1) for any
ancestor n of n2 (Lemma 1), either n2 or one of its ancestors n would have the smallest
w-value in Q and not n1, which is a contradiction, since n1 has the smallest w-value in Q.
Thus, the search expands the cost-tuple states in best-first order with respect to w, which
implies that it generates programs in best-first order with respect to w (w(n) = w(p) for all
programs p generated from n).

Theorem 2. Bee Search generates programs in best-first order with respect to an additive
and penalizing post-generation cost function w.

Proof. During a Bee Search search with penalizing post-generation cost functions, the
values of C[i] for a fixed i can change across iterations due to the penalization term of w′

and the sorting Bee Search performs. We prove by induction in the iterations of the search
that, at the time of expansion of a cost-tuple state n = (i1, i2, · · · , ik), C[i] has its minimum
value for all indexes i in n. By proving that the C[i]-entries have their minimum values, we
show that the C[i]-values cannot change later in search for all i in n. Since Bee Search
maintains C sorted and the C[i]-values cannot change, we can use Lemma 1 to show that the
cost-tuple expansions happen in best-first order with respect to w, which implies a best-first
order for the generation of programs as w(n) = w(p) for all p generated from n. In our
proof we consider cost-tuple states representing non-terminal rules since states representing
terminal rules do not generate children, and thus the priority queue alone guarantees the
best-first ordering for such states. The base case is the first cost-tuple state n = (1, · · · , 1)
expanded. Since C[1] contains the cost of the terminal symbol with the smallest w-value
and the w function is additive, no other program can have a smaller w-value. The inductive
hypothesis states that the C[i]-values have their minimum value and are sorted for all indexes
i of states Bee Search expands up to the j-th expansion.

Let n1 be the cost-tuple state with the smallest w-value in Q in the j-th expansion.
Let us suppose that, at a given iteration, due to the order in which Bee Search inserts
cost values in C, there is an i in n1 for which C[i] does not have its minimum value. That
is, there exists a cost-tuple state n2 that was not expanded yet and that will generate a
program p whose w′(p)-value will be assigned to C[i], and before this assignment happens,
we have C[i] > w′(p). Penalizing cost functions guarantee that the value of a program
cannot be smaller than the value of the cost-tuple state that generated the program, i.e.,
w′(p) ≥ w(n2), for a p generated from n2. Since w(n1) is given by the sum of costs of its
subprograms (w is additive) and w′(p) is one of the terms of the sum that results in w(n1),

1297



Ameen & Lelis

then w′(p) < w(n1) and thus w(n2) < w(n1). Since Bee Search always maintains Q with a
valid heap structure and the cost function increases monotonically for the cost-tuple states
(inductive hypothesis and Lemma 1), n2 and all its ancestors must have been expanded
prior to n1 and the C[i]-values for all i in n1 must be at their minimum value when n1 is
expanded.

Since the C[i]-values are sorted and final for all i in the states Bee Search expands,
Lemma 1 gives us that the cost-tuple states are expanded in best-first order according to w,
which implies that the programs are generated in best-first order according to w.

The next theorem shows that Bee Search search is complete, i.e., if there is a solution
is the space of programs G defines, Bee Search will eventually find it.

Property 1. Given enough memory and time, if a solution program p exists in the search
space defined by the grammar G, then Bee Search will find it.

Proof. Bee Search considers all possible cost-tuple states in the search—it does not leave
any state unchecked. Since every program that can be derived from G is mapped to a
cost-tuple state, Bee Search considers all possible programs during search.

We begin by discussing the correctness of Bee Search by showing that all indexes stored
in cost-tuple states refer to valid positions in the cost set C, despite C being dynamically
constructed during search. This means that Bee Search never accesses an index that is
outside the range of [1, |C|], and thus it does not throw a runtime error for that reason.

Property 2. For monotonically increasing cost functions, the indexes ij in the cost-tuples
(i1, i2, · · · , ik) generated during the Bee Search search are valid, i.e., ij in [1, |C|].

Proof. The proof is by induction in the iterations of search. C is initialized with the cost of
the cheapest terminal symbol, so all tuples (1, · · · , 1) refer to a valid index. The inductive
hypothesis is that prior to the j-th iteration of Bee Search all indexes i in all tuples
(i1, i2, · · · , ik) generated thus far in search are valid. In the j-th iteration of Bee Search
the cost-tuple state n is to be expanded and, by the inductive hypothesis, all its indexes are
valid, including the largest index, denoted imax. Since all indexes are valid, we know that
|C| ≥ imax. If |C| > imax, then all children of n are trivially valid because each index in n
grows at most 1 in n’s children. If |C| = imax, all children are also valid because when n
is expanded, its cost is added to C, thus increasing the size of C by 1. The cost C[imax] is
the largest in C before n is expanded. Since the cost function is increasing monotonically,
w(n) > C[imax] (or w′(p) > C[imax], where p is a program generated from n, for post-
generation cost functions). Thus, when n is expanded, the size of C increases by 1 and all
children of n have valid indexes.

The following theorem states that the program Bee Search returns is correct, i.e., it
solves the program synthesis task.

Property 3. If Bee Search returns a solution program p, then p is correct as it solves
the program synthesis task: p satisfies the semantic and syntactic constraints of the task.
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Proof. It is trivial to establish that Bee Search is correct, the program p it returns must
satisfy the semantic and syntactic constraints of the synthesis problem, as Bee Searchchecks
for these constraints in line 10 of Algorithm 5 and only returns the solution program p
(line 11) if the constraints are satisfied.

6. Empirical Results

We evaluate Bee Search on three benchmark problems set: (i) 205 string manipulation
problems—108 programming by example string problems from 2017 SyGuS competition, 37
real problems faced by people and posted on StackOverflow, and 60 spreadsheet problems
from Exceljet (Lee et al., 2018) (we call this benchmark the SyGuS benchmark), (ii) 38
handcrafted string manipulation problems from Bustle’s paper (Odena et al., 2021), and
(iii) 27 bit-vector problems from the Hacker’s Delight book (Warren, 2013). We have im-
plemented Probe, Bustle, Brute with wProbe and wBustle, Bee Search with wProbe,
wBustle, and wU, Heap Search with wProbe, and BUS.

Probe uses an online learning scheme in which the probabilities of the PCFG are up-
dated as more input-output examples are solved. Probe uses a parameter to determine
when to update the probabilities; we tested the values of d = {1, 2, · · · , 7} in all algorithms
using wProbe, and report the results for the value that performed best for each algorithm.
Bustle uses a neural network with property signatures (Odena & Sutton, 2020). Property
signatures are domain dependent and Odena et al. (2021) described properties only for the
string manipulation domain, so we limit the experiments with techniques using wBustle
and wu to string manipulation problems only. However, we evaluate the approaches using
wProbe on both string and bit-vector problems. We report the average and standard devi-
ation over 5 independent runs of all results involving the neural network of Bustle. BUS
is deterministic, so is Probe’s learning scheme, hence we report the results of a single run
for them.

We are interested in comparing Bee Search using wProbe with all other algorithms
using wProbe (Probe, Brute, and Heap Search) and Bee Search using wBustle with all
other algorithms using wBustle (Bustle and Brute). We are also interested in comparing
all algorithms performing best-first search: Bee Search, Brute, and Heap Search.
Lastly, we are interested in comparing Bee Search using wu with all other algorithms. We
performed two sets of experiments: one with a smaller DSL and another with a larger one (see
Appendix A for the DSLs). The larger DSLs are defined as follows. For each problem in the
string domain of SyGuS benchmarks, instead of using only the literals given in the problem’s
specification, we use literals from all problems in the set and all letters in the English
alphabet. For the 38 string manipulation problems, in addition to the aforementioned
literals, 50 randomly generated strings of length selected uniformly at random from the
range [2, 7], and 10 integers selected uniformly at random from the range [10, 100] are also
added. For the bit-vector domain, we used 250 literals for all problems, obtained by taking
the union of literals from all problems in the set and adding other 236 random literals. The
goal of experimenting with larger DSLs is to evaluate the algorithms in larger search spaces.
Larger DSLs also simulate scenarios in which one does not have access to the set of literals
required to solve a problem, and more literals can increase the chances of defining spaces
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Figure 4: Number of problems solved per number of evaluations and running time for 205 string
domain problems of SyGuS. The two plots at the top show the results for the smaller DSL; the plots
at the bottom show the results for the larger DSL.

that contain a solution. All experiments were run on 2.4 GHz CPUs with 16 GB of RAM.
The algorithms had 120 minutes to solve each task.

Figures 4 and 5 present the results for the string manipulation tasks from 205 SyGuS
competition and 38 handcrafted benchmarks, respectively. Figure 6 shows the results of
bit-vector domain. In each figure, the two plots at the top present the results for the smaller
DSL, while the plots at the bottom present the results for the larger DSL. We present the
number of problems solved by the number of programs evaluated and by the running time in
seconds. While running time offers a fair evaluation of the different algorithms, the number
of evaluations is machine- and implementation-independent, which allows it to be more easily
used by others. The plots were generated by sorting the solved instances according to each
algorithm’s running time (or number of evaluations); the y-axis shows the total number of
problems solved and the x-axis the sum of running times (or sum of number of evaluations).

6.1 Discussion

Our discussion is divided by our key findings.
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Figure 5: Number of problems solved per number of evaluations and running time for the handcrafted
38 strings benchmarks by Odena et al.. The two plots at the top show the results for the smaller
DSL; the ones at the bottom show the results for the larger DSL.

Bee Search is not worse and often superior to others for a given cost function

For a given cost function, Bee Search never performs worse in terms of the number of
tasks solved, and often performs better than the other algorithms. For the SyGuS benchmark
(Figure 4), Bee Search with wBustle solves 182 and 123 tasks for the smaller and larger
DSL, respectively, while Bustle solves 180 and 117. Brute solves only 143 and 95 tasks
with the same function. Similarly, Bee Search with wProbe is never worse than the other
algorithms using wProbe: it solves the same number of problems Probe solves for the
smaller DSL and outperforms all algorithms in the larger DSL. We observe similar results
in the 38 tasks (Figure 5) and in the bit-vector tasks (Figure 6).

Bee Search with either wu or wProbe performs best in the evaluated domains

For the SyGuS benchmark (Figure 4), Bee Search with wu solves more tasks than any
other algorithm: 184 with the smaller DSL and 132 with the larger DSL. The second best
algorithm in this domain is Bustle, which solves 180 tasks with the smaller DSL and 117
tasks with the larger DSL. Although the difference in terms of the number of tasks solved
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Figure 6: Number of problems solved per number of evaluations and running time for bit-vector
domain. The two plots at the top show the results for the smaller DSL; the ones at the bottom show
the results for the larger DSL.

may seem small, it is substantial given that the tasks Bee Search solves and Bustle fails
to solve are hard. For the 38 handcrafted string tasks (Figure 5), Probe and Bee Search
with wProbe solve the largest number of tasks with the smaller DSL (29 tasks), while Bee
Search with wBustle and wu solve 28 tasks. Bustle comes next with 27 tasks solved.
For the larger DSL, Bee Search with wU solves the largest number of tasks, 15, and is
followed by Bee Search with wBustle with 13; Bustle solves 12.6. A similar pattern is
observed in the bit-vector domain (Figure 6), where Probe and Bee Search with wProbe
solve 21 tasks with the smaller DSL. For the larger DSL, Bee Search with wProbe solves
more problems than all other methods. The second best performing algorithm in bit-vector
is Probe, with 13 problems solved, while Heap Search is the third best algorithm with 8
problems solved.
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wu performs better than wBustle

Bee Search with wu outperforms all systems tested with wBustle, the other neural-based
function, in the two evaluated domains: SyGuS benchmark and 38 string problems.

Bee Search overcomes the weaknesses of previous algorithms based on BUS

These results suggest that Bee Search’s best-first scheme is able to better use the infor-
mation cost functions provide to the search than the “truncation-based” algorithms Probe
and Bustle. The results also suggest that Bee Search’s scheme of searching in the cost-
tuple space is effective as it outperforms Brute and Heap Search by a large margin in all
domains. Brute suffers from the fact that it generates a large number of programs that are
never evaluated in search, which increases the algorithm’s memory and time requirements.
Bee Search does not suffer from this problem because its best-first search is with respect
to program generation. Bee Search generates cost-tuple states that are never expanded,
but the number of such states is much smaller than the number of programs Brute gen-
erates and are not evaluated. This is because the cost-tuple space is an abstraction of the
original program space, where many programs are mapped to the same cost-tuple space.
We conjecture that Heap Search performs poorly in our experiments because it is unable
to perform observational equivalence. In the SyGuS benchmark, even BUSsubstantially
outperforms both Brute and Heap Search.

6.2 Limitations of Evaluation

In the context of ILP, Brute uses Answer Set Programming constraints to reduce the
branching factor of search. The Brute version we evaluated in this paper is only an ap-
proximation of the original algorithm, as it is not clear how to adapt to Inductive Program
Synthesis all the search enhancements developed in the context of ILP. Similarly, Heap
Search was originally evaluated in the context of parallel programming. In this paper, we
evaluated only the sequential version of all algorithms.

In some of our experiments, we observed that Bee Search performs as well as truncation-
based algorithms (e.g., Probe in the bit-vector domain with the smaller DSL). We conjec-
ture that these results can be explained by the nature of the cost function. For example, if
the cost function does not provide helpful information for guiding the search, then both the
exact and the truncated cost values will not be helpful for guiding the search. As another
example, if a cost function is coarse-grained (e.g., all cost values are integers), then Bustle,
Probe, and Bee Searchwill receive the same search signal to guide the search.

7. Related Work

The synthesis of programs has been studied for many years, starting with Waldinger and
Lee (1969), Smith (1976), and Summers (1977). It was used to solve tasks such as synthesis
of database transactions (Qian, 1990, 1993), system verification (Musser, 1989; Dybjer &
Sander, 1990), logic programming (Kodratoff et al., 1990; Deville & Lau, 1994), manipulation
of bits (Solar-Lezama et al., 2005; Gulwani & Venkatesan, 2009), strings (Gulwani, 2011),
numbers (Singh & Gulwani, 2012), synthesis of fault-tolerant circuits (Eldib et al., 2016),
and programmatic policies (Verma et al., 2018; Bastani et al., 2018; Mariño et al., 2021).
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Similarly to the application domains, there is also a large diversity of strategies for
solving synthesis tasks. In constraint satisfaction algorithms, one transforms the synthe-
sis task into a constraint satisfaction problem that can be solved with off-the-shelf SAT
solvers (Solar-Lezama, 2009). Stochastic search algorithms such as Simulated Anneal-
ing (Husien & Schewe, 2016) and genetic algorithms (Koza, 1992) have also been applied to
solve synthesis tasks. Stochastic search algorithms start with a candidate solution and use
mutation operators to change that candidate into other candidates that might be closer to a
solution. Enumerative algorithms systematically evaluate programs in the space defined by
the DSL. We focus on enumerative algorithms since Bee Search is an enumerative method.

7.1 Enumerative Methods

Enumeration-based search has proven to be an effective approach and is used in many syn-
thesizers (Odena et al., 2021; Barke et al., 2020; Lee et al., 2018; Albarghouthi et al.,
2013; Udupa et al., 2013), including winners of SyGuS competitions (Alur et al., 2016,
2017). Enumerative methods can be classified into two categories: bottom-up and top-
down. Bottom-up search (BUS) algorithms start with the shortest possible programs and
use the rules of the symbolic language to generate longer programs by combining the shorter
ones. BUS is an attractive search strategy because the programs generated are complete
and thus can be executed, allowing observational equivalence checks to be performed (Al-
barghouthi et al., 2013; Udupa et al., 2013; Lee et al., 2018; Odena et al., 2021; Barke et al.,
2020). Top-down search algorithms start with a high-level structure of the program and
enumerate the low-level structures. Top-down enumeration can only utilize weaker forms
of equivalence (Lee et al., 2018; Wang, Dillig, & Singh, 2017) since most of the programs
generated in the search are incomplete and cannot be executed.

7.2 Guided Enumerative Search

In guided enumerative search, instead of enumerating programs according to their AST
size, the algorithms prioritize programs according to a function. One of the first guided
search methods for program synthesis, DeepCoder (Balog et al., 2016), uses a top-down
search. It uses a learned model to define a probability distribution over symbols in the
language. Then, it performs a depth-first search that first explores the branches with a
higher probability according to the model. Euphony also uses a probability distribution
over production symbols of the underlying context-free grammar defining the programming
language to guide a top-down search (Lee et al., 2018), however, Euphony’s model considers
the context in which a production rule is to be applied using the idea of probabilistic higher-
order grammar. While different variations of using a learned model to guide top-down
search algorithms have been introduced in the past (Chen, Liu, & Song, 2019; Zohar &
Wolf, 2018; Bunel, Hausknecht, Devlin, Singh, & Kohli, 2018; Devlin, Uesato, Bhupatiraju,
Singh, rahman Mohamed, & Kohli, 2017b; Wang et al., 2017), empirical evidence shows that
they fail to outperform guided bottom-up search techniques (Barke et al., 2020).

TF-Coder (Shi et al., 2020) was the first system to utilize a function to guide a BUS
algorithm. TF-Coder requires one to manually assign weight values to the operations based
on their usage and complexity. During the search, TF-Coder prefers to combine programs
with lower weights than programs with larger weights, thus biasing the search; the weight
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of a program is defined as the sum of the weights of the production rules used to generate
the program. Since TF-Coder requires one to manually set weights for each operation, we
did not consider it in our experiments. Similarly to Bustle and Probe, TF-Coder also
suffers from loss of information, since it considers only integer cost values.

8. Conclusions

In this paper, we showed that some of the current guided BUS algorithms suffer from a
common problem: they can lose useful information given by the cost function because they
only consider integer-valued costs. As a result, these algorithms do not perform best-first
search with respect to the cost function used in the search. Heap Search is a best-first
guided bottom-up search algorithm that provably does not lose information from the cost
function. However, Heap Search sacrifices a key feature of BUS algorithms, which is the
ability to eliminate observational equivalent programs. We presented an algorithm loosely
inspired by the system Brute, from the ILP literature, to program synthesis, which we also
referred to as Brute. Brute is able to perform search in best-first order and eliminate
observational equivalent programs. However, Brute’s search is best-first with respect to
the evaluation of programs. As a result, many programs are generated but never evaluated,
as they are more expensive than the solution program. We introduced Bee Search, a
novel guided BUS algorithm that is guaranteed to perform search in best-first order when
employing additive pre-generation cost functions and penalizing additive post-generation
functions. In addition to performing search in best-first order, Bee Search is able to
eliminate observational equivalent programs and its best-first search is with respect to the
generation of programs. That is, Bee Search does not generate programs that are more
expensive than the solution program. We also introduced a cost function that uses the neural
model of Bustle. The difference between our function and Bustle’s is that the former does
not bound the penalty applied in the post-generation evaluation, as Bustle’s cost function
does. Empirical results on string manipulation and bit-vector problems showed that Bee
Search was never worse than Probe and Bustle and can substantially outperform them,
especially in larger program spaces. Bee Search outperformed Heap Search and Brute
by a large margin in both domains. Empirical results also showed that Bee Search with
our cost function was the best performing system in the string manipulation domain.
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Appendix A. Domain Specific Languages (DSLs)

A.1 String Domain DSL

Start→ S | I | B
S → replace(S, S, S) | concat(S, S) | substr(S, I, I)
| ite(B,S, S) | intToStr(I) | charAt(S, I)
| toLower(S) | toUpper(S) | arg0 | arg1 | . . .
| lit−0 | lit−1 | . . .

I → strToInt(S) | add(I, I) | sub(I, I) | mul(I, I)
| mod(I, I) | length(S) | indexOf(S, S, I)
| ite(B, I, I) | find(S, S) | arg0 | arg1 | . . .
| lit−0 | lit−1 | . . .

B → true | false | isEqual(I, I) | isLess(I, I)
| isGreater(I, I) | contains(S, S)
| isSuffixOf(S, S) | isPrefixOf(S, S)

Figure 7: Baseline DSL for string domain used in this paper

A.2 BitVector Domain DSL

Start→ BV | B
BV → xor(BV,BV ) | and(BV,BV ) | or(BV,BV )
| neg(BV ) | not(BV ) | add(BV,BV ) | mul(BV,BV )
| udiv(BV,BV ) | urem(BV,BV ) | lshr(BV,BV )
| ashr(BV,BV ) | shl(BV,BV ) | sdiv(BV,BV )
| srem(BV,BV ) | sub(BV,BV ) | ite(B,BV,BV )
| arg0 | arg1 | . . . | lit−0 | lit−1 | . . .

B → true | false | isEqual(BV,BV ) | ult(BV,BV )
| ule(BV,BV ) | slt(BV,BV ) | sle(BV,BV )
| ugt(BV,BV ) | redor(BV ) | and(BV,BV )
| or(BV,BV ) | not(BV ) | uge(BV,BV )
| sge(BV,BV ) | sgt(BV,BV )

Figure 8: Baseline DSL for bit-vector domain used in this paper
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