
Show Me the Way!
Bilevel Search for Synthesizing Programmatic Strategies

David S. Aleixo,1 Levi H. S. Lelis2

1Departamento de Informática, Universidade Federal de Viçosa, Brazil
2Department of Computing Science, Alberta Machine Intelligence Institute (Amii), University of Alberta, Canada

Abstract

The synthesis of programmatic strategies requires one to
search in large non-differentiable spaces of computer pro-
grams. Current search algorithms use self-play approaches to
guide this search. The issue with these approaches is that the
guiding function often provides a weak search signal. This is
because self-play functions only measure how well a program
performs against other programs. Thus, while small changes
to a losing program might not transform it into a winning
one, such changes might represent steps in the direction of a
winning program. In this paper we introduce a bilevel search
algorithm that searches concurrently in the space of programs
and in a space of state features. Each iteration of the search
in the space of features defines a set of target features that
the search in the program space attempts to achieve (i.e., fea-
tures one observes while following the strategy encoded in
a program). We hypothesize the combination of a self-play
function and a feature-based one provides a stronger search
signal for synthesis. While both functions are used to guide
the search in the program space, the self-play function is
used to guide the search in the feature space, to allow for
the selection of target features that are more likely to lead
to winning programs. We evaluated our bilevel algorithm in
MicroRTS, a real-time strategy game. Our results show that
the bilevel search synthesizes stronger strategies than meth-
ods that search only in the program space. Also, the strategies
our method synthesizes obtained the highest winning rate in a
simulated tournament with several baseline agents, including
the best agents from the two latest MicroRTS competitions.

Introduction
Programmatic strategies are strategies encoded in human-
readable computer programs. Such a programmatic repre-
sentation often allows one to not only understand, but also
modify the encoded strategy. On the downside, synthesiz-
ing programmatic strategies requires one to search over large
non-differentiable program spaces. Current methods for syn-
thesizing such strategies use the search signal self-play algo-
rithm such as Iterated-Best Response (IBR) provide (Mariño
et al. 2021; Medeiros, Aleixo, and Lelis 2022). However, the
search signal self-play algorithms provide tends to be weak.
This is because they only inform the utility of a strategy
while playing the game with another strategy. While changes

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to a program might not turn it into a winning one, they might
represent steps in the direction of achieving a winning pro-
gram. Self-play functions are unable to capture this progress.

An alternative approach is to use an oracle to provide a
richer search signal to guide the search in the programmatic
space (Bastani, Pu, and Solar-Lezama 2018; Verma et al.
2018, 2019). In addition to an oracle strategy not always be-
ing available, imitating an oracle strategy might lead to weak
strategies due to a possible representation gap (Qiu and Zhu
2022). That is, there might not exist a programmatic strategy
in the program space that is able to mimic the oracle.

In this paper, we introduce an algorithm for synthesiz-
ing programmatic strategies that simultaneously searches
in two spaces. Our goal with this bilevel search is to en-
hance the search signal self-play algorithms such as IBR
provide in the context of two-player zero-sum games. Our
algorithm, Bilevel Synthesis (Bi-S), searches in the pro-
gram space defined by a domain-specific language and in the
space of domain-dependent game features. Each iteration of
the search in the feature space defines a complete assignment
of a set of feature-variables. Such an assignment is provided
as input to the search in the program space. While searching
in the program space, the algorithm uses the self-play algo-
rithm’s function to guide the search. In case of a tie between
two programs (e.g., both are defeated by a target strategy),
then the search prefers the program that reaches game states
with features that are more similar to those encoded in the
variable assignment provided by the feature-space search.

The evaluations the program-space search performs with
respect to the self-play function are then used to inform the
search in the feature space. That is, the feature space search
attempts to learn the combination of feature values that leads
to programs optimizing the self-play function. We hypoth-
esize that this bilevel scheme allows for a more informed
search in the program space than the search that uses only
the signal from self-play algorithms.

We evaluated Bi-S in MicroRTS, a real-time strategy
game. Our results show that Bi-S using either IBR or Fic-
titious play (Brown 1951), another self-play algorithm, con-
sistently outperforms baselines that search only in the pro-
gram space. We also simulated a tournament of MicroRTS,
where we evaluated Bi-S as well as several other baselines,
including the programmatic strategies, written by human
programmers, that won the latest two MicroRTS competi-

tions (Ontañón 2017b). Bi-S with IBR and FP came in first
and second, respectively, in our simulated tournament.

Related Work
Bi-S is related to programmatically interpretable reinforce-
ment learning (PIRL) (Verma et al. 2018), where one at-
tempts to synthesize a program encoding a policy for solving
Markov decision processes (Bastani, Pu, and Solar-Lezama
2018; Verma et al. 2019). Our work is also related to gen-
eralized planning where one synthesizes programs for solv-
ing sets of classical planning problems (Bonet, Palacios, and
Geffner 2010; Srivastava et al. 2011; Hu and De Giacomo
2013; Aguas, Jiménez, and Jonsson 2018). Our work dif-
fers from PIRL and generalized planning because we fo-
cus on games, while they focus on single-agent problems.
Still in the context of single-agent problems, Inductive Logic
Programming has been used to learn programs for playing
games (Silver et al. 2019) and for learning game rules from
game traces (Cropper, Evans, and Law 2020).

Qiu and Zhu (2022) argued that approaches based on im-
itation learning can lead to weak policies due to a represen-
tation gap, i.e., programmatic policies might not be able to
imitate neural policies, as a program that imitates the oracle
might not exist in the programmatic space. Qiu and Zhu in-
troduced a system for learning programmatic policies with-
out oracles by using a differentiable approximation of the
language used to encode the policies. Qiu and Zhu’s system
and most PIRL algorithms do not support languages with
loops. Bi-S supports if-then-else structures and loops. Fi-
nally, Bi-S does not use an oracle to guide the search.

Mariño et al. (2021) introduced a system that uses data an
oracle generates to simplify the language used in the syn-
thesis of strategies. Medeiros, Aleixo, and Lelis (2022) in-
troduced Sketch-SA, a system that uses imitation learning
for synthesizing strategies. Despite using imitation learning,
Sketch-SA is unlikely to suffer from representation gaps be-
cause it uses an oracle to learn a sketch of a program (i.e., an
unfinished program), as opposed to learning complete pro-
grams. The complete program is synthesized while search-
ing in the space of programs and optimizing for a self-play
function. The bilevel search we introduce is orthogonal to
the ideas of simplifying languages and of learning sketches.

Self-play algorithms were used to learn strategies with re-
inforcement learning (Heinrich, Lanctot, and Silver 2015;
Lanctot et al. 2017). In these works the strategy is encoded
in a neural network and learned with gradient ascent. We
consider the setting where the strategies are encoded in com-
puter programs, so the strategy space is full of discontinu-
ities and gradient-based methods would not be effective.

Problem Definition
We consider sequential two-player zero-sum games defined
by a set S of states, a pair of players {i,−i}, an initial state
sinit in S, a function Ai(s) that receives a state s and returns
the set of actions player i can perform at s, and a function
Ui(s) that returns the utility of player i at s. Since the game
is zero sum, Ui(s) = −U−i(s). A strategy for player i is
a function σi : S → Ai mapping a state s to an action a.

A programmatic strategy is a computer program encoding a
strategy σ. We denote as U(s, σi, σ−i) the value of the game
for s given that i and −i follow σi and σ−i, respectively.

We use a domain-specific language (DSL) (Van Deursen,
Klint, and Visser 2000) to define the space of programs, and
thus the space of strategies for playing the game. We de-
note D as a DSL and JDK as the (possibly infinite) set of
programs that can be written with D. We use a context-free
grammar (N,T,R, I) to define D. Here, N , T , and R are
sets of non-terminals, terminals, relations defining the pro-
duction rules of the grammar, respectively. I is the gram-
mar’s start symbol. Figure 1 shows a DSL where N =

I → C | if(B) then C

C → c1 | c2
B → b1 | b2

I

if B

b1

then C

c1

<latexit sha1_base64="BBYVqifeP5VrjPrDLSdHgT/RxW4=">AAAGJnicnVNNb9NAEJ0EAiV8tCnHcohIkYpURXE4gKgqVa2Q4FYEaSslUWSvN8kqaztdbyiJlSP/hR/CmRtC3PgB8B94u3ZR05IQWMu747dv5s3Mer2hFLGu1b7l8teuF27cXLlVvH3n7r3VtdL6URyNFOMNFslInXhuzKUIeUMLLfnJUHE38CQ/9gYHZv/4HVexiMK3ejzk7cDthaIrmKsBdUq5Dy2P90SYaDGYDAXTI8WnxTJGyyCxHkuehJHPp7tNJhSTfNtX7ll7B5yWwbdqj5tm3Q5EKIJRUI7FhO86LGgnr9JArC+kb2PMI4rudFnqfkpchrrpdZzNLPCy4XWfh0vncvAPubALuewUWzz0ZzreWavUqjU7ylcNJzMqlI3DqJT7RC3yKSJGIwqIU0gatiSXYjxNcqhGQ2BtSoApWMLuc5pSEb4jsDgYLtAB5h6+mhka4tvEjK03g4rEq+BZpkcZx4fdtWi6Gv3yBe48jcTGNjmOsXpZzACopj7Qv/mdM5f1MzVpZPjM1iKQ59Aipko2U1EXq8S3Rv5mHoPJYfnwUrAYMAk0RYyGwpr21VTet312LY/DWpRTCA2TgZ+djwQeZfH6qErY3Bb14rKHYRu+snE5ndmzCGyHjE6CvT/rGI9T6KRVTi3TVPAes4euJPTCnq6pzcf7HJzpf2oZfgyteUpv4PdzRmV+D05tTnzhH53Y8xnQZIZzjkmsnq1L4VyT3/HihRHTv96wtOHh7jqXb+pV46hedZ5U66/rlb397Bav0AY9pC3c1Ke0Ry/pkBrEcj/y6/mN/IPCx8LnwpfC15Saz2U+92lmFL7/AvwneIo=</latexit>

Figure 1: DSL and AST for if b1 then c1.

{I, C,B}, T = {c1, c2, b1, b2 if, then}, R are the relations
(e.g., C → c1), and I is the start symbol.

This DSL allows for programs such as c1, c2, and if
(b2) then c1. We represent programs in memory as ab-
stract syntax trees (AST), where the root of the tree is the ini-
tial symbol, the internal nodes are non-terminals and leaves
are terminals. Figure 1 shows an example of an AST.

The best response of σ−i in JDK is a strategy
that maximizes player i’s utility against σ−i, i.e.,
maxσi∈JDK U(sinit, σi, σ−i). In the context of two-player
zero-sum games, a Nash equilibrium profile in the space of
programmatic strategies is a pair of programs that best re-
spond to one another, i.e., the strategies σi and σ−i that solve

max
σi∈JDK

min
σ−i∈JDK

U(sinit, σi, σ−i) . (1)

Our goal is to approximately solve Equation 1. Since we
consider DSLs whose programs encode pure strategies, we
assume the existence of a pure-strategy Nash equilibrium.

Self-Play Algorithms
We consider Iterated-Best Response (IBR) (Lanctot et al.
2017) and Fictitious Play (FP) (Brown 1951) as the learn-
ing algorithms to approximate a solution to Equation 1.

Iterated-Best Response In IBR one starts with an arbi-
trary strategy σi for player i and computes a best response
σ−i to σi. Then, in the next iteration of IBR, it computes
a best response to σ−i, and so. This alternating process of
computing best responses is repeated until finding a Nash
equilibrium profile or reaching a time limit.

Fictitious Play Similarly to IBR, FP starts with an arbi-
trary strategy σi for which a best response is computed.
However, in contrast with IBR, FP maintains two sets, Σi

and Σ−i, with all best responses computed for each player.
In each iteration of FP, one computes a best response to a

Algorithm 1: Bi-S

Require: Game G, DSL D, evaluation U , strategy σ−i.
Ensure: Approximated best response σi of σ−i.

1: Initialize empty library L of programs. #see text
2: Initialize dictionary T mapping a feature to a value.
3: pb ← None
4: while not reached time limit do
5: V ←Feature-Search(T) #Naı̈veSampling
6: p← argminp∈L

∑|F|
i |F (p)[i]− V [i]|

7: p, P ←Local-Search(G,D, p, V, U, σ−i) #SA
8: Update T [F (p′)] with U(p′) for all p′ ∈ P
9: L← L ∪ P

10: if U(p) > U(pb) then
11: pb ← p
12: return pb

mixed strategy whose support is formed by all strategies in
Σi (or Σ−i). The distribution of strategies in Σi and Σ−i

converges to a mixed-strategy Nash equilibrium profile for
the game. In the context pure programmatic strategies, we
run FP until a time limit is reached and return the last best
response obtained to each set as the algorithm’s approxima-
tion of a pure-strategy Nash equilibrium profile.

IBR is computationally cheaper than FP because the latter
evaluates all strategies in Σi and Σ−i while learning. How-
ever, IBR can fail to progress toward a Nash equilibrium pro-
file because it might repeatedly generate the same sequence
of strategies in scenarios where A is a best response of B,
B is a best response of C, and C is a best response of A.
Learning with FP does not generate such sequences because
FP best responds to all strategies seen thus far in the process.

IBR and FP require the computation of best responses.
We design Bi-S to derive approximated best responses in
the context of self-play algorithms such as IBR and FP.

Bilevel Synthesis (Bi-S)
Learning algorithms such as IBR and FP offer a function

to guide the synthesis process. That is, given a strategy σ−i,
which is either defined by a single strategy in the context of
IBR or by a mixture of strategies in the context of FP, a guid-
ing function is defined as the utility of a program p encoding
a strategy for player i against σ−i, i.e., U(sinit, p, σ−i). Such
a guiding function provides sparse signals as small modifi-
cations to a losing program might not turn it into a winning
one. As a result, the optimization landscape induced by these
functions tends to have large plateaus. Bi-S attempts to in-
duce an optimization landscape that is more amenable to lo-
cal search algorithms by searching in two spaces: the space
of programs and the space of features of the game.

Let F denote a set of features for a set of states of the
game. Each feature f ∈ F defines a function mapping a set
of states to an integer. As an example, a feature could count
the maximum number of pieces of a given type a player con-
trolled throughout a match of a board game. Let F be a func-
tion that receives an initial state sinit, a program p, and an
opponent σ−i and returns a vector with one entry for each
feature f ∈ F for the set of states encountered in a game

played between p and σ−i. We denote as F (sinit, p, σ−i)[j]
the value of the j-th entry of this vector and we write F (p)[j]
whenever sinit and σ−i are clear from the context.

Each iteration of Bi-S’s search in the feature space de-
fines a vector V of feature values, which is passed to the
search in the program space. The search in the program
space attempts to primarily find a program p that maxi-
mizes U(sinit, p, σ−i). In case of ties between programs p
and p′ in terms of U -values, Bi-S minimizes the difference
between V and the vectors F (p) and F (p′). For example,
in case the target strategy σ−i defeats both p and p′, i.e.,
U(sinit, p, σ−i) = U(sinit, p

′, σ−i), Bi-S’s search will prefer
the program whose feature values are more similar to V .

Once the search in the program space reaches a time limit
and returns a program p approximating a best response to
σ−i, we use the value of U(sinit, p, σ−i) to update statistics
about the feature values of F (p), so that the search in the fea-
ture space can learn the combination of feature values that
are more likely to maximize U(sinit, p, σ−i). In our imple-
mentation of Bi-S we treat the search problem in the feature
space as a combinatorial multi-armed bandit (CMAB) prob-
lem (Gai, Krishnamachari, and Jain 2010) and use the two-
phase Naı̈ve Sampling algorithm (NS) (Ontañón 2017a) for
searching over the space of possible feature vectors. We use
Simulated Annealing (SA) (Kirkpatrick, Gelatt, and Vecchi
1983), a local search algorithm, to search over the space of
programs. We describe both NS and SA below.

Bi-S’s Pseudocode
Algorithm 1 shows Bi-S’s pseudocode. Bi-S is invoked to
approximate a best response to a target strategy σ−i in each
iteration of a learning algorithm such as IBR and FP. Bi-S
receives the game G, DSL D, evaluation function U , which
is defined based on the learning algorithm, and a strategy
σ−i. Bi-S returns an approximated best response to σ−i en-
coded in a program p. Bi-S uses two data structures: a set L
of programs encountered in search and a dictionary T that
stores statistics about the features evaluated in search.

The set L is a library of programs that are used to ini-
tialize the local search in the space of programs. Given that
the search in the feature space returns a vector V (line 5),
Bi-S searches for the program p ∈ L whose feature vector
F (p) is most similar to V in terms of absolute difference of
the feature values (line 6). The program p is used to initialize
the local search in the program space (line 7). By initializing
the search with p, we allow the search to start in a location
of the program space where it is more likely to encounter a
program that will match the feature values in V .

The local search returns a program p that approximates a
best response to σ−i; it also returns the set of all programs
P considered in search (line 7). We update the statistics the
feature-space search uses for each program in P (line 8) and
we add all programs in P to the library of programs (line 9).
Once Bi-S reaches a time limit, it returns the program with
best U -value it has encountered in search (lines 10–12).

Using Library of Programs to Transfer Learning
If the library L of programs Bi-S accumulates is reused in
other calls of the algorithm, one is able to transfer some of

the knowledge generated in search across calls of Bi-S. We
initialize the library L with an empty set only in the first call
of Bi-S. Later calls of Bi-S within an single run of either IBR
or FP will reuse the library L accumulated in previous calls
to Bi-S. The library of programs allows the local search to
start in a location of the program space that the search in the
feature space deems as promising. For example, if the search
in the feature space discovers that feature fj leads to high U -
values, then the search in the program space is able to start in
a region where fj is more likely to occur. The library of pro-
grams allows Bi-S to effectively “jump” around the program
space according to the feature-space search guidance.

We experiment with a version Bi-S that reuses L across
similar, but different games. We call such a version Bi-S+.

Two-Phase Naı̈ve Sampling (NS)
We model the problem of searching in the feature space as a
combinatorial multi-armed bandit (CMAB) problem. A tu-
ple (X,µ) defines a CMAB problem, where

• X = {X1, · · · , Xn}. Each Xj is a variable that can as-
sume Kj distinct values Xj = {v1j , · · · , v

Kj

j }. The set
X = {(v1, · · · , vn) ∈ X1 × · · · × Xn} is the possible
combinations of value assignments for variables in X . A
value assignment V ∈ X is called a macro-arm.

• µ : X → R is a utility function, that receives a macro-
arm and returns a utility value for that macro-arm.

In a CMAB problem one attempts to find the macro-arm
with largest expected utility value. In Bi-S, each variable Xj

represents a feature in F and Xj = {v1j , · · · , v
Ki
j } is the

set of Kj integer values the Xj can receive. A macro-arm V
is a feature vector and µ(V) is the average U -value of the
programs p the search in the program space returns when it
receives V as input.

Naı̈ve Sampling (NS) was designed to deal with CMAB
problems with a number of macro-arms that is so large
that one cannot exhaustively evaluate all of them in
search (Ontañón 2017a). NS divides a CMAB problem with
n variables in n+ 1 multi-armed bandit (MAB) problems.

• n local MABs, one for each variable Xj ∈ X . For vari-
able Xj representing a feature, the arms of the MAB are
the Kj values in Xj .

• 1 global MAB, denoted MABg , that treats each macro-
arm A evaluated in search as an arm in MABg; MABg

has no arms in the beginning of search.

At each iteration, NS uses a policy π0 to determine
whether it adds an arm to MABg through the local MABs
(explore) or evaluates an existing arm in MABg (exploit).

1. If NS chooses to explore, a macro-arm A is added to
MABg by using a policy πl to independently choose a
value for each variable in X (local MAB). NS assumes
that the utility of a macro-arm V can be approximated
with the sum of the utilities of the individual values
vi ∈ V , i.e., µ(V) ≈

∑
vi∈V µ′(vi), where µ′(vi) is the

average of the µ(V)-values for which the i-th value in V
is vi.

2. If NS chooses to exploit, then a policy πg is used to select
an existing macro-arm in MABg .

We use ϵ-greedy for policies π0, πl, and πg . We also use
the two-phase version of NS where the first k iterations we
use a set of ϵ-values (ϵ10, ϵ1l , and ϵ1g) that allows for a more
aggressive exploration; the algorithm uses another set of ϵ-
values in the remaining steps (ϵ20, ϵ2l , and ϵ2g) that allows NS
to exploit the macro-arms collected in the first phase. We
multiply all µ′-values by γ, with 0 < γ < 1, after each
call to NS. This decaying factor allows the search in the fea-
ture space to be more biased by the U -values of programs
encountered in more recent iterations.

Simulated Annealing
SA uses a temperature parameter to control the greediness
of the search, so it behaves similarly to a random walk in the
beginning of the search, when the temperature is high, and
similarly to hill climbing later in search, when the temper-
ature is low. The SA search starts with an initial program,
which can be provided as input (e.g., a program from the li-
brary L) or, alternatively, be randomly generated according
to the rules of the grammar. When the library is empty, SA
starts with a randomly generated program. A program can
be randomly generated by starting with the grammar’s ini-
tial symbol I and replacing it with a random production rule
of I; then, we repeatedly replace a non-terminal symbol of
the program with a valid and randomly selected production
rule, until the program contains only terminal symbols.

Once the initial program p is defined, in each iteration of
search, SA generates a neighbor p′ of p by changing a sub-
tree in p’s AST. SA randomly chooses a non-terminal sym-
bol n in the AST (all non-terminal nodes of the AST are
chosen with equal probability). Then, SA replaces the sub-
tree rooted at n with a subtree that is generated with the same
procedure used to generate a random program. SA decides
if it accepts or rejects the neighbor p′. If it accepts, then p′

is assigned to p and the process is repeated—SA performs a
walk in the program space. If it rejects, SA repeats the pro-
cedure by generating another neighbor of p. The probability
in which SA accepts p′ is given by the following equation.

min

(
1, exp

(
β · (Ψ(p′)−Ψ(p))

Tj

))
,

where, Tj is the temperature at iteration j, and Ψ is the eval-
uation function. In the context of Bi-S, Ψ is initially U and,
in case of a tie between p and p′, we use a function based
on the vector V of features Bi-S provides as input to SA.
Namely, we maximize the similarity between the program’s
p feature values and V according to the following function.

|F|∑
j=1

1− |V [j]− F (p)[j]|
max(V [j], F (p)[j])

If Ψ(p′) ≥ Ψ(p), then SA accepts p′. Otherwise, the prob-
ability of acceptance depends on Tj and β. β is an input
parameter that adjusts SA’s greediness. Larger values of β
result in a greedier search as SA is more likely to reject pro-
grams with small Ψ-values. Larger values of Tj make the

search less greedy because SA becomes more likely to ac-
cept worse neighbors. The initial temperature, T1, is an in-
put parameter and Tj is computed according to the schedule
Tj = T1

(1+α·j) , where α is also an input parameter. Once
the temperature value is smaller than a threshold value ϵ,
SA returns the program with largest U value encountered
in search. In case of a tie in terms of U -values, SA returns
the program whose feature vector is the most similar to the
target vector V .

Empirical Evaluation
In this section we evaluate the hypothesis that Bi-S’s bilevel
search allows for a faster synthesis of effective program-
matic strategies. All experiments were run on a single 2.4
GHz CPU with 8 GB of RAM and a time limit of 2 days.1
We denote our methods as IBR(Bi-S), FP(Bi-S), IBR(Bi-
S+), FP(Bi-S+), depending on the learning algorithm and the
version of the bilevel synthesis.

We use α = 0.9, β = 200, T1 = 100, ϵ = 1 with our
SA implementation as these are the values Medeiros, Aleixo,
and Lelis (2022) used in their experiments. We use the fol-
lowing exploration rates for the first phase of NS: ϵ10 = 0.7,
ϵ1l = 0.7, and ϵ1g = 0.4; and the following for the second
phase: ϵ10 = 0.1, ϵ1l = 0.3, and ϵ1g = 0.1. We use γ = 0.95.
These parameters allow NS to explore more in the first phase
and exploit the learned macro-arms in the second. We run
each phase for 1 day. All baselines we use in our experi-
ments that also synthesize programmatic strategies are also
given the time limit of 2 days.

Problem Domain: MicroRTS
MicroRTS is a real-time strategy game widely used to eval-
uate intelligent systems (Ontañón 2020). It is a two-player
zero-sum game where each player controls a set of units
in real time (each player has 100 milliseconds to decide on
their next action) The units gather resources and build struc-
tures, which are used to train more units that will eventually
battle the opponent. MicroRTS has the following types of
units: Worker, Ranged, Heavy, and Light, in addition to the
Barracks and Base structures. All units are able to battle the
opponent, but only Workers can build structures and collect
resources; the units differ in how much damage they can suf-
fer and cause in battle. A Base can train Workers and store
resources, while a Barracks can train the other units.

We use MicroRTS because it is a challenging domain and
the winners of the recent competitions are programmatic
strategies written by programmers. Thus we can evaluateBi-
S against strategies programmers wrote with the intent of
winning the competition (and its monetary prize). Moreover,
MicroRTS can be played on different maps and each map
might require a different strategy. Thus, with the same im-
plementation we can evaluate Bi-S on similar, but different
games. We use the maps basesWorkers24x24A, basesWork-
ers32x32A, and (4)BloodBath.scmB, whose sizes are 24 ×
24, 32×32, and 64×64, respectively, from MicroRTS’s offi-
cial code base. The bigger map is from the commercial game

1https://github.com/dsaleixo/BilevelSearchforSynthesizing.

StarCraft. The maps are shown in the supplementary mate-
rials. We consider two starting locations for each player in
each map; we run two games alternating the players’ starting
location to ensure a fair evaluation. We synthesize one pro-
gram for each location of the map for all synthesizers used
in our experiments (Bi-S and baselines).

For Bi-S+ we use the library L of one of the maps to syn-
thesize a strategy for another map. Namely, we use the li-
brary generated while synthesizing a strategy with Bi-S for
map 24 × 24 to initialize the Bi-S+ synthesis process for
map 32 × 32 and 64 × 64, and the Bi-S library for 32 × 32
to initialize the Bi-S+ synthesis process for map 24× 24.

The set of features over set of states we use are: num-
ber of Worker, Ranged, Heavy, and Light units trained in all
states in the set; the number Bases and Barracks built, and
the number of resources collected across all states.

We use Medeiros, Aleixo, and Lelis (2022)’s DSL for
MicroRTS. Their DSL supports if-then-else structures and
loops.

Baselines
The main baselines for our experiments are the synthesizers
that search only in the program space. We use IBR and FP
with SA to approximate a best response in each iteration of
the algorithms, we denote them as FP(SA) and IBR(SA).

We also evaluate the programmatic strategies Bi-S syn-
thesizes with several existing methods, which we will re-
fer to as the “competition set.” This set of agents in-
cludes the winners of the two latest MicroRTS competitions,
COAC and Mayari. We also use the Sketch-SA (Medeiros,
Aleixo, and Lelis 2022) method where it uses either COAC
or Mayari as oracles for learning a program sketch; we
denote them as IBR(Sketch(COAC)), FP(Sketch(COAC)),
IBR(Sketch(Mayari)), FP(Sketch(Mayari)) according to the
learning algorithm and oracle used. We also consider the
agents MentalSeal, UmSbot, Droplet, Rojo, GuidedRo-
joA3N, and Alet from past competitions (Ontañón 2017b).
We also use in our evaluation the search algorithms Portfo-
lio Greedy Search (PGS) (Churchill and Buro 2013), Strati-
fied Strategy Search (SSS) (Lelis 2017), A3N (Moraes et al.
2018), and Strategy Tactics (STT) (Barriga, Stanescu, and
Buro 2018). We also use programmatic strategies that are
often used as baselines in the MicroRTS competition: WR,
HR, RR, and LR (Barriga, Stanescu, and Buro 2017).

Comparison with IBR(SA) and FP(SA)
The top row of Figure 2 shows the learning curves for Bi-
S and SA when using IBR and FP. The bottom row shows
the learning curves for Bi-S+. These plots are generated as
follows: we select the strategy returned by each approach ev-
ery two hours of computation for each method and perform
a round robin evaluation with these four strategies. The win-
ning rate is computed as the total number of victories plus
half for each draw, divided by three. Each curve shows the
average winning rate over 10 independent runs of each sys-
tem and the shaded area shows the standard deviation.

FP(Bi-S) and FP(Bi-S+) are superior to FP(SA) as the
solid blue line is above the dashed orange one. Similar pat-
tern is observed for the dotted green line, which represents

0 25000 50000 75000 100000 125000 150000 175000
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0
W

in
ni

ng
 R

at
e

Map 24x24

0 25000 50000 75000 100000 125000 150000 175000
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

W
in

ni
ng

 R
at

e

Map 32x32

0 25000 50000 75000 100000 125000 150000 175000
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

W
in

ni
ng

 R
at

e FP(Bi-S)
FP(SA)
IBR(Bi-S)
IBR(SA)

map 64x64

0 25000 50000 75000 100000 125000 150000 175000
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

W
in

ni
ng

 R
at

e

Map 24x24

0 25000 50000 75000 100000 125000 150000 175000
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

W
in

ni
ng

 R
at

e

Map 32x32

0 25000 50000 75000 100000 125000 150000 175000
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

W
in

ni
ng

 R
at

e FP(Bi-S+)
FP(SA)
IBR(Bi-S+)
IBR(SA)

map 64x64

Figure 2: Learning curves for Bi-S (top row), Bi-S+ (bottom row) and SA with IBR and FP as learning algorithms. The strategy
of an algorithm is evaluated in terms of winning rate against the strategies of the other three algorithms in a given time.

IBR(Bi-S) and IBR(Bi-S+), with respect to the pointed and
dashed red line, which represents IBR(SA). Bi-S+ seems to
perform better when used with FP; the solid blue lines reach
higher winning rate earlier in the plots of the bottom row
than in the plots of the top row. By contrast, there seems to
be no noticeable difference between IBR(Bi-S) and IBR(Bi-
S+). We conjecture that the difference between IBR and FP
with Bi-S+ is due to FP providing a better guiding function.
In the case of the IBR(Bi-S) and IBR(Bi-S+) results, we con-
jecture that a better search algorithm (Bi-S+) might not nec-
essarily lead to stronger strategies due to limitations of the
guiding function IBR provides.

Figure 3 shows the learning curve of the same algorithms
shown in Figure 2, but the winning rate is computed by
having the strategies the systems synthesize play against all
strategies in our competition set. The lines show the aver-
age winning rate across 10 independent runs of the systems.
In general, all lines follow an upward trend with computa-
tion, which demonstrates that the strategies these systems
synthesize become stronger even against strategies that are
not in the set of strategies that can be encoded in a program
written using D (e.g., strategies derived with tree search al-
gorithms).

Some of the trends observed in Figure 2 are also observed
in Figure 3. Namely, the Bi-S and Bi-S+ lines are above
the SA lines for a fixed learning algorithm. Also, transfer
learning allows for a faster synthesis of stronger strategies
with FP. It is also noticeable how the standard deviation of
FP(Bi-S+) is smaller than that of FP(Bi-S). Finally, transfer
learning does not seem to improve the results if IBR is used.

Tournament Evaluation
We also test FP(Bi-S+) and IBR(Bi-S+) in a tournament set-
ting where we perform a round robin evaluation of all strate-

Agents Maps Total
24× 24 32× 32 64× 64

IBR(BI-S+) 0.85 0.92 0.89 0.89
FP(BI-S+) 0.95 0.85 0.85 0.88
IBR(SKETCH(COAC)) 0.70 0.83 0.87 0.80
FP(SKETCH(COAC)) 0.78 0.81 0.76 0.78
COAC 0.78 0.80 0.73 0.77
IBR(SKETCH(MAYARI)) 0.69 0.76 0.84 0.76
FP(SKETCH(MAYARI)) 0.66 0.89 0.71 0.75
MAYARI 0.87 0.70 0.65 0.74
FP(SA) 0.69 0.64 0.63 0.65
IBR(SA) 0.67 0.50 0.75 0.64
MENTALSEAL 0.67 0.51 0.70 0.63
UMSBOT 0.65 0.63 0.54 0.61
DROPLET 0.47 0.50 0.61 0.53
PGS 0.41 0.42 0.39 0.41
HR 0.38 0.51 0.30 0.39
SSS 0.39 0.38 0.32 0.36
LR 0.40 0.40 0.26 0.35
STT 0.24 0.30 0.42 0.32
RR 0.21 0.23 0.17 0.21
ROJO 0.15 0.09 0.25 0.16
WR 0.13 0.17 0.17 0.16
GUIDEDROJOA3N 0.13 0.04 0.17 0.11
A3N 0.11 0.10 0.02 0.08
RANDOMBIASEDAI 0.01 0.03 0.02 0.02

Table 1: Tournament results in terms of winning rate.

gies in the tournament set. For the synthesizer-based sys-
tems (Bi-S+, Sketch, and SA) we select the programs used
in the tournament as follows. We collect the last 20 best re-

0 25000 50000 75000 100000 125000 150000 175000
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0
W

in
ni

ng
 R

at
e

Map 24x24

0 25000 50000 75000 100000 125000 150000 175000
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

W
in

ni
ng

 R
at

e

Map 32x32

0 25000 50000 75000 100000 125000 150000 175000
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

W
in

ni
ng

 R
at

e FP(Bi-S)
FP(SA)
IBR(Bi-S)
IBR(SA)

map 64x64

0 25000 50000 75000 100000 125000 150000 175000
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

W
in

ni
ng

 R
at

e

Map 24x24

0 25000 50000 75000 100000 125000 150000 175000
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

W
in

ni
ng

 R
at

e

Map 32x32

0 25000 50000 75000 100000 125000 150000 175000
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

W
in

ni
ng

 R
at

e FP(Bi-S+)
FP(SA)
IBR(Bi-S+)
IBR(SA)

map 64x64

Figure 3: Learning curves for Bi-S (top row), Bi-S+ (bottom row) and SA with IBR and FP as learning algorithms. The strategy
of an algorithm is evaluated against all strategies in our competition set of strategies.

sponses (either in the context of IBR or FP) and perform
a round robin tournament among them. The strategy with
highest winning rate for each starting location of the map in
this “internal” tournament was used in the tournament with
the competition set.

Table 1 presents the winning rate of the tournament.
IBR(Bi-S+) and FP(Bi-S+) had the highest total winning
rate, the Sketch approaches imitating COAC had the third
and fourth highest total winning rate of the tournament.
FP(Bi-S+) had the highest winning rate on the 24× 24 map
while IBR(Bi-S+) had the highest one on the 32 × 32 and
64× 64 maps. Interestingly, while FP performed better than
IBR when using Bi-S+ in the results shown in Figures 2 and
3, they performed equally well in the tournament. This is
likely due to the way that we selected the programs to take
part in the tournament. By running a round robin tournament
with the last 20 best responses of IBR and selecting the best
performing program, we are performing with IBR an opera-
tion that is similar to the one used in FP, where each strategy
plays against a set of other strategies.

FP(SA) and IBR(SA) performed reasonably well in the
tournament. They were outperformed only by the Bi-S+ and
the Sketch approaches, and by COAC and Mayari, the win-
ners of the last two competitions. Nevertheless, the differ-
ence in terms of winning rate between Bi-S+ and SA is sub-
stantial (0.89 to 0.65). These results also confirm a trend ob-
served in the last two MicroRTS competitions, where pro-
grammatic strategies have outperformed tree search agents.

The results shown in Figures 2 and 3 and in Table 1 sup-
port our hypothesis that the guiding function our bilevel
method uses provides a better search signal, in the context
of synthesis with SA, than the signal provided by a function
that relies only on self-play algorithms.

A limitation of Bi-S is that it requires a set of feature func-

tions as input. An interesting direction of future research
is to use a language such as Game Description Language
(GDL) (Love, Genesereth, and Hinrichs 2006) to encode the
game, such that the system can reason about the game and
automatically discover the set of functions for computing the
features. The search for such functions can be seen as the ad-
dition of another layer in Bi-S’s search.

Conclusions
In this paper we introduced Bi-S, a bilevel search algorithm
for synthesizing programmatic strategies. Current methods
for synthesizing such strategies often suffer from a weak sig-
nal for guiding the search because self-play algorithms can
only inform the search algorithm of the utility of the game.
While small changes to a winning program might not turn
it into a winning one, they might represent progress in the
right direction. Our method searches over a space of game
features while attempting to learn the relation between fea-
ture values and the strength of a strategy. The search in the
feature space is then able to bias the search in the program-
matic space by defining a set of features that should be ob-
served in games played by the programs. This set of “desir-
able features” provides an extra search signal for the synthe-
sis. We performed an evaluation of Bi-S in MicroRTS and
our results showed that Bi-S is able to synthesize stronger
strategies than the baselines that search only in the program-
matic space. Moreover, two versions of Bi-S outperformed
22 other agents, including programmatic strategies written
by human programmers and search algorithms in a simu-
lated tournament.

Acknowledgements
This research was partially supported by FAPEMIG,
CAPES, and Canada’s NSERC and CIFAR AI Chairs pro-

gram. The research was carried out using computational re-
sources from Compute Canada. We thank the anonymous
reviewers for their feedback. L. Lelis was on leave from Uni-
versidade Federal de Viçosa while this research was carried
out.

References
Aguas, J. S.; Jiménez, S.; and Jonsson, A. 2018. Computing
Hierarchical Finite State Controllers With Classical Plan-
ning. Journal of Artificial Intelligence Research, 62: 755–
797.
Barriga, N. A.; Stanescu, M.; and Buro, M. 2017. Com-
bining Strategic Learning and Tactical Search in Real-Time
Strategy Games. Thirteenth Annual AAAI Conference on Ar-
tificial Intelligence and Interactive Digital Entertainment.
Barriga, N. A.; Stanescu, M.; and Buro, M. 2018. Game
Tree Search Based on Nondeterministic Action Scripts in
Real-Time Strategy Games. IEEE Transactions on Games,
10(1): 69–77.
Bastani, O.; Pu, Y.; and Solar-Lezama, A. 2018. Verifiable
Reinforcement Learning via Policy Extraction. In Advances
in Neural Information Processing Systems, 2499–2509.
Bonet, B.; Palacios, H.; and Geffner, H. 2010. Automatic
Derivation of Finite-State Machines for Behavior Control.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, 1656–1659. AAAI Press.
Brown, G. 1951. Iterative solution of games by Fictitious
Play, 1951. Activity Analysis of Production and Allocation
(TC Koopmans, Ed.), 374–376.
Churchill, D.; and Buro, M. 2013. Portfolio greedy search
and simulation for large-scale combat in StarCraft. In Pro-
ceedings of the Conference on Computational Intelligence
in Games, 1–8. IEEE.
Cropper, A.; Evans, R.; and Law, M. 2020. Inductive general
game playing. Machine Learning, 109(7): 1393–1434.
Gai, Y.; Krishnamachari, B.; and Jain, R. 2010. Learning
multiuser channel allocations in cognitive radio networks:
A combinatorial multi-armed bandit formulation. In New
Frontiers in Dynamic Spectrum, 2010 IEEE Symposium on,
1–9. IEEE.
Heinrich, J.; Lanctot, M.; and Silver, D. 2015. Fictitious
self-play in extensive-form games. In International confer-
ence on machine learning, 805–813. PMLR.
Hu, Y.; and De Giacomo, G. 2013. A Generic Technique for
Synthesizing Bounded Finite-State Controllers. Proceed-
ings of the International Conference on Automated Planning
and Scheduling, 23(1): 109–116.
Kirkpatrick, S.; Gelatt, C. D.; and Vecchi, M. P. 1983. Opti-
mization by Simulated Annealing. Science, 220(4598): 671–
680.
Lanctot, M.; Zambaldi, V.; Gruslys, A.; Lazaridou, A.;
Tuyls, K.; Pérolat, J.; Silver, D.; and Graepel, T. 2017.
A Unified Game-Theoretic Approach to Multiagent Re-
inforcement Learning. In Proceedings of the Interna-
tional Conference on Neural Information Processing Sys-
tems, 4193–4206.

Lelis, L. H. S. 2017. Stratified Strategy Selection for Unit
Control in Real-Time Strategy Games. In International Joint
Conference on Artificial Intelligence, 3735–3741.
Love, N.; Genesereth, M.; and Hinrichs, T. 2006. Mobile
Systems IV. Technical report, Stanford University.
Mariño, J. R. H.; Moraes, R. O.; Oliveira, T. C.; Toledo, C.;
and Lelis, L. H. S. 2021. Programmatic Strategies for Real-
Time Strategy Games. Proceedings of the AAAI Conference
on Artificial Intelligence, 35(1): 381–389.
Medeiros, L. C.; Aleixo, D. S.; and Lelis, L. H. S. 2022.
What can we Learn Even From the Weakest? Learning
Sketches for Programmatic Strategies. In Proceedings of the
AAAI Conference on Artificial Intelligence. AAAI Press.
Moraes, R. O.; Mariño, J. R. H.; Lelis, L. H. S.; and Nasci-
mento, M. A. 2018. Action Abstractions for Combinato-
rial Multi-Armed Bandit Tree Search. In Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, 74–80. AAAI.
Ontañón, S. 2017a. Combinatorial Multi-armed Bandits for
Real-Time Strategy Games. Journal of Artificial Intelligence
Research, 58: 665–702.
Ontañón, S. 2017b. MicroRTS Competition. https://sites.
google.com/site/micrortsaicompetition/. [Online; accessed
15-August-2022].
Ontañón, S. 2020. Results of the 2020 MicroRTS Compe-
tition. https://sites.google.com/site/micrortsaicompetition/
competition-results/2020-cog-results. Accessed: 2021-09-
30.
Qiu, W.; and Zhu, H. 2022. Programmatic Reinforcement
Learning without Oracles. In International Conference on
Learning Representations.
Silver, T.; Allen, K. R.; Lew, A. K.; Kaelbling, L. P.; and
Tenenbaum, J. B. 2019. Few-Shot Bayesian Imitation Learn-
ing with Logical Program Policies. In Proceedings of the
AAAI Conference on Artificial Intelligence, 10251–10258.
AAAI Press.
Srivastava, S.; Immerman, N.; Zilberstein, S.; and Zhang, T.
2011. Directed Search for Generalized Plans Using Classi-
cal Planners. In Proceedings of the International Conference
on Automated Planning and Scheduling. AAAI.
Van Deursen, A.; Klint, P.; and Visser, J. 2000. Domain-
specific languages: An annotated bibliography. ACM Sig-
plan Notices, 35(6): 26–36.
Verma, A.; Le, H.; Yue, Y.; and Chaudhuri, S. 2019.
Imitation-Projected Programmatic Reinforcement Learning.
In Advances in Neural Information Processing Systems, vol-
ume 32, 1–12. Curran Associates, Inc.
Verma, A.; Murali, V.; Singh, R.; Kohli, P.; and Chaud-
huri, S. 2018. Programmatically Interpretable Reinforce-
ment Learning. In Proceedings of the International Con-
ference on Machine Learning, 5052–5061.

