
Journal of Artificial Intelligence Research 75 (2022) 1103-1137 Submitted 03/2022; published 11/2022

Asymmetric Action Abstractions for
Planning in Real-Time Strategy Games

Rubens O. Moraes rubens.moraes@ufv.br
Departamento de Informática,
Universidade Federal de Viçosa, Brazil

Mario A. Nascimento mario.nascimento@ualberta.ca
Department of Computing Science
University of Alberta, Canada

Levi H. S. Lelis levi.lelis@ualberta.ca
Alberta Machine Intelligence Institute (Amii)
Department of Computing Science
University of Alberta, Canada

Abstract

Action abstractions restrict the number of legal actions available for real-time planning
in zero-sum extensive-form games, thus allowing algorithms to focus their search on a set of
promising actions. Even though unabstracted game trees can lead to optimal policies, due
to real-time constraints and the tree size, they are not a practical choice. In this context,
we introduce an action abstraction scheme which we call asymmetric action abstraction.
Asymmetric abstractions allow search algorithms to “pay more attention” to some aspects
of the game by unevenly dividing the algorithm’s search effort amongst different aspects
of the game. We also introduce four algorithms that search in asymmetrically abstracted
game trees to evaluate the effectiveness of our abstraction schemes. Two of our algorithms
are adaptations of algorithms developed for searching in action-abstracted spaces, Portfolio
Greedy Search and Stratified Strategy Selection, and the other two are adaptations of an
algorithm developed for searching in unabstracted spaces, NäıveMCTS. An extensive set of
experiments in a real-time strategy game shows that search algorithms using asymmetric
abstractions are able to outperform all other search algorithms tested.

1. Introduction

In real-time strategy (RTS) games the player controls a number of units to collect resources,
build structures, and battle the opponent. RTS games are excellent testbeds for Artificial
Intelligence methods because they offer fast-paced environments, where players act simulta-
neously, and the number of actions grows exponentially with the number of units the player
controls. Also, the time allowed for planning is on the order of milliseconds. In this paper,
we assume two-player deterministic games in which all units are visible to both players.

A successful family of algorithms for planning in real time in RTS games uses action
abstractions (Hawkin, Holte, & Szafron, 2011) to reduce the number of legal actions avail-
able to the player. In RTS games, player-actions are represented as a vector of unit-actions,
where each entry in the vector represents an action for a unit the player controls. Action
abstractions reduce the number of player legal actions by reducing the number of legal ac-

c©2022 AI Access Foundation. All rights reserved.



Moraes, Nascimento & Lelis

tions each unit can perform. We use the word “action” if it is clear that we are referring to
a player’s or to a unit’s action; we write player-action or unit-action otherwise.

For instance, Churchill and Buro (2013) introduced a method for building action ab-
stractions through a set of scripts. A script σ̄ is a function mapping a game state and a unit
to a unit-action. A set of scripts P induces an action abstraction by restricting the set of
legal actions of all units to actions returned by the scripts in P. Since the actions of all units
are restricted by the set of scripts, we call an action abstraction generated with Churchill
and Buro’s scheme a uniform action abstraction (or uniform abstraction for short).

Uniform abstractions were shown to be successful in practice, especially in large RTS
games (Churchill & Buro, 2013). This is because RTS games can have very large action
spaces, and the problem’s real-time constraints often allow search algorithms to explore
only a small fraction of all actions before deciding on which one to perform next—uniform
abstractions allow algorithms to focus their search on actions deemed as promising by
the set of scripts. The drawback of uniform abstractions is that they equally restrict the
actions of all units, which might remove strong strategies from the set of strategies the
search algorithm is able to consider. For example, depending on the time of the game,
the player might benefit from considering a larger set of actions for the units involved in
combat, while worker units do not need to consider actions other than those involved in
collecting resources. Search algorithms employing uniform abstractions divide their search
effort equally with all aspects of the game, independently whether the aspects are important
or not.

We introduce an action abstraction scheme we call asymmetric action abstractions (or
asymmetric abstractions for short). In contrast to uniform abstractions that restrict the
number of actions of all units, asymmetric abstractions restrict the number of actions of
only a subset of units. As a result, asymmetric abstractions allow the search effort to
be distributed unevenly amongst the units, thus allowing the search algorithm to “pay
more attention” to different aspects of game. Asymmetric abstractions also retain the
uniform abstractions’ feature of allowing the search algorithm to focus on actions deemed
as promising by a set of scripts. This is because a number of units still have their action set
reduced by the set of scripts. We hypothesize that algorithms searching in asymmetrically
abstracted action spaces can derive stronger strategies than algorithms searching in either
uniformly abstracted and unabstracted action spaces.

Another contribution we offer is the introduction of four general-purpose algorithms
that search in asymmetrically abstracted trees: Greedy Alpha-Beta Search (GAB), Strat-
ified Alpha-Beta Search (SAB), and two variants of Asymmetrically Action-Abstracted
NäıveMCTS, denoted as A2N and A3N. GAB and SAB are based on Alpha-Beta pruning,
Portfolio Greedy Search (PGS) (Churchill & Buro, 2013), and Stratified Strategy Selection
(SSS) (Lelis, 2017). PGS and SSS are algorithms designed for searching in uniformly ab-
stracted spaces. The other two algorithms, A2N and A3N, are based on NäıveMCTS, a
search algorithm that uses combinatorial multi-armed bandits (CMAB) (Ontañón, 2013,
2017) to search in unabstracted spaces. In addition to the two variants of NäıveMCTS that
search in asymmetrically abstracted action spaces, we introduce a NäıveMCTS baseline
that, similarly to PGS and SSS, use uniform abstractions; we call this baseline A1N.

We evaluate our algorithms in µRTS (Ontañón, 2013), an RTS game developed for
research purposes. µRTS is a great testbed for our research because it offers an efficient

1104



Asymmetric Action Abstractions for Real-Time Strategy Games

forward model of the game, which is required by search-based approaches. Moreover, the
game is much simpler than commercial video games, which allows us to evaluate different
algorithms without the technical difficulties typical of commercial video games. Finally, the
µRTS codebase1 contains most of the current state-of-the-art search algorithms, including
the systems used in µRTS competitions (Ontañón, Barriga, Silva, Moraes, & Lelis, 2018),
thus facilitating our empirical evaluation. An extensive set of experiments shows that the
algorithms that search in asymmetrically abstracted action spaces outperform, in terms of
matches won, their counterparts that search in unabstracted and uniformly abstracted ones.

Although we present our abstraction schemes and search algorithms in the context of
RTS games, our ideas and algorithms can also be applied in other scenarios. For example,
a robotic system that controls several actuators simultaneously while trying to accomplish
a task can benefit from asymmetric abstractions. This is because some actuators might
require a finer control than the others. To illustrate, the actuators controlling the arms of
a robot planning a sequence of actions to open a door might need a “finer plan” than the
actuators controlling the wheels of the robot, given that the robot is already in front of
the door to be opened. Asymmetric action abstractions offer an approach that allows the
planning system to focus on the arms of the robot rather than on its wheels. As another
example, a search algorithm for uniformly abstracted action spaces is at core of the agent
of the commercial card game Prismata (Churchill & Buro, 2015). The idea we introduce
of searching in asymmetrically abstracted action spaces might also be used in such card
games to enhance the strength of their agent. For example, the agent could benefit from
an algorithm that discovers finer plans for the “more important” cards.

This paper extends two conference publications (Moraes & Lelis, 2018; Moraes, Mariño,
Lelis, & Nascimento, 2018a). Moraes and Lelis (2018) introduced asymmetric abstractions
and the versions of PGS and SSS for searching in such trees, GAB and SAB, while Moraes
et al. (2018a) introduced the versions of NäıveMCTS that use uniform and asymmetric
abstractions, A1N, A2N, and A3N. In this paper we (i) provide a more detailed explanation
of algorithms searching with asymmetric action abstractions, (ii) test empirically a larger
set of strategies for generating such abstractions, and (iii) directly compare the methods
introduced in both previous works in the domain of µRTS, a full-fledged RTS game. Previ-
ously, GAB and SAB had only been tested in simpler RTS combats, and they had not been
compared with the asymmetric variants of NäıveMCTS. Our results show that the three
best performing algorithms employ asymmetric action abstractions, thus supporting our
hypothesis. Namely, A3N obtains the highest winning rate amongst all algorithms tested,
with GAB and SAB being the second and third best performing algorithms, respectively.

This paper is organized as follows. In Section 2 we review works related to real-time
planning in RTS games as well as works related to action abstractions in extensive-form
games. In Section 3 we define RTS games as an extensive-form game and review search
algorithms used for planning in unabstracted spaces. In Section 4, we describe the asym-
metric abstractions we introduce in this paper. Section 5 introduces the four algorithms for
searching in asymmetrically abstracted action spaces. Finally, we evaluate the introduced
algorithms in Section 6 with an extensive set of experiments on µRTS.

1. https://github.com/santiontanon/microrts

1105



Moraes, Nascimento & Lelis

2. Related Work

The action abstraction schema and the search algorithms we present in this paper are related
to other search algorithms developed for RTS games. Our work is also related to learning-
based systems for RTS games and to action abstraction schemes used in other contexts such
as for approximating optimal solutions in extensive-form games such as Poker (Billings,
Burch, Davidson, Holte, Schaeffer, Schauenberg, & Szafron, 2003) and for solving classical
planning problems (Hoffmann & Nebel, 2001). We review each of these lines of research.

2.1 Search-Based Approaches for RTS Games

Before the invention of action abstractions induced by scripts, state-of-the-art algorithms
included search methods for unabstracted spaces such as Monte Carlo (Chung, Buro, &
Schaeffer, 2005; Sailer, Buro, & Lanctot, 2007; Balla & Fern, 2009; Ontañón, 2013) and
Alpha-Beta (Churchill, Saffidine, & Buro, 2012). Due to the large number of actions avail-
able, Alpha-Beta and Monte Carlo methods tend to perform well only in small-scale games.

In addition to PGS (Churchill & Buro, 2013), Justesen et al. (2014) proposed two
variations of Upper Confidence bounds applied to Trees (UCT) (Kocsis & Szepesvári, 2006)
for searching in uniformly abstracted trees: script-based and cluster-based UCT. Wang et al.
(2016) introduced Portfolio Online Evolution (POE) a local search algorithm also designed
for uniformly abstracted trees. While Wang et al. showed empirically that POE is able
to outperform Justesen’s algorithms, Lelis (2017) showed that PGS and SSS are able to
outperform POE. All these results were obtained in a testbed named SparCraft (Churchill
& Buro, 2013). SparCraft is an efficient combat simulator for the combat scenarios that arise
in the commercial game of StarCraft. While Justesen et al.’s and Wang et al.’s algorithms
can be modified to also search in asymmetrically abstracted trees, we use PGS and SSS
instead as those were shown to perform better in SparCraft (Lelis, 2017).

Moraes, Mariño, and Lelis (2018b) showed that PGS can suffer from a pathological issue
that can cause it to find worse strategies if granted more computation time. The root of
PGS’s pathology is in its scheme for approximating a best response to the opponent’s strat-
egy if PGS also approximates a best response to the player’s strategy. Moraes et al. (2018b)
introduced Nested-Greedy Search (NGS), an algorithm that is similar to PGS, but that does
not suffer from the pathology. They also showed that the pathology does not occur if one
fixes the opponent’s strategy while searching for a player-action with PGS.

Recently, Lelis (2020) presented a unifying perspective for several of the algorithms men-
tioned above through an algorithm named GEX (General Combinatorial Search for Expo-
nential Spaces). In addition to A1N, A2N, and A3N, which are the variants of NäıveMCTS
that we introduce in this paper, Lelis showed that PGS, SSS, POE, NGS, algorithms that
search in uniformly abstracted spaces, can also be seen as a special case of GEX.

Scripts have also been used to guide the search by means other than action abstractions.
Puppet Search (PS) (Barriga, Stanescu, & Buro, 2018) defines a search space over the
parameter values of scripts. Strategy Tactics (STT) (Barriga, Stanescu, & Buro, 2017)
combines PS’s search in the script-parameter space with a NäıveMCTS search in the original
state space for the combat units. Strategy Creation via Voting (SCV) generates scripts via
voting (Silva, Moraes, Lelis, & Gal, 2019), which are then used to play the game. In contrast

1106



Asymmetric Action Abstractions for Real-Time Strategy Games

with PS, STT, and SCV that generate novel scripts during the game, the algorithms we
introduce in this paper use a set of scripts to generate action abstractions.

Yang and Ontañón (2019) introduced an algorithm named Guided Näıve Sampling
(GNS) that also searches in a form of asymmetric action abstraction. Similarly to A3N,
GNS is also based on NäıveMCTS. GNS evaluates an action returned by a script when first
expanding a node in its MCTS search. In subsequent evaluations, GNS chooses an action
to be evaluated according to Näıve Sampling with probability ε and chooses an action from
a script, chosen uniformly at random, with probability 1 − ε. Similarly to A3N, when us-
ing Näıve Sampling, GNS considers actions outside the pool of those given by the uniform
abstraction. The core difference between GNS and A3N is that the latter only considers
actions that are not part of the uniform abstraction for a subset of units, while the former
considers actions that are not part of the uniform abstraction for all units. GNS has the
theoretical advantage of being guaranteed to converge to an optimal solution because it
considers all actions, while A3N has the practical advantage of allowing the algorithm to
focus on a subset of components during search. Our experiments show that A3N compares
favorably against GNS.

2.2 Learning-Based Approaches for RTS Games

Another line of related research uses learning to control units in RTS games. Search algo-
rithms need an efficient forward model of the game to plan. By contrast, learning approaches
do not necessarily require such a model. Examples of learning approaches to unit control
include the work by Usunier et al. (2016) and Liu et al. (2016). Search algorithms tend to
scale more easily to large-scale combat scenarios than these learning-based methods. While
the former can effectively handle battles with more than 100 units (Churchill & Buro, 2013;
Lelis, 2017), the latter are usually tested on battles with no more than 50 units.

An exception in terms of both scalability and strength is AlphaStar (Vinyals, Babuschkin,
Czarnecki, Mathieu, Dudzik, Chung, Choi, Powell, Ewalds, Georgiev, Oh, Horgan, Kroiss,
Danihelka, Huang, Sifre, Cai, Agapiou, Jaderberg, ..., & Silver, 2019), the first system able
to defeat professional players in the commercial game of StarCraft II. Despite the notewor-
thy achievement, AlphaStar’s approach might not be easily applicable in other scenarios.
It requires a large set of matches played by humans to train an initial version of the sys-
tem, which is then improved through self-training over the course of several days over a
non-trivial and specialized computational infrastructure. Search-based approaches, such as
the ones we investigate, require no training at all and can be run over commodity com-
puting devices. The ideas we present in this paper are orthogonal to those presented in
learning-based papers as search and learning may be combined into stronger agents.

2.3 Action Abstractions in Extensive-Form Games

Action abstractions have also been applied to imperfect-information games, mostly in com-
puter Poker (Hawkin et al., 2011; Hawkin, Holte, & Szafron, 2012). Although simultaneous-
moves games such as the ones we deal with in this paper can also be modeled as an imperfect-
information extensive-form game (Bosanský, Lisý, Lanctot, Cermák, & Winands, 2016), the
abstraction methods used to develop Poker playing agents differ from the approaches we
consider and introduce in this paper. The action abstraction methods introduced in the

1107



Moraes, Nascimento & Lelis

context of Poker assume function-based action schema, where one searches for a subset of
parameter values in a function-based action. For example, the methods Hawkin et al. (2011,
2012) introduced choose the number of chips (parameter) to be considered in a betting ac-
tion (function) in the game of Poker. The action spaces of RTS games we consider in this
paper are much larger than those considered in Poker and one would have to substantially
reduce the original space of an RTS game before it can be solved. As a result, the abstracted
game would likely be radically different from the original one, which could render optimal
strategies for the abstracted game too weak to be useful in the original game. Libratus,
a system that defeated professional Poker players relied on domain-specific action abstrac-
tions created by analyzing the bet sizes used in different parts of the game by Poker agents
that took part in the Annual Computer Poker competition (Brown & Sandholm, 2018).
Therefore, Libratus’ action abstraction scheme is not directly applicable to other games.

As an example outside computer Poker research, Sandholm and Singh (2012) introduced
an approach to construct state and action abstractions with bounded loss. In their work,
the goal is to find, in an offline procedure, an optimal strategy for the abstracted game so
that it can be used in the original game. In this work, we only approximate a solution to
the abstracted game while satisfying harsh real-time constraints.

2.4 Action Abstractions in Classical Planning

Action abstractions are also commonly used to solve classical planning problems. The
FF planning system defines a set of helpful actions, which are the actions used to solve
a relaxed version of a planning problem (Hoffmann & Nebel, 2001). FF then uses a hill-
climbing algorithm restricted to the set of helpful actions to solve the original problem.
The idea of considering only a subset of actions during planning is exactly the concept of
action abstraction we consider in this paper. Fast Downward uses a concept similar to
helpful actions, but with the name of preferred operators (Helmert, 2006). Richter and
Helmert (2009) showed that preferred operators can improve the results in terms of number
of problems solved and solution quality of different planning systems. While helpful actions
and preferred operators were introduced and evaluated in the single-agent setting, in this
work, we deal with the two-player setting. Also, while the action abstractions for classical
planning are obtained by solving a relaxed version of the original planning problem, here
we induce action abstractions by considering a set of simple strategies for playing the game.

3. Background

We define RTS games as an extensive-form game and introduce concepts needed in later
sections. RTS games can be described as multi-unit zero-sum extensive-form games with
simultaneous and durative actions (i.e., actions that require more than one time step to be
completed), defined by a tuple ∇ = (N ,S, sinit,A,B,R, T ), where:

• N = {i,−i} is the pair of players. We assume that i is the player controlled by the
search algorithms we describe and −i is i’s opponent.

• S = D∪F is the set of states, where D denotes the set of non-terminal states and
F the set of terminal states, i.e., states where the game has finished and no more

1108



Asymmetric Action Abstractions for Real-Time Strategy Games

actions can be taken. Every state s ∈ S defines a joint set of units Us = Us
i ∪ Us

−i,
for players i and −i. Every unit u ∈ Us has properties that are specific to the game
modeled. For example, a unit could include properties such as its x and y coordinates
on the game’s map, the unit’s attack range, attack damage, and hit points.

• sinit ∈ D is the start state of the game.

• A(s) = Ai(s)×A−i(s) is the set of legal joint actions at state s. Aj(s) is the set of
legal actions player j can perform at state s, with j ∈ {−i, i}. We write A, Ai, and
A−i instead of A(s), Ai(s), and A−i(s) whenever the state s is clear from the context.
Each action a ∈ Aj(s) is denoted by a vector of nj unit-actions (m1, · · · ,mnj ),
where mk ∈ a is the action of the k-th ready unit of player j. A unit is not ready
if it is already performing an action (unit-actions can have different durations). We
denote the set of ready units of player j as Us

j,r. For k ∈ N+ we use a[k] to denote
the action of the k-th ready unit. Also, for unit u, we use a[u] to denote the action of
u in a. We denote the set of unit-actions as M, which is non-empty for ready units
because a unit can always perform a “no action”. We writeM(s, u) to denote the set
of legal actions of unit u at s.

• B : D → N ′ ⊆ N is a function that receives a state s and returns the subset of players
with one or more ready units in s.

• Ri : F → R is a utility function with Ri(s) = −R−i(s), for any s ∈ F .

• The transition function T : S × Ai × A−i → S deterministically determines the
successor state for a state s and the set of joint actions taken at s. Note that, since
actions are durative, units might still be executing their unit-actions in ai and a−i in
the state returned by T (s, ai, a−i). If two or more unit-actions are conflicting (e.g.,
two units try to move to the same cell of the game’s grid), then the transition function
performs the action of only one of the units; the other units do not perform an action
in that decision point of the game. The decision of which unit performs the action is
arbitrary but deterministic. The transition function sometimes is referred to in the
literature as the forward model.

The game tree of ∇ is a tree rooted at sinit in which each node represents a state in
S and every edge represents a joint action. For states sk, sj ∈ S, there exists an outgoing
edge from node representing sk to the node representing sj in the game tree if and only
if there exists ai ∈ Ai and a−i ∈ A−i such that T (sk, ai, a−i) = sj . Nodes representing
states in F are leaf nodes. We assume all trees to be finite and denote as Ψ the evaluation
function used by algorithms while traversing the tree. We can ensure that the trees are
finite by determining a time limit to each game. Once the time limit is reached, all states
become terminal. Ψ receives a state s and returns an estimate of the end-game value of s
for player i. Since ∇ is zero sum, i tries to reach nodes in the tree that maximize Ψ, while
−i tries to reach nodes that minimize Ψ. All Ψ functions we consider are play-out based.
That is, given a state s to be evaluated, one simulates the game forward while following a
fixed strategy for both players for a limited number of steps. Then, the state thus reached

1109



Moraes, Nascimento & Lelis

in this simulation is evaluated according to a heuristic function and this evaluation is used
as the estimated end-game value of s.

We call a decision-point of player j a state s in which j has at least one ready unit. In
this paper, the search algorithm controlling the units of a player is invoked at every decision
point n of the game tree.

A player strategy is a function σi : S × Ai → [0, 1] for player i, which maps a state
s and an action a to a probability value, indicating the chance of taking action a at s. A
strategy profile σ = (σi, σ−i) defines the strategy of both players. A script σ̄ also defines a
player strategy. Since a script maps a state s and unit u to a unit-action for u to perform
in s, a strategy can be defined if σ̄ is used to define the unit-action of all units of a player.
That way, a script defines a player-action to be performed in any state of the game.

The optimal value of the game rooted at s for player i is denoted as Vi(s) and can
be computed by finding a Nash Equilibrium profile for the players. Due to the problem’s
size and real-time constraints, it is impractical to find optimal profiles for most RTS games.
State-of-the-art heuristic search approaches use abstractions to reduce the game tree size
and then derive in real time player strategies from the abstracted trees.

3.1 Search Algorithms for Unabstracted Trees

In this section, we review two search algorithms used for planning in RTS games unab-
stracted trees: Alpha-Beta Considering Durations (ABCD) and Näıve Monte Carlo Tree
Search (NäıveMCTS). We use ABCD and NäıveMCTS as the basis for the algorithms we
introduce for searching in asymmetrically abstracted game trees.

3.1.1 Alpha-Beta Considering Durations (ABCD)

Minimax search with Alpha-Beta pruning (Knuth & Moore, 1975) (or Alpha-Beta for short)
has been successfully applied to games such as Chess (Campbell, Hoane, & hsiung Hsu,
2002). Alpha-Beta computes the value of a game while pruning branches of the tree that
are not reached in optimal play. As Knuth and Moore (1975) showed, Alpha-Beta can
dramatically reduce the number of nodes expanded, compared to a regular minimax search.

Kovarsky and Buro (2005) showed how Alpha-Beta can be adapted to find an approx-
imate solution for simultaneous-move games. Once the Alpha-Beta search reaches a node
in the game tree in which both players act simultaneously, a policy π decides who acts
first, with the other player choosing their action afterward. The policy π transforms a
simultaneous-move game into a sequential-move game, for which Alpha-Beta is suitable.
The solution encountered in the transformed sequential-move game can then be applied as
an approximation to the original game. Examples of policies π include random and alter-
nate selections of who is to act first. Churchill et al. (2012) showed that Alpha-Beta with
the alternate policy defeats the same algorithm with the random policy in RTS combats.

Next, we present Alpha-Beta’s pseudocode for sequential-move games. Then, we discuss
how the pseudocode is to be modified to account for Kovarsky and Buro’s contributions.

Alpha-Beta, shown in Algorithm 1, receives as input a state as the root of the tree, a
maximum depth d, bounds α and β, with the initial values of −∞ and∞, respectively, and
an evaluation function Ψ. The value of d limits the depth in which Alpha-Beta’s depth-first
search will be performed. We use Algorithm 1 in an iterative-deepening manner, with the

1110



Asymmetric Action Abstractions for Real-Time Strategy Games

Algorithm 1 Alpha-Beta

Input: State s, depth d, α = −∞, β =∞, evaluation function Ψ.
Output: An approximation of the game value of s.
1: if s ∈ F or d = 0 then
2: return Ψ(s)
3: j ← B(s)
4: if j = −i then
5: M ←∞
6: for each a ∈ A−i(s) do
7: M ← min(Alpha-Beta(T (s, a), d− 1, α, β,Ψ),M)
8: if M ≤ α then
9: return M

10: β = min(β,M)
11: if j = i then
12: M ← −∞
13: for each a ∈ Ai(s) do
14: M ← max(Alpha-Beta(T (s, a), d− 1, α, β,Ψ),M)
15: if M ≥ β then
16: return M
17: α = max(α,M)
18: return M

value of d passed as input to the first call of Alpha-Beta set to 1; d is incremented by
one if the execution of Algorithm 1 finishes and there is still time available for planning.
Algorithm 1 is then invoked again with the incremented value of d. Variables α and β
store the best values that can be achieved by players i and −i, respectively. The evaluation
function Ψ estimates the minimax value of a state s ∈ D; Ψ(s) = Ri(s), if s ∈ F .

The Ψ-value of a node is returned if the search reaches its maximum depth (d = 0 as d is
decremented in each recursive call) or if the node is terminal (line 2). Variable j stores the
player acting in the current state (line 3), which is either i or −i for sequential-move games.
If it is −i’s turn (lines 4–10), then Alpha-Beta searches for all possible transitions from state
s, which is given by the actions in A−i. In the recursive call of line 7, the transition function
T takes two arguments: the current state s and action a. This is because in Algorithm 1
we assume sequential games, thus the transition function depends on the action of only one
player. The search is pruned in −i’s turn (lines 8 and 9) if the current lower bound for i’s
solution value (given by α) is at least as large as the current upper bound for −i’s solution
(given by M). If the expression M ≤ α in line 8 is true, then it means that player i prefers
to choose an earlier action in the game tree that guarantees i a game value of α, than allow
−i to reach the current node of the tree, which is guaranteed to be at most as good as α.
The same reasoning applies in lines 11–17, where player i is to act, instead of player −i.

Alpha-Beta, as shown in Algorithm 1, assumes sequential-moves games. Simultaneous-
moves games have states where players are able to act simultaneously (i.e., B(s) = {i,−i})
and states where only one player acts (either B(s) = {i} or B(s) = {−i}). Churchill

1111



Moraes, Nascimento & Lelis

et al. (2012) introduced Alpha-Beta Considering Durations (ABCD), a version of Alpha-
Beta that accounts for simultaneous-moves.

We need to perform two modifications in the pseudocode shown in Algorithm 1 to
transform Alpha-Beta into ABCD. First, we replace the assignment j ← B(s) by j ← π(s)
(line 3), where π is the policy that decides the player who is to choose their action first. For
states s where B(s) = {i} or B(s) = {−i}, then {π(s)} = B(s). If B(s) = {i,−i}, then π
decides which player acts first. The implementation we use employs the alternate policy: π
returns i if it returned −i in the previous state in which both players acted simultaneously.
π randomly chooses either i or −i for the first state in the tree with simultaneous actions.

The second modification deals with the “delayed effects” of an action. Since the game
is artificially serialized by the search algorithm, in a state s that the players are to act
simultaneously, the set of actions A−i (resp. Ai) should be computed before applying
the action player i (resp. −i) is going to perform at s. ABCD handles this as follows. In
states with simultaneous actions, the transition function is not applied during the function’s
recursive calls, as shown in lines 7 and 14 of Algorithm 1. Instead, we pass as parameters
the current state s and the action a the player is going to perform at s. This way the set
of actions of the other player can be computed within the next function call and only then
a is applied to s. See the paper by Churchill et al. (2012) for a pseudocode of ABCD. The
ABCD implementation we use in our experiments employs a transposition table to avoid
expanding multiple paths leading to the same state (Atkin & Slate, 1988; Zobrist, 1990).

3.1.2 Näıve Monte Carlo Tree Search (NäıveMCTS)

Ontañón (2017) modeled the search problem of deriving strategies in RTS games as a
combinatorial multi-armed bandits (CMAB) problem. A CMAB problem can be defined
by a tuple (X,µ), where,

• X = {X1, · · · , Xn}, where each Xi is a variable that can assume Ki different values
Xi = {v1

i , · · · , v
Ki
i }, with X = {(v1, · · · , vn) ∈ X1 × · · · × Xn} being the possible

combinations of value assignments for the variables in X; a value assignment V ∈ X
is called a macro-arm.

• µ : X → R is a reward function, that receives a macro-arm and returns a reward value
for that macro-arm.

The goal in a CMAB problem is to find a macro-arm that maximizes the expected
reward. This can be achieved by balancing exploration and exploitation until converging
to an optimal macro-arm. In the context of RTS games, each decision-point s can be cast
as a CMAB problem in which X contains one variable for each ready unit of a player in
s. Thus, a macro-arm V ∈ X represents a player-action and each value v ∈ V represents a
unit-action. The set Xi = {v1

i , · · · , v
Ki
i } represents the set of Ki legal actions for the i-th

unit at s. Naturally, the goal is to find a macro-arm (player-action) that maximizes the
player’s reward, which is defined by an evaluation function.

Since the number of macro-arms in X is often too large in RTS games, Ontañón (2017)
derived a sampling procedure called Näıve Sampling (NS) to help deciding which macro-
arms should be evaluated during search. NS divides a CMAB problem with n variables into
n+ 1 multi-armed bandit (MAB) problems:

1112



Asymmetric Action Abstractions for Real-Time Strategy Games

Algorithm 2 NäıveMCTS

Input: State s, sampling strategies π0, πl and πg, and evaluation function Ψ.
Output: Action a
1: root ← node(s)
2: while hasTime() do
3: leaf ← SelectAndExpandNode(root, π0, πl, πg)
4: v ← Ψ(leaf.state)
5: propagateEvaluation(leaf, v)
6: return getMostVisitedAction(root)

• n local MABs, one for each variable Xi ∈ X. That is, for variable Xi representing the
i-th unit, the arms of the MAB are the Ki values (unit-actions) in Xi.

• 1 global MAB, denoted MABg, that treats each macro-arm V considered by NS as an
arm in MABg. Naturally, MABg has no arms in the beginning of NS’s procedure.

At each iteration, NS uses a policy π0 to determine whether it adds an arm to MABg

through the local MABs (explore) or evaluates an existing arm in MABg (exploit).

1. If explore is chosen, then a macro-arm V is added to MABg by using a policy πl
to independently choose a value for each variable in X. Here, NS assumes that the
reward of a macro-arm V can be approximated by the sum of the rewards of the
individual values vi ∈ V , denoted µ′(vi). That is, µ(V ) ≈

∑
vi∈V µ

′(vi).

2. If exploit is chosen, then a policy πg is used to select an existing macro-arm in MABg.

Ontañón (2017) showed that NS can be used in the context of Monte Carlo Tree Search
(MCTS) by introducing an algorithm named NäıveMCTS (see Algorithm 2). NäıveMCTS
differs from other MCTS algorithms in that it uses NS to decide which player-actions should
be evaluated in search. Instead of arbitrarily choosing which player-action to evaluate next
as a vanilla implementation of a MCTS algorithm might do, NäıveMCTS uses NS to select
player-actions composed of unit-actions that tend to yield good rewards. NäıveMCTS
receives as input the current state s of the game and strategies π0, πl, and πg, which are
required by NS as discussed above. NäıveMCTS returns a player-action a for player i to be
played at state s.

NäıveMCTS expands a tree in its search procedure, which we will refer to as the MCTS
tree. The MCTS tree starts only with the root node representing the current state of game
(line 1). We denote the state that is represented by a node in the tree with the word “state”
preceded by the name of the node and a dot (e.g., root.state). While there is time allowed
for planning, NäıveMCTS iteratively selects a node to be added to the MCTS tree, through
a call to SelectAndExpandNode (line 3), which is described in Algorithm 3.

Since SelectAndExpandNode uses the NS procedure described above, in addition to
the root of the tree, it requires as input the policies π0, πl, and πg. The procedure returns a
node that is added to the NäıveMCTS tree. Similarly to ABCD, NäıveMCTS uses a policy
π to sequentialize simultaneous-move states by allowing one of the players to decide their
action before the other player (line 1 of Algorithm 3). In contrast to ABCD, NäıveMCTS

1113



Moraes, Nascimento & Lelis

Algorithm 3 SelectAndExpandNode

Input: A game tree node n0 and sampling strategies π0, πl and πg
Output: A node in the tree
1: j ← π(n0.state)
2: n← NS(n0.state, π0, πl, πg, j)
3: if n ∈ n0.children then
4: return SelectAndExpandNode(n0.child(α))
5: else
6: n0.addChild(n)
7: return return n

ignores the possible delayed effects of actions, discussed in Section 3.1.1, caused by its
artificial serialization of the game. The NS procedure is invoked to decide which player-
action will be explored. That is, given current state n0.state and the player j to act at
n0.state, which is enforced by π to be either i or −i, but never both, NS returns a node n
whose state n.state is reached by applying a player-action (macro-arm) to n0.state.

In line 3 the procedure checks if the node n returned by NS is already part of the MCTS
tree (i.e., if n is amongst the children of n in the MCTS tree). Node n is part of the tree if NS
chooses to exploit an existing macro-arm. In this case, SelectAndExpandNode is called
recursively so that NS is invoked to select a player-action from n. If NS chooses to explore,
then a new macro-arm is chosen, leading to a state n that is not in the MCTS tree. In this
case, n is added to the MCTS tree (line 6) and is returned to NäıveMCTS’s main procedure
(Algorithm 2). Although unlikely due to the large number of different macro-arms, NS’s
policy might choose to explore and yet choose a node that is already in the MCTS tree. In
its main procedure, now under the name of leaf, the newly added node is evaluated with
a play-out based function Ψ, and the value v returned is used as the reward value for all
macro-arms (player-actions) traversed from root of the MCTS tree to the leaf node added
by SelectAndExpandNode. This is performed by procedure PropagateEvaluation
(line 5), whose implementation is omitted in the interest of simplicity. Once NäıveMCTS
runs out of time, it returns the most visited player-action from root.state, as the actions
with largest estimated utility for the player are visited more often. The most visited action
is returned by getMostVisitedAction, whose implementation is also omitted (line 6).

3.2 Search Algorithms for Uniformly Abstracted Trees

In this section we present Portfolio Greedy Search (PGS) and Stratified Strategy Selec-
tion (SSS), two algorithms developed for searching in uniformly abstracted trees. Before
presenting PGS and SSS we discuss uniform abstractions generated by a set of scripts.

We define a uniform action abstraction (or uniform abstraction for short) for player
i as a function mapping the set of legal actions Ai to a subset A′i of Ai. Action abstractions
can be constructed from a set of scripts P. Let the action-abstracted legal actions of unit
u at state s be the actions for u that are returned by a script in P, defined as,

M(s, u,P) = {σ̄(s, u)|σ̄ ∈ P} .

1114



Asymmetric Action Abstractions for Real-Time Strategy Games

Algorithm 4 Portfolio Greedy Search

Input: state s, default script σ̄d, set of scripts P, time limit e, and evaluation function Ψ.
Output: action a for player i’s units.
1: σ̄i ← choose a script from P considering that −i acts according to σ̄d //see text
2: σ̄−i ← choose a script from P considering that i acts according to σ̄i //see text
3: ai ← {σ̄i(u1), σ̄i(u2), · · · , σ̄i(un)}, where u1, u2, · · · , un ∈ Us

i,r

4: a−i ← {σ̄−i(u1), σ̄−i(u2), · · · , σ̄−i(um)}, where u1, u2, · · · , um ∈ Us
−i,r

5: for each u ∈ Us
i,r do

6: for each σ̄ ∈ P do
7: a′i ← ai; a

′
i[u]← σ̄(s, u)

8: if Ψ(T (s, a′i, a−i)) > Ψ(T (s, ai, a−i)) then
9: ai ← a′i

10: if time elapsed is larger than e then
11: return ai
12: return ai

Definition 1 A uniform abstraction Φ is a function that receives a state s, a player i, and
a set of scripts P, and it returns a subset of Ai(s) denoted A′i(s). A′i(s) is defined by the
Cartesian product of actions in M(s, u,P) for all u in Us

i,r, where Us
i,r is the set of ready

units of i in s.

Algorithms using a uniform abstraction search in a game tree in which player i’s legal
actions are limited to A′i(s) for all s. This way, algorithms focus their search on actions
deemed as promising by the scripts in P, as the actions in A′i(s) are composed of unit-actions
returned by the scripts in P.

3.2.1 Portfolio Greedy Search

Churchill and Buro (2013) introduced Portfolio Greedy Search (PGS), a hill-climbing search
procedure for uniformly abstracted trees. Algorithm 4 shows the pseudocode of PGS, which
receives as input a state s, a default script σ̄d, a set of scripts P, a time limit e, and an
evaluation function Ψ. PGS returns an action vector a for player i to be executed in s.

PGS starts by selecting the script σ̄i from P that yields the largest Ψ-value when i
executes an action composed of unit-actions computed with σ̄i, assuming that −i executes
an action composed of unit-actions computed with σ̄d (line 1). The same process is executed
to select σ̄−i, considering that i executes unit-actions computed by σ̄i (line 2). Churchill
and Buro (2013) called this initialization procedure the “seeding” of the players’ actions.
Action vectors ai and a−i are initialized with the unit-actions computed from σ̄i and σ̄−i.
Once ai and a−i have been initialized, PGS iterates through all units u in Us

i,r and tries
to greedily improve the unit-action assigned to u in ai, denoted by ai[u]. Note that PGS
only considers the unit-actions in the uniform abstraction, i.e., those in M(s, u,P). PGS
evaluates ai while replacing ai[u] by each of the possible unit-actions m for u. PGS keeps in
ai the action vector found during search with the largest Ψ-value. This process is repeated
until PGS reaches time limit e and returns ai (lines 11 and 12).

1115



Moraes, Nascimento & Lelis

The action vector a−i remains unchanged after its initialization (line 4). Although
in its original formulation PGS alternates between improving player i’s and player −i’s
actions (Churchill & Buro, 2013), in their experiments, Churchill and Buro allow PGS to
improve only player i’s action while player −i’s is fixed. Moraes et al. (2018b) showed that,
if set to improve both ai and a−i, PGS can suffer from the pathological “non-convergence
problem”. Due to this problem, PGS can find worse strategies than PGS with a−i fixed,
even if the former is granted more computation time than the latter. In order to overcome
that issue, Moraes et al. introduced Nested-Greedy Search (NGS), an algorithm that alters
both ai and a−i while not suffering from the pathology. We use PGS with a−i fixed instead
of NGS because NGS was shown to not scale to large games (Moraes et al., 2018b).

In addition to fixing the opponent’s action during search, another difference between our
implementation of PGS and its original formulation is that we allow it to search while there
is time available (see while loop in Algorithm 4). In its original formulation, PGS performs
a fixed number of iterations of the while loop, which is determined by an input parameter;
Churchill and Buro allowed PGS to perform only one iteration in their experiments.

3.2.2 Stratified Strategy Selection

Lelis (2017) introduced Stratified Strategy Selection (SSS). Similarly to PGS, SSS performs
a hill-climbing search. However, in contrast to PGS, SSS searches in the space of script
assignments induced by a type system, which is a partition of units. SSS assigns the same
script to units of the same type. For example, all units with low hit point values (type)
move away from the battle (strategy of a script). A type system is defined as follows.

Definition 2 (Type System) Let Ui be the set of player i’s units. T = {t1, . . . , tk} is a
type system for Ui if it is a partitioning of Ui. If u ∈ Ui and t ∈ T with u ∈ t, we write
T (u) = t.

Algorithm 5 shows the pseudocode of SSS, which receives as input the current state s,
a default script σ̄d, a set of scripts P, a time limit e, an evaluation function Ψ, and a type
system for the units Ui at state s. SSS returns a player-action for i and a Boolean value c
indicating whether SSS was able to complete one iteration over the set of types in T . The
Boolean value c is used by SSS with Adaptive Type Systems (SSS+), explained below.

In its implementation SSS also performs the seeding process described above for PGS.
That is, SSS starts by selecting the script σ̄i from P that yields the largest Ψ-value when i
executes an action composed of unit-actions computed with σ̄i, assuming that −i executes
an action composed of unit-actions computed with the default script σ̄d (line 1). The same
process is executed to select σ̄−i considering that i executes unit-actions computed by σ̄i
(line 2). SSS initializes actions ai and a−i with the unit-actions returned by the the scripts
σ̄i and σ̄−i. SSS then performs a greedy search to improve the unit-actions in ai. Namely,
SSS evaluates all possible assignments of unit-actions according to the scripts in P to units
of a given type t while the unit-actions of units with types other than t are fixed. SSS keeps
in ai the unit-actions with largest Ψ-value encountered during search (lines 9 and 10). SSS
returns the player-action ai once it reaches the time limit e (lines 12 and 14). Similarly
to PGS, the action a−i is fixed throughout the search and SSS tries to approximate a best
response to the opponent’s action given by script σ̄−i.

1116



Asymmetric Action Abstractions for Real-Time Strategy Games

Algorithm 5 Stratified Strategy Selection

Input: state s, default script σ̄d, set of scripts P, time limit e, evaluation function Ψ, and
a type system T for the set of units Ui in s.

Output: action a for player i’s units, Boolean c indicating if the algorithm finished a
complete iteration over all types in T

1: σ̄i ← choose a script from P considering that −i acts according to σ̄d //see text
2: σ̄−i ← choose a script from P considering that i acts according to σ̄i //see text
3: ai ← {σ̄i(u1), σ̄i(u2), · · · , σ̄i(un)}, where u1, u2, · · · , un ∈ Us

i,r

4: a−i ← {σ̄−i(u1), σ̄−i(u2), · · · , σ̄−i(um)}, where u1, u2, · · · , um ∈ Us
−i,r

5: c← false
6: for each t ∈ T do
7: for each σ̄ ∈ P do
8: a′i ← ai with the actions of all units u of type t replaced by σ̄(u)
9: if Ψ(T (s, a′i, a−i)) > Ψ(T (s, ai, a−i)) then

10: ai ← a′i
11: if time elapsed is larger than e then
12: return ai and Boolean c
13: c← true // iterated over all types
14: return ai and Boolean c

Depending on the number and on the diversity of units (e.g., units with different attack
ranges) present in the match, SSS might be unable to iterate through all types in T before
reaching time limit e. This is because a large diversity of units result in more types being
considered during search. If SSS is unable to iterate through all types, then it returns the
unit-actions computed from script σ̄i for units u whose type T (u) was not accounted for
during search. The assignment of σ̄i might lead to a poor overall strategy as there could
be better scripts that were not verified by the algorithm due to the lack of time. Aiming
at preventing SSS from not iterating at least once over all types, Lelis (2017) developed a
meta-reasoning system to adjust the granularity of the type system used. This adjustment
occurs in between searches and is based on the estimated running time of a SSS iteration.
Instead of receiving one type system T , SSS receives a set of type systems with different
granularities (i.e., different sizes). If the algorithm returns false with its finest type system
(the one with the largest number of types), then in the next decision-point it uses a coarser
type system. If the algorithm returns true while using a type system T and the number of
types in a finer T ′ times the average running time required to evaluate a script for a type
is lower than the time limit (i.e., SSS estimates that it can complete an iteration with T ′),
then it switches to using T ′.

4. Asymmetric Action Abstractions

Uniform abstractions are restrictive in the sense that all units have their legal actions
reduced to those specified by scripts. In this section we introduce an abstraction scheme we
call asymmetric action abstractions (or asymmetric abstractions for short) that is not
as restrictive as uniform abstractions but still uses the guidance of the scripts for selecting

1117



Moraes, Nascimento & Lelis

a subset of promising actions. The key idea behind asymmetric abstractions is to reduce
the number of legal actions of only a subset of the units controlled by player i; the sets
of legal actions of the other units remain unchanged. We call the subset of units that do
not have their set of legal actions reduced the unrestricted units; the complement of the
unrestricted units is defined as the restricted units.

Definition 3 An asymmetric abstraction Ω is a function receiving as input a state s, a
player i, a set of unrestricted units U ′i ⊆ Us

i,r, where Us
i,r is player’s i ready units in s, and

a set of scripts P. Ω returns a subset of actions of Ai(s), denoted A′′i (s), defined by the
Cartesian product of the unit-actions in M(s, u,P) for all u in Us

i,r \U ′i and of unit-actions
M(s, u′) for all u′ in U ′i.

Algorithms using an asymmetric abstraction Ω search in a game tree for which player
i’s legal actions are limited to A′′i (s) for all s. If the set of unrestricted units is equal to the
set of units controlled by the player, then the asymmetrically abstracted tree is equivalent
to the unabstracted tree, and if the set of unrestricted units is empty, the asymmetrically
abstracted tree is equivalent to the uniformly abstracted tree induced by the same set of
scripts. Asymmetric abstractions allow us to explore action abstractions in the spectrum
of possibilities between the uniformly abstracted and unabstracted game trees.

Asymmetric abstractions allow search algorithms to divide their “attention” differently
among the units at a given state of the game. That is, depending on the game state,
some units might be more important than others (e.g., units with low hit points trying to
survive), and asymmetric abstractions allow one to derive finer strategies for these units by
accounting for a larger set of unit-actions for them.

Next, we introduce four algorithms that search in real time in asymmetrically abstracted
game trees.

5. Searching in Asymmetrically Abstracted Game Trees

We introduce Greedy Alpha-Beta Search (GAB) and Stratified Alpha-Beta Search (SAB),
two algorithms for searching in asymmetrically abstracted trees. GAB and SAB hinge on a
property of PGS and SSS that has hitherto been overlooked. Namely, both PGS and SSS
may come to an early termination if they encounter a local maximum. PGS and SSS reach
a local maximum when they complete all iterations of the outer for loops in Algorithms 4
and 5 without altering ai. Once a local maximum is reached, PGS and SSS are unable to
further improve the unit-action assignments, even if the time limit e was not reached.

GAB and SAB take advantage of PGS’s and SSS’s early termination by operating in
two steps. In the first step GAB and SAB search for an action in the uniformly abstracted
tree with PGS and SSS, respectively. The first step finishes either when (i) the time limit
is reached or (ii) a local maximum is encountered. In the second step, which is run only
if the first step finishes by encountering a local maximum, GAB and SAB fix the moves
of all restricted units according to the moves found in the first step, and search in the
asymmetrically abstracted tree for moves for all unrestricted units. If the first step finishes
by reaching the time limit, GAB and SAB return the action determined in the first step.
GAB and SAB behave exactly like PGS and SSS in decision-points in which the first step
uses all time allowed for planning. We explain GAB and SAB in more detail below.

1118



Asymmetric Action Abstractions for Real-Time Strategy Games

5.1 Greedy and Stratified Alpha-Beta Searches (GAB and SAB)

In its first step GAB uses PGS to search in a uniformly abstracted space induced by P for
deriving an action a that is used to fix the actions of the restricted units during the second
search. In its second step, GAB uses a variant of ABCD. Although we use ABCD, one
could also use other search algorithms such as UCTCD (Churchill & Buro, 2013). ABCD is
used to search in a tree we call Move-Fixed Tree (MFT). The following example illustrates
how the MFT is defined; MFT’s definition follows the example.

Example 1 Let Us
i,r = {u1, u2, u3} be i’s ready units in s, P = {σ̄1, σ̄2} be a set of scripts,

and {u1, u3} be the unrestricted units. Let a = (W,L,R) be the player-action returned by
PGS, where W,L,R are the unit-actions ‘wait’ (W), ‘move left’ (L), and ‘move right’ (R).
Also, let v = {σ̄1, σ̄2, σ̄1} be the script vector that defined the unit-actions during PGS’s
search. That is, σ̄1(s, u1) = W , σ̄2(s, u2) = L, and σ̄1(s, u3) = R. We use the notation
v[u1] to denote the script in v used to define the unit-action for unit u1 in PGS’s search.

GAB’s second step searches in the MFT. The MFT is rooted at s, and the set of abstracted
legal player-actions in s is obtained by fixing a[u2] = L and considering all legal actions for
u1 and u3. That is, ifM(s, u1) = {W,U} andM(s, u3) = {R,D}, then the set of abstracted
legal player-actions in s is: {(W,L,R), (W,L,D), (U,L,R), (U,L,D)}.

For player i and for all descendants states s′ of s in the MFT, if M(s′, u1) = {W,U},
M(s′, u3) = {R,D}, and v[u2] = σ̄2, then the set of abstracted legal actions in s′ is:

{(W, σ̄2(s′, u2), R), (W, σ̄2(s′, u2), D),

(U, σ̄2(s′, u2), R), (U, σ̄2(s′, u2), D)} .

That is, at states s′ we consider all legal unit-actions of the unrestricted units and we fix
the unit-actions of the restricted units to what is returned by the units’ script in v.

Also, for all descendants states s′ of s in the MFT, if player −i’s ready units in s are
Us
−i,r = {u1, u2, u3, u4}, the set of abstracted legal player-actions for −i in s′ is,

{(σ̄−i(s′, u1), σ̄−i(s
′, u2), σ̄−i(s

′, u3), σ̄−i(s
′, u4)} .

Here, σ̄−i ∈ P is the script computed in PGS’s seeding process (see line 2 of Algorithm 4).

Definition 4 (Move-Fixed Tree) For a given state s, a subset of unrestricted units of Ui
in s, a set of scripts P, the script σ̄−i ∈ P defined in the seeding process of the algorithm’s
first step, a player-action a returned by the algorithm’s first step, and the script vector v
with one script for each u in Us

i,r used by the algorithm’s first step to define the unit-actions
in a, a Move-Fixed Tree (MFT) is a tree rooted at s with the following properties.

1. The set of abstracted legal actions for player i at the root s of the MFT is limited to
actions a′ that have unit-actions a′[u] fixed to a[u], for all restricted units u;

2. The set of abstracted legal actions for player i at states s′ descendants of s is limited to
actions a′ that have unit-actions a′[u] fixed to σ̄(s′, u) with σ̄ = v[u], for all restricted
units u;

3. The only abstracted legal action for player −i at any state in the MFT is defined by
fixing player −i’s unit-actions to those returned by σ̄−i.

1119



Moraes, Nascimento & Lelis

By searching in the MFT, ABCD searches for actions for the unrestricted units while the
actions of all other units, including the opponent’s units, are fixed: player i’s restricted
units act according to the scripts in v and player −i’s units act according to σ̄−i. Our
two-step search approximates a best response to the strategy defined by the script σ̄−i. In
theory, this approach could make our player exploitable. However, in practice, due to the
real-time constraints, one tends to derive more effective strategies by fixing the opponent
strategy, as shown in previous works (Moraes et al., 2018b).

In our original version of GAB and SAB we defined the MFT differently; c.f. Example 1
and Definition 3 of Moraes and Lelis (2018). In our original work we used a script known as
NOKAV in lieu of the scripts in v and of the script σ̄−i defining the opponent model. This
is because the MFT was defined in the context of Sparcraft, a domain for which NOKAV is
strong (Churchill & Buro, 2013). Our current definition is more general because it does not
assume the existence of a strong script and it uses byproducts of the search performed in
the first step (the scripts v and σ̄−i) to define the MFT.

Let a1 be the player-action returned by PGS in GAB’s first step and a2 be the player-
action returned by ABCD in GAB’s second step. Also, let a′ be the opponent action defined
by using the script σ̄−i for all opponent’s units. Instead of returning a2 directly, GAB returns
the action with largest Ψ value, i.e., arg maxa∈{a1,a2}Ψ(T (s, a, a′)). Note that one cannot
compare the evaluation value of actions a1 and a2 as computed by ABCD and PGS. This
is because ABCD performs a depth-first search and uses the Ψ function to evaluate the
leaf nodes of the tree expanded by ABCD; these values are then propagated up the tree to
evaluate the actions available at the root. As a result, the evaluation values of the actions
at the root performed by ABCD are based on nodes deeper in the tree than the evaluation
performed by PGS. Thus, once GAB has a1 and a2, it evaluates them again with the same
Ψ function, and only then it selects the best of the two actions.

The difference between SAB and GAB is the algorithm used in their first step: while
GAB uses PGS, SAB uses SSS. The second step of SAB follows exactly GAB’s second step.

5.1.1 Baselines for GAB and SAB: GABP , SABP , GAS, and SAS

In this section we introduce four baseline algorithms for GAB and SAB. The goal of introduc-
ing these baselines is to show empirically the advantages of (i) searching in asymmetrically
abstracted trees and (ii) of searching with a two-step scheme. Similarly to GAB and SAB,
the first two baselines we introduce, which we name GABP , SABP , use a two-step search
scheme. However, instead of searching in asymmetrically abstracted trees, they search in
uniformly abstracted trees. The other two baselines, which we name Greedy Asymmet-
ric Search (GAS) and Stratified Asymmetric Search (SAS), also search in asymmetrically
abstracted trees, but instead of performing two steps, it searches in a single step.

GABP and SABP In contrast with GAB and SAB, GABP and SABP only account for
unit-actions inM(s, u,P) for all s and u in their ABCD search. That is, GABP and SABP
only consider actions a′ for which the unit-actions a′[u] for restricted units u are fixed (as
in GAB’s and SAB’s MFT) and the unit-actions a′[u′] for unrestricted units u′ that are in
M(s, u′,P). GABP and SABP focus their search on a subset of units U ′ by searching deeper
into the game tree with ABCD for U ′. In addition to searching deeper with ABCD, GAB
and SAB focus their search on a subset of units U ′ by accounting for all legal moves of units

1120



Asymmetric Action Abstractions for Real-Time Strategy Games

in U ′ during search. If granted enough computation time, optimal algorithms using Ω derive
strategies that are not weaker than the strategies optimal algorithms using Φ can derive.
In practice, due to the real-time constraints, algorithms are unable to compute optimal
strategies for most of the decision-points. We analyze empirically, by comparing GABP to
GAB and SABP to SAB, which abstraction scheme allows one to derive stronger strategies.

GAS and SAS The difference between GAS and PGS is that in the greedy search of the
former, for a given state s, instead of limiting the number of legal actions of all units u to
M(s, u,P), as PGS does, GAS considers all legal actionsM(s, u) for unrestricted units, and
the actions M(s, u,P) for restricted units. While PGS searches in a uniformly abstracted
tree, GAS searches in an asymmetrically abstracted tree. The difference between SAS and
SAB is twofold. First, similarly to the difference between GAS and PGS, SAS also accounts
for actionsM(s, u) for all unrestricted units u. Second, in the type system T used by SAS,
all unrestricted units u have their own type, i.e., T (u) 6= T (u′) for all unrestricted units u
and all units u′. This second modification is needed to guarantee that SAS is similar to SSS
in that units of the same type execute the action returned by the same script. Suppose that
there was an unrestricted unit u for which T (u) = T (u′) and SAS selected an unit-action m
to be executed by u that is not returned by any of the scripts in P, i.e., m /∈ {σ̄(u)|σ̄ ∈ P}.
In this case, one way of guaranteeing SSS’ principle that units of the same type execute the
action returned by the same script is to ensure that each unrestricted unit has its own type.

5.2 Asymmetrically Action-Abstracted NäıveMCTS (A3N)

We call Asymmetrically Action-Abstracted NäıveMCTS (A3N) the version of NäıveMCTS
that accounts during search for all unit-actions of the unrestricted units and only for the
actions returned by the set of scripts P for the restricted units.2 The only difference between
NäıveMCTS and A3N is that in the latter, the NäıveSampling procedure (see call to NS in
Algorithm 3) can only sample macro-arms that are in the asymmetrically abstracted tree.

5.2.1 Baselines for A3N: A1N and A2N

Similarly to the baselines introduced for GAB and SAB, we introduce two baselines for
A3N: A1N and A2N. Both are based on NäıveMCTS, with the former searching in uniformly
abstracted trees and the latter searching in asymmetrically abstracted trees. The goal of
introducing these baselines is to allow us to evaluate empirically the effectiveness of the
asymmetric abstractions introduced above for A3N in comparison to uniform abstractions
induced by P and asymmetric abstractions induced by two sets of scripts.

A1N We call A1N a version of NäıveMCTS that uses an action abstraction induced by P.
The difference between NäıveMCTS and A1N is in the unit-actions sampled by NS while
adding macro-arms to MABg. Instead of being able to sample from all legal unit-actions,
A1N’s is allowed to sample only from M(s, u,P) for all units u. As a consequence, the
macro-arms added to MABg are restricted to the unit-actions returned by the scripts.

2. The number ‘3’ in A3N is the version of the algorithm; versions 1 and 2 (A1N and A2N) are described
in Section 5.2.1.

1121



Moraes, Nascimento & Lelis

Algorithm Steps Action Space Search Type Stratified

ABCD 1 Unabstracted AB No
NäıveMCTS 1 Unabstracted MCTS No

PGS 1 Uniformly Abstracted HC No
SSS 1 Uniformly Abstracted HC Yes

GAB 2 Asymmetrically Abstracted AB and HC No
SAB 2 Asymmetrically Abstracted AB and HC Yes

GABP 2 Uniformly Abstracted AB and HC No
SABP 2 Uniformly Abstracted AB and HC Yes
GAS 1 Asymmetrically Abstracted HC No
SAS 1 Asymmetrically Abstracted HC Yes
A1N 1 Uniformly Abstracted MCTS No
A2N 1 Asymmetrically Abstracted MCTS No
A3N 1 Asymmetrically Abstracted MCTS No

Table 1: Algorithms we evaluate in this paper and their features.

A2N We call A2N the version of NäıveMCTS that uses an action abstraction defined by
two sets of scripts: P ′ and P ′′. A2N divides the set of units into two subsets: the units
related to P ′ and the units related to P ′′. A2N can only sample unit-actions m for the units
u in the first group if m is returned by one of the scripts in P ′ for u. The unit-actions A2N
can sample for the second group of units is defined analogously. Note that the two subsets
of units do not need to be disjoint as some units can have actions sampled from both sets
of scripts. The action abstraction used by A2N is also asymmetric as the number of scripts
in each set can be different, allowing A2N to derive finer plans to units in either group.

Table 1 summarizes all algorithms we evaluate in Section 6. The table distinguishes the
algorithms by the number of steps performed (e.g., GAB performs two steps by searching
with ABCD and PGS), action space (unabstracted, uniformly abstracted, or asymmetri-
cally abstracted), search type, which includes Alpha Beta (AB), Monte Carlo Tree Search
(MCTS), or hill climbing (HC), and whether the algorithm uses a stratification or not.

6. Empirical Evaluation

We evaluate the algorithms proposed in this paper to search in asymmetrically abstracted
action spaces on µRTS (Ontañón, 2013), a real-time strategy game; the game is detailed
in Section 6.1. Our empirical evaluation is divided into three parts. First, we evaluate
different strategies for selecting the set of unrestricted units (Section 6.2). Next, we evaluate
GAB, SAB, and A3N against their baselines GAS, GABP , SAS, SABP , A1N and A2N
(Section 6.3). Finally, we compare GAB, SAB, and A3N against state-of-the-art search
algorithms for RTS games (Section 6.5).

6.1 µRTS

µRTS is a challenging open-source RTS game developed for research purposes (Ontañón,
2013). Figure 1 shows a screenshot of a µRTS state of a match played on a 8×8 map. Circles

1122



Asymmetric Action Abstractions for Real-Time Strategy Games

and squares with a blue or red contour denote units that can be controlled by the blue
and red players, respectively. Colored squares without a contour can be either numbered
or unnumbered, with the former denoting resources (the number shows the quantity of
resources available) and the latter denoting obstacles that cannot be traversed by units.
Uncolored squares are traversable regions of the map. The letters are not part of the game
and were added to ease the description of the units and game mechanics that follows.

Figure 1: A µRTS state of a game in a 8 × 8 map.

Unit types Each player can train the following types of units: workers, light units, ranged
units, heavy units, base, and barracks. The units that can move and attack are
represented by a circle, the other units are represented by a square. The smallest
circles (dark-gray) represent workers, yellow circles heavy units (with the letter ‘H’),
light-blue circles ranged units (with the letter ‘R’), and small orange circles light
units (with the letter ‘L’). Light-gray squares represent bases (the number in the
base shows the amount of resources available to the player). The dark-gray squares
represent barracks (with the letter ‘B’).

Hit points Every unit has an amount of hit points that indicates the amount of damage
the unit can suffer before being removed from the game. Workers and ranged units
have fewer hit points than light and heavy units. The base has more hit points than
any other unit. Some of the units can attack an enemy unit. If unit u attacks enemy
unit u′, then u reduces the hit points of u′ according to its inflicted damage, which is
determined by u’s type. Workers and ranged units cause the least amount of damage,
light and heavy units cause more damage. Workers, light, and heavy units u can only
attack enemy units adjacent to the grid cell u occupies. Ranged units u can attack
any enemy unit that is at an Euclidean distance of 3 grid cells or less from u.

Action scheme Most of the unit-actions require a single game cycle to be executed (RTS
games typically have from 10 to 50 game cycles per second (Ontañón, 2017)), but
some of the unit-actions (e.g., build a base) take several game cycles to complete (i.e.,
actions have different durations). Any unit can take a no-op action, which means that
the unit waits until the next game cycle. All units other than base and barracks can
move one grid cell at a time (up, down, left, and right). Only one unit can occupy a
given grid cell at a time. If two units move simultaneously to the same grid cell, then
the game server overwrites their actions with the no-op action.

1123



Moraes, Nascimento & Lelis

Map Name Size Number of Cycles

basesWorkers8x8A 8×8 3,000
FourBasesWorkers8x8 8×8 3,000
basesWorkers16x16A 16×16 4,000
TwoBasesBarracks16x16 16×16 4,000
basesWorkers24x24A 24×24 5,000
basesWorkers24x24ABarracks 24×24 5,000
basesWorkers32x32A 32×32 6,000
basesWorkersBarracks32x32 32×32 6,000
(4)BloodBathB 64×64 8,000
(4)BloodBathD 64×64 8,000

Table 2: Maps used in our experiments. The names are as they appear in the µRTS code-
base. We also show the size of the maps and the maximum number of game cycles
for matches played in each map.

Collecting and spending resources Bases and barracks cannot move nor attack, but
the former can train workers and the latter can train light, heavy, and ranged units—
at a cost of resources. Workers can build bases and barracks. Workers can also
collect resources (one unit of resource at a time). Once collected, the resource must
be delivered to the base by the worker. Once the collected resource is delivered at the
player’s base, it can be spent to train other units or build bases and barracks.

6.1.1 Empirical Setting for µRTS

In µRTS players need to submit an action at every decision-point. Each player is allowed
100 milliseconds for planning in each decision-point of the game.

Every match in our experiments is limited by a number of game cycles, and the match
is considered a draw once the limit is reached. The maximum number of game cycles is
dependent on the map. We use the limits defined by Barriga et al. (Barriga et al., 2018). The
strategy played in µRTS varies depending on the map used. For example, “rush” strategies
where the player trains weak units and send them out to quickly attack the opponent tend
to work better in smaller maps, while strategies where the player evolves an economy before
attacking the opponent tend to work better in larger maps. Table 2 shows the name of the
maps, their sizes, and the maximum game cycles allowed. We use 10 maps of varied sizes in
our experiments, from small maps created for research, to large maps used in commercial
games (BloodBathB and BloodBathD are copies of StarCraft’s BloodBath map and differ
only on the initial position of the players in the map). Each tested algorithm plays against
every other algorithm ten times in each map. To ensure fairness, the players switch their
starting location on the map an equal number of times. For example, if Algorithm 1 starts
in location X with Algorithm 2 starting in location Y for five matches, we switch the starting
positions for the remaining five matches.

The evaluation function Ψ used with our algorithms is the average result of two random
play-outs. A random play-out evaluates a state s by simulating the game forward from s for

1124



Asymmetric Action Abstractions for Real-Time Strategy Games

n game cycles with both players choosing actions randomly, thus leading to a state s′. Then,
the evaluation of s is given by Φ(s′), where Φ is a function introduced by Ontañón (2017).
Φ computes a score for each player—score(max) and score(min), for players i and −i,
respectively—by summing up the cost in resources required to train each unit controlled by
the player weighted by the square root of the unit’s hit points. The Φ value of a state is
given by player max’s score minus player min’s score. Φ is then normalized to a value in
[−1, 1] through the following formula 2∗score(max)

score(min)+score(max) − 1.
We performed an experiment to choose the value of n each algorithm would use. Namely,

we evaluated each algorithm played against different versions of itself in all maps used in
our experiments. We evaluated versions of each algorithm where they used play-outs of
length 50, 100, 150, and 200. Each algorithm played 10 matches (5 as player 1 and 5 as
player 2) in each map against each version of itself, for a total of 30 matches in each map.
We selected n = 200 for PGS, SSS, GAB, and SAB and n = 100 for A1N, A2N, and A3N.

The set of scripts used by PGS, SSS, GAB, SAB, and A1N is worker rush (WR), light
rush (LR), heavy rush (HR), and ranged rush (RR) (Stanescu, Barriga, Hess, & Buro, 2016;
Silva et al., 2019). A3N’s set of scripts is composed of LR, HR, and RR. A3N uses a different
set of scripts because preliminary results showed that the algorithm tends to perform better
with LR, HR, and RR. We use LR as the default script for PGS, SSS, GAB, and SAB. All
these scripts train units which are immediately sent to attack the enemy. The difference
among them is the type of unit trained, WR trains workers units, LR trains light units,
HR trains heavy units, and RR trains ranged units. The ABCD algorithm used in GAB
and SAB uses the technique called scripted move ordering to allow for more pruning during
search (Churchill et al., 2012). In our experiments, the ABCD search of GAB and SAB
first searches the actions returned by WR for maps of size 8×8 and 16×16 and the actions
returned by LR for the other maps before considering other actions.

We use type systems that consider the following µRTS features: attack type (ranged
or melee), mobility Type (stationary or mobile), hit points value. We use the following
bucketing scheme for hit points (Lelis, 2017).

hp(u, l) =

⌊
hp(u)

bhpm(u)
l c

⌋
.

Here, hp(u) is the current number of hit points unit u has and hpm(u) is the maximum
number of hit points the unit can have; the parameter l is an integer parameter. Larger
values of l allows for a wider range of hp(u, l)-values, which result in finer type systems. For
example, a type system that accounts for all features: (attack type, stationary, hit points
with value of l = 2) assigns the following type to a light unit with 2 hit points: (melee,
mobile, 2

4/2 = 1); hpm(u) = 4 for light units. The type of a light unit with 4 hit points is:

(melee, mobile, 4
4/2 = 2). SSS and SAB use a set of type systems of different granularity

that are chosen depending on how fast the algorithm evaluates action assignments (Lelis,
2017). We use the following set of type systems, which are ordered from the coarsest (fewer
types) to the finest type system (more types): {(T0), (attack type), (attack type, mobility),
(attack type, mobility, hp(l = 1)), (attack type, mobility, hp(l = 2)), (attack type, mobility,
hp(l = 3))}. Here, T0 is a type system that assigns all units to the same type.

Our results are reported in terms of winning rate. The winning rate is computed by
summing the total number of victories and half of the number of draws of each algorithm

1125



Moraes, Nascimento & Lelis

evaluated and then dividing this sum by the total number of matches played; the result of
the division is then multiplied by 100.

6.2 Evaluating Strategies and Number of Unrestricted Units

Next, we describe and evaluate nine strategies for selecting the unrestricted units. A se-
lection strategy receives a state s and a set size N and returns a subset of size N of the
player’s units. The selection of unrestricted units is dynamic as the strategies can choose
different unrestricted units at different states. Ties are broken randomly in our strategies.

1. Farthest from Centroid (FC). FC selects the N units that are farthest from the
centroid of all player i’s units. The intuition behind FC is to allow a finer control for
the units that are distant from other ally units and might be unprotected.

2. Closest to Centroid (CC). CC selects the N units that are closest to the centroid
of all player i’s units. This strategy serves as a baseline for FC.

3. Closest to Enemy (CE). CE selects the N units that are closest to an enemy unit
at every decision-point. Similarly to FC, the intuition behind CE is to allow a finer
control for the units that are likely to be more threatened by enemy units.

4. Farthest from Enemy (FE). FE selects the N units that are the farthest from an
enemy unit. The intuition is that by providing a finer control to units that are far of
the enemy, one might achieve a better overall positioning of units.

5. Less life (HP-). HP- selects the N units with the lowest hit points. The intuition
of this strategy is to provide a finer control to units that are about to be eliminated
from the game, hoping that a finer control will keep these units longer in the match.

6. More life (HP+). HP+ selects the units with more hit points at a given decision-
point. This strategy can be helpful in scenarios where it is important to provide a
finer plan to the structures responsible for training units (base and barracks) as they
the units with largest number of hit points in the game.

7. High Attack Value (AV+). Let av(u) = dpf(u)
hp(u) , where dpf(u) is the amount of

damage per game cycle a unit can inflict to an enemy unit and hp(u) is u’s current
amount of hit points. AV+ selects the N units with the largest av-values. AV+
is similar to HP- as they both provide a finer control to units with low hp-value.
However, AV+ selects units with low hp-value and/or large dpf -value, while HP- only
accounts for hp. Moraes and Lelis (2018) showed that AV+ yields the best results for
combat scenarios that arise in RTS matches.

8. Low Attack Values (AV-). AV- selects the units with the lowest av-values.

9. Random (R). R randomly selects N units. This strategy serves as a baseline for the
other strategies.

Time complexity is an important aspect of the strategies for selecting unrestricted units,
as the time used to select units reduces the time allowed for planning. Strategy R has a

1126



Asymmetric Action Abstractions for Real-Time Strategy Games

GAB vs. PGS

Strategy
Unrestricted Set Size N

1 2 3 4 5 6 7 8 9 10

CC 76.0 71.5 59.0 55.0 47.0 40.5 44.5 38.0 37.0 43.5
FC 63.5 60.5 60.0 44.0 38.0 43.0 41.0 37.5 46.0 38.5
CE 82.5 81.0 65.0 55.5 62.0 58.5 45.0 45.5 40.5 46.0
FE 78.0 77.5 66.0 57.0 56.0 49.5 46.5 34.0 36.0 40.5
AV- 81.0 86.0 82.0 79.0 73.0 66.0 66.0 58.5 54.0 50.0
AV+ 77.5 82.0 79.5 81.0 72.0 74.5 58.5 55.5 45.0 43.5
HP- 83.0 82.0 82.5 76.5 70.0 70.0 62.0 57.0 56.0 54.0
HP+ 75.0 64.0 47.0 46.5 40.5 38.0 42.5 40.0 38.0 27.5
R 70.0 59.0 47.0 49.0 44.0 36.5 46.0 47.0 37.5 45.0

SAB vs. SSS

Strategy
Unrestricted Set Size N

1 2 3 4 5 6 7 8 9 10

CC 73.0 68.0 66.5 59.0 47.0 61.0 60.5 60.0 61.5 64.0
FC 72.0 61.0 72.0 62.0 66.0 63.5 57.0 54.0 60.0 49.0
CE 83.5 81.0 67.0 69.5 67.0 65.5 67.0 58.5 61.0 59.0
FE 75.0 73.0 72.0 67.0 56.0 54.0 54.0 60.0 58.0 55.0
AV- 81.0 76.0 76.0 77.0 62.0 73.0 71.0 68.0 65.0 56.5
AV+ 77.0 77.5 73.0 75.0 74.0 72.5 59.5 63.5 66.0 59.5
HP- 79.0 79.0 74.0 66.0 68.0 69.0 65.0 68.0 57.0 69.0
HP+ 73.0 70.0 62.0 65.0 57.0 55.0 52.0 65.0 57.0 61.5
R 73.0 68.0 65.5 56.5 62.0 52.5 58.5 56.0 61.0 60.0

A3N vs. A1N

Strategy
Unrestricted Set Size N

1 2 3 4 5 6 7 8 9 10

CC 85.0 69.0 58.5 53.5 51.5 35.0 28.5 26.5 22.0 23.5
FC 89.0 86.0 80.0 67.0 55.5 50.5 38.0 32.0 30.0 23.5
CE 87.5 82.0 73.0 68.0 55.5 43.0 38.0 28.5 18.0 26.5
FE 71.0 77.5 68.0 55.5 42.5 37.5 26.0 19.5 24.5 19.0
AV- 36.0 40.0 36.0 35.0 25.5 26.5 22.5 24.0 20.0 21.0
AV+ 40.0 52.0 59.0 55.5 46.5 51.5 44.0 33.5 26.5 24.0
HP- 40.0 53.5 54.0 56.0 50.0 49.5 48.5 36.5 34.0 30.0
HP+ 36.5 31.0 29.5 19.5 25.5 19.0 19.0 15.0 15.5 12.0
R 75.0 76.5 65.0 62.0 49.5 37.5 36.5 24.5 29.0 27.0

Table 3: Winning rate of variants of GAB, SAB, and A3N against their respective baselines
in 100 matches played in 10 maps, 10 matches for each map. The rows depict
different strategies (Str.) and the columns different unrestricted set sizes (N).

time complexity of O(1) as it needs to simply retrieve one random unit from the list of the
player’s units. FC, CC, HP-, HP+, AV+, and AV- have a time complexity of O(n) for n

1127



Moraes, Nascimento & Lelis

units. This is because it requires one to iterate once over all n units (HP-, HP+, AV+,
and AV-) or twice over all units for FC and CC, once to compute the centroid and another
for selecting the closest or the farthest unit. Assuming that both players control n units,
a näıve implementation of CE and FE is O(n2) as one computes the distance between all
pairs player’s i and player’s −i units. A k-d tree can be used to reduce this complexity
to O(n log n). We use a näıve implementation of CE and FE in our experiments. Despite
having a worse time complexity, as we show in our experiments, CE performs better than
other strategies because it allows the search algorithm to focus its effort in battles, thus
allowing the agent to better plan the actions of units being threatened by opponent units.

We evaluate GAB, SAB, and A3N with the nine strategies described above for values of
N ∈ {1, · · · , 10}. We compare each algorithm with its baseline that searches in uniformly
abstracted spaces, PGS, SSS, and A1N. Each algorithm plays against its baseline ten times
in each one of the ten maps. Table 3 shows the average winning rate of the algorithms for
different strategies and values of N . The rows show the strategies used for selecting the
unrestricted set while the columns show the size of the set. We use a cell-coloring scheme
in Table 3 to help us understand the results. In our color scheme, the lowest winning rate
in the table (12.0 for A3N with HP+ and N = 10) has the lightest color and the largest
winning rate (86.0 for GAB with AV- and N = 3) has the darkest color. The remaining
cell colors are chosen as a linear interpolation of the colors of the two extremes.

All three algorithms tend to perform better with smaller values of N (A3N is particu-
lar). This is because for larger N the space becomes too large to allow the algorithm to
encounter strong strategies under real-time constraints. Table 3 also shows that the algo-
rithms searching with asymmetric action abstractions can outperform their baselines that
search with uniform action abstractions. The largest winning rate obtained by GAB, SAB,
and A3N are 86.0 (AV- with N = 2), 83.5 (CE with N = 1), and 89.0 (FC with N = 1),
respectively. We use GAB with AV- and N = 2, SAB with with CE with N = 1, and
A3N with FC and N = 1 in the remaining experiments of this paper. Next, we explain the
results presented in Table 3 using domain-dependent knowledge. The reader not interested
in the problem domain should skip to Section 6.2.1.

GAB performs best with AV- and has HP- with the second best score, two dissimilar
strategies. Strategy AV- allows GAB to provide a finer control to bases and barracks, as
these units minimize the AV-value (they are unable to cause damage and have a large
number of hit points). Strategy HP- allows GAB to provide a finer control to weaker units
such as workers or combat units that have suffered damage. SAB also obtains good results
with both AV- and HP-. These results are in contrast with A3N’s, as A3N can be worse
than A1N if using either AV- and HP-.

The discrepancy in results with the AV- strategy happens because both GAB and SAB
use scripts to sort the actions explored in the ABCD search. For example, in maps of
size 24×24, ABCD evaluates the action provided by the LR script before any other action.
The LR strategy builds a barracks as soon as possible so that light units can be trained,
and a barracks can only be built if the player “saves” resources. Due to the ABCD move
ordering, both GAB and SAB are able to evaluate the sequence of actions to successfully
build a barracks while using the AV- strategy. By contrast, A3N does not employ a move
ordering approach and the actions needed to produce a barracks might not even be evaluated
if one considers all legal actions of bases and barracks (as it happens with the AV- strategy).

1128



Asymmetric Action Abstractions for Real-Time Strategy Games

Moreover, A3N uses a play-out function that performs fewer steps than the one used by
GAB and SAB to evaluate actions. As a result, even if A3N evaluates the action of building
a barracks, the algorithm is shortsighted and thus unable to perceive the value of building
such a structure. A3N also obtains poor results with strategy HP+ for exactly same reasons
just described.

The discrepancy of results of GAB/SAB and A3N with strategy HP- can be explained
by similar arguments. The HP- strategy allows the algorithms to mostly control workers,
which are the units with the lowest hit point values. Workers are usually either battling
the opponent or collecting resources. Due to its lack of move ordering, if providing a finer
control to workers collecting resources, A3N often mistakenly sends such units to attack the
opponent, thus interrupting their task. The move ordering used by GAB and SAB’s ABCD
search allows the algorithms to not harm the player’s strategy for resource gathering.

Strategies that are strong for GAB are also strong for SAB. However, in contrast with
GAB, SAB outperforms its baseline with almost any strategy and value of N . This happens
likely because SAB has the weakest of the baselines. The SSS search is more limited than
PGS because it is constrained to a type system. Thus, SAB’s ABCD search can more easily
improve upon the actions encountered by the algorithm’s first step.

A3N performs best with the CE and FC strategies. Both strategies allow A3N to provide
a finer control to units in direct combat with the enemy. A3N performs better with these
strategies than GAB and SAB likely because A3N does not assume a model of the opponent
and is thus more robust in combat scenarios. By contrast, GAB and SAB’s ABCD search
assume a model of the opponent and the algorithms might perform poorly if the opponent
follows a strategy that is different than the one assumed during search.

6.2.1 Evaluating Branching Factor for Different Strategies

In this section, we present statistics of the branching factor of the strategies for selecting un-
restricted units presented in Section 6.2. We consider {1, 2, 3, 4, 5} unrestricted units in five
maps (in parenthesis we present the names shown in Table 4): basesWorkers8x8A (8×8),
basesWorkers16x16A (16×16-1), TwoBasesBarracks16x16 (16×16-2), basesWorkers24x-
24A (24×24-1) and (4)BloodBathB (24×24-2). Table 4 presents the average and maximum
branching factor of five independent runs of A3N against WR for maps of size 8×8 and
16×16 and LR for maps of size 24×24; the opponents were chosen because they perform
well in these maps (see Table 9).

The branching factor grows quickly with the size of the map in unabstracted spaces.
Namely, it grows from a maximum of 1,079 in the 8×8 map to a maximum larger than
3,834,000 in the 24×24-2 map. The action abstractions maintain the branching factor
within the hundreds for all maps if the number of restricted units is less than or equal to
two. More unrestricted units will increase the branching to the thousands in some of the
maps. As a result, the search algorithms are not able to evaluate all actions available within
the domain’s real-time constraints and they evaluate in search an arbitrary subset of the
actions available, which can hamper their performance, as observed in Table 3.

1129



Moraes, Nascimento & Lelis

Abstraction
Map

8×8 16×16-1 16×16-2 24×24-1 24×24-2

Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max.

Unabstracted 30.6 1,079 101.9 9,808 4,526.7 1,264,000 11,283.7 2,737,863 12,241.2 3,834,400

AV+(1) 2.8 12 2.6 12 2.2 15 2.0 15 4.3 30
AV+(2) 6.8 51 6.8 46 6.0 60 3.8 60 20.0 186
AV+(3) 13.9 225 13.7 234 17.0 300 8.1 248 77.4 905
AV+(4) 23.9 689 27.4 1,149 47.7 1,921 20.4 1,560 225.2 2,625
AV+(5) 28.3 1,079 47.5 1,636 91.5 6,000 64.2 10,845 805.3 14,865

AV-(1) 1.5 10 2.3 9 2.2 15 1.4 15 2.4 9
AV-(2) 4.0 35 5.2 41 3.6 75 2.0 50 6.1 27
AV-(3) 8.8 158 15.5 196 6.4 325 3.3 190 13.8 133
AV-(4) 21.8 475 27.6 427 16.6 1,921 8.8 910 56.6 720
AV-(5) 28.8 1,079 51.3 1,636 20.4 1,921 22.4 2,900 242.0 3,060

CC(1) 3.0 7 2.2 12 2.3 21 34.6 1.8 2.6 21
CC(2) 4.5 20 3.8 37 5.6 108 34.7 4.1 7.9 66
CC(3) 7.5 158 6.8 111 17.4 540 34.8 8.6 27.3 279
CC(4) 11.4 475 13.3 683 43.3 2,340 35.0 21.5 113.3 2,196
CC(5) 28.3 1,079 19.5 1,000 39.5 11,700 36.5 48.5 492.9 14,292

CE(1) 2.8 12 2.6 15 2.4 18 2.2 21 2.5 24
CE(2) 5.5 51 5.1 65 4.0 65 3.9 69 7.3 100
CE(3) 11.7 158 10.8 245 8.1 269 7.9 387 15.1 165
CE(4) 22.3 475 23.2 440 22.9 1,921 14.8 782 47.3 615
CE(5) 27.6 1,079 51.0 1,636 36.2 3,000 32.8 3,473 188.4 3,060

FC(1) 2.0 9 2.6 9 2.5 18 2.0 30 3.1 12
FC(2) 5.3 36 5.9 42 4.1 60 3.9 150 12.8 110
FC(3) 11.4 158 13.0 196 10.6 399 9.4 483 50.7 730
FC(4) 23.1 475 30.8 1,149 30.6 1,921 25.8 1,560 173.5 5,509
FC(5) 29.9 1,079 53.9 1,636 50.4 1,921 78.5 6,570 478.5 10,392

FE(1) 2.3 12 2.6 12 1.9 15 1.7 30 4.7 30
FE(2) 5.4 37 6.0 46 5.3 75 3.8 123 19.4 183
FE(3) 9.5 158 16.5 196 18.2 399 9.2 354 76.3 1,668
FE(4) 22.0 475 29.6 400 38.8 1,921 23.2 1,352 262.3 2,298
FE(5) 29.2 1,079 53.2 1,636 54.9 1,921 65.1 11,024 983.5 10,977

HP+(1) 1.5 10 2.3 9 2.2 15 1.4 15 2.5 9
HP+(2) 4.4 40 5.1 35 3.6 75 2.6 50 6.1 27
HP+(3) 10.8 158 10.7 196 7.8 399 4.8 180 24.2 124
HP+(4) 22.3 475 24.2 539 19.4 1,921 9.6 820 86.9 615
HP+(5) 30.2 1,079 48.9 1,636 23.7 1,921 23.2 4,025 214.8 3,060

HP-(1) 2.6 12 2.6 12 2.1 13 2.0 15 4.3 30
HP-(2) 6.5 51 6.7 46 6.2 60 3.9 60 20.0 186
HP-(3) 14.0 225 13.8 234 17.3 300 8.3 248 77.4 905
HP-(4) 24.5 689 27.3 1,149 48.8 1,921 20.9 1,560 225.2 2,625
HP-(5) 30.1 1,079 47.8 1,636 104.7 6,000 68.3 10,845 805.3 14,865

R(1) 1.9 9 2.6 9 2.4 15 1.8 15 3.3 11
R(2) 4.8 36 5.7 42 4.4 65 3.6 120 11.9 100
R(3) 10.6 158 12.9 196 10.0 399 7.8 876 41.6 348
R(4) 22.1 475 28.2 539 27.7 1,921 20.4 5,520 121.4 1,137
R(5) 28.3 1,079 58.5 1,636 43.1 2,275 41.5 5,520 376.1 3,727

Table 4: Statistics of the branching factor of different abstraction schemes in five maps.

6.3 Comparison with Baselines

In this section, we evaluate GAB against its baselines PGS, GAS, and GABP , SAB against
SSS, SAS and SABP , and A3N against A1N and A2N. Tables 5, 6, and 7 show the results
for GAB, SAB, and A3N against their respective baselines.

1130



Asymmetric Action Abstractions for Real-Time Strategy Games

PGS GAS GABP GAB Avg.

PGS 50.0 78.5 84.0 19.0 57.9
GAS 21.5 51.5 52.0 8.0 33.2
GABP 16.0 48.0 54.0 20.0 34.5
GAB 81.0 92.0 80.0 51.5 76.1

Table 5: Comparison of GAB with its baselines. Winning rate of the row player against
the column player.

SSS SAS SABP SAB Avg.

SSS 50.0 85.0 73.0 26.0 58.5
SAS 15.0 48.5 27.5 8.0 24.7
SABP 27.0 72.5 58.0 26.0 45.8
SAB 74.0 92.0 74.0 52.5 73.1

Table 6: Comparison of SAB with its baselines. Winning rate of the row player against the
column player.

A1N A2N A3N Avg.

A1N 50.0 24.0 5.5 26.5
A2N 76.0 51.5 27.0 51.5
A3N 94.5 73.0 50.5 72.7

Table 7: Comparison of A3N with its baselines. Winning rate of the row player against the
column player.

All three algorithms, GAB, SAB, and A3N, outperform their baselines. The results of
GAB against GABP , SAB against SABP , and A3N against A1N demonstrate that algo-
rithms that search with asymmetric action abstractions can substantially outperform their
counterparts that search with uniform abstractions. The results of GAB against GAS and
SAB against SAS demonstrate that the two-step search scheme of GAB and SAB can be
effective as both GAS and SAS also search in asymmetrically abstracted action spaces—the
algorithms differ only in their search scheme. Finally, the superiority of A3N against A2N
demonstrates the effectiveness of generating asymmetric action abstractions by having a set
of unrestricted units for which all unit-actions are considered during search. A2N’s asym-
metry relies on the strategies encoded in scripts as all units are restricted to a set of scripts.
By contrast, A3N’s asymmetry allows the search procedure to discover strategies different
than those encoded in scripts by considering all unit-actions for a small set of units.

1131



Moraes, Nascimento & Lelis

HR RR AHT NS A1N WR SSS PGS PS LR GNS STT SAB GAB A3N Avg.

HR 50.0 85.0 11.0 54.5 26.5 15.0 21.5 15.0 18.0 12.5 9.0 3.0 17.0 9.0 2.0 23.3
RR 15.0 50.0 57.0 78.5 28.5 60.0 15.0 7.0 0.0 0.0 9.0 15.0 6.0 12.0 2.0 23.7
AHT 89.0 43.0 50.5 21.0 9.5 18.0 29.0 19.0 31.5 44.5 25.0 9.0 17.5 18.0 14.5 29.3
NS 45.5 21.5 79.0 49.5 29.5 36.5 20.5 20.5 26.5 20.0 20.0 13.5 27.5 30.0 20.0 30.7
A1N 73.5 71.5 90.5 70.5 50.0 65.5 36.0 32.5 37.0 28.0 26.0 28.0 28.0 30.0 22.0 45.9
WR 85.0 40.0 82.0 63.5 34.5 50.0 46.0 43.0 35.0 35.0 35.0 36.5 35.0 33.0 39.0 46.2
SSS 78.5 85.0 71.0 79.5 64.0 54.0 50.0 47.0 42.5 36.0 34.0 24.0 15.0 20.0 12.0 47.5
PGS 85.0 93.0 81.0 79.5 67.5 57.0 53.0 50.0 49.0 40.0 36.0 35.5 27.0 29.0 19.0 53.4
PS 82.0 100.0 68.5 73.5 63.0 65.0 57.5 51.0 50.0 52.0 48.0 37.0 30.0 29.0 18.5 55.0
LR 87.5 100.0 55.5 80.0 72.0 65.0 64.0 60.0 48.0 50.0 53.0 52.0 34.0 36.0 20.0 58.5
GNS 91.0 91.0 75.0 80.0 74.0 65.0 66.0 64.0 52.0 47.0 49.5 48.0 44.0 44.0 13.5 60.3
STT 97.0 85.0 91.0 86.5 72.0 63.5 76.0 64.5 63.0 48.0 52.0 50.5 44.0 36.5 31.0 64.0

SAB 83.0 94.0 82.5 72.5 72.0 65.0 85.0 73.0 70.0 66.0 56.0 56.0 52.5 41.5 35.5 67.0
GAB 91.0 88.0 82.0 70.0 70.0 67.0 80.0 71.0 71.0 64.0 56.0 63.5 58.5 51.5 40.0 68.2
A3N 98.0 98.0 85.5 80.0 78.0 61.0 88.0 81.0 81.5 80.0 86.5 69.0 64.5 60.0 50.5 77.4

Table 8: Comparison of GAB, SAB, and A3N with current state-of-the-art search-based
methods. The table shows the winning rate of the row player against the column
player.

6.4 Frequency in Which GAB and SAB Return a1 or a2

We also evaluate the frequency in which GAB and SAB return action a1 or a2, the action
from their first and second searches, respectively. GAB returns a1 in 45% of the decision
points in matches played on the FourBasesWorkers8x8 map, while SAB returns a1 in 42%
of the decision points on the same map. GAB and SAB return a1 in 47% and 49% of
the decision points, respectively, in matches played on the TwoBasesBarracks16x16 map.
These results highlight the importance of evaluating a1 and a2 with the same evaluation
function Ψ to only then return the action with higher Ψ-value.

6.5 Comparison with State-of-the-Art Algorithms

In this section, we evaluate GAB, SAB, A3N against the current state-of-the-art search-
based methods for RTS games. Namely, we test the following algorithms: Portfolio Greedy
Search (PGS) (Churchill & Buro, 2013), Stratified Strategy Selection (SSS) (Lelis, 2017),
Adversarial Hierarchical Task Network (AHT) (Ontañón & Buro, 2015), an algorithm that
uses Monte Carlo tree search and HTN planning; NäıveMCTS (Ontañón, 2017) (henceforth
referred as NS), Guided-NäıveMCTS (GNS) (Yang & Ontañón, 2019); the MCTS version
of Puppet Search (PS) (Barriga et al., 2018), Strategy Tactics (STT) (Barriga et al., 2017),
and four hard-coded scripts LR, RR, HR, and WR (Stanescu et al., 2016). The tables
we present in this section use a cell-coloring scheme similar to the one used in Table 3.
Cells with the lowest winning rate (0.0) have the lightest color and cells with the largest
winning rate (100.0) have the darkest color; the remaining cell colors are chosen as a linear
interpolation of the colors of the two extremes.

The size of the search space of µRTS matches is mainly defined by the structure and
the size of the map in which the matches take place. Matches played in smaller maps tend
to be quicker, with fewer units being controlled by the players at any moment of the match.

1132



Asymmetric Action Abstractions for Real-Time Strategy Games

Matches played in larger maps tend to take longer and the players control a larger number
of units, thus increasing size of the search space. The distinction between small and large
maps is important because one might expect that algorithms searching in unabstracted
spaces perform better in smaller maps than algorithms that search in uniformly abstracted
spaces. This is because the search space is small enough for the algorithms to encounter
strong strategies while accounting for all legal actions. However, the strategy of searching in
unabstracted spaces does not scale to large maps, where algorithms that search in uniformly
abstracted spaces tend to perform better due to their search being focused on the set of
promising actions returned by scripts. We hypothesize that asymmetric action abstractions
allow search algorithms to derive strong strategies in both small and large maps.

We start by presenting the winning rate of the algorithms tested in all 10 maps used in
our experiments. Table 8 shows the winning rate of the row player against the column player.
For example, A3N has a winning rate of 64.5 against SAB in all 10 maps. Overall, A3N
wins more matches than any approach tested, with an average winning rate of 77.4. GAB
ranks second with an average winning rate of 68.2, which is close to SAB’s average winning
rate of 67.0. The three best-performing methods use asymmetric action abstractions.

Next, we present the winning rate of the algorithms separated by map size. Table 9
shows the winning rate of search algorithms in small maps (top) and large maps (bottom).
The small maps consist of the two maps of size 8×8 and the two of size 16×16. The large
maps consist of the two maps of size 24×24, two of size 32×32, and two of size 64×64. We
observe that NS, an algorithm that searches in unabstracted spaces, is superior to algorithms
using uniform abstractions such as PGS and SSS on small maps. NS has an average winning
rate of 56.8 while PGS and SSS have average winning rates of 48.9 and 41.6, respectively.
However, on large maps, NS is consistently defeated by the same algorithms. The results
shown in Table 9 also support our hypothesis that algorithms searching in asymmetrically
abstracted spaces can perform well in both small and large maps as A3N is competitive
with search-based methods in small maps and far superior to all methods tested in larger
maps. GAB and SAB perform better than PGS and SSS on both small and large maps.
The results on smaller maps show that the hard-coded script WR still outperforms all
search-based algorithms tested: WR and A3N have average winning rates of 69.6 and 62.0,
respectively. However, hard-coded strategies such as WR do not seem to generalize to larger
maps as WR obtains an average winning rate of only 30.6 on them.

7. Conclusions

In this paper we introduced asymmetric action abstractions for multi-unit zero-sum extensive-
form games. We also introduced A3N, GAB, and SAB, three search algorithms for searching
in asymmetrically abstracted action spaces. Similarly to uniformly abstracted spaces, asym-
metric abstractions also use domain-knowledge in the form of scripts. However, in contrast
with uniform abstractions, which restrict all units to the unit-actions returned by the scripts,
asymmetric action abstractions restrict only a subset of the units—the restricted units. Al-
gorithms searching with asymmetric action abstractions account for all legal unit-actions of
the remaining units—the unrestricted units. As a result, the strategies derived by search
algorithms are focused on the unrestricted units, as the algorithms are able to derive finer

1133



Moraes, Nascimento & Lelis

Small Maps

RR HR PS SSS AHT GNS PGS LR NS A1N STT WR GAB SAB A3N Avg.
RR 50.0 25.0 0.0 32.5 35.0 15.0 17.5 0.0 47.5 15.0 10.0 25.0 30.0 15.0 5.0 21.5
HR 75.0 50.0 20.0 30.0 10.0 20.0 17.5 6.3 36.3 22.5 2.5 25.0 17.5 20.0 5.0 23.8
PS 100.0 80.0 50.0 43.8 36.3 57.5 35.0 52.5 33.8 23.8 20.0 12.5 12.5 17.5 20.0 39.7
SSS 67.5 70.0 56.3 50.0 37.5 50.0 47.5 45.0 50.0 32.5 15.0 22.5 30.0 27.5 22.5 41.6
AHT 65.0 90.0 63.8 62.5 50.0 57.5 47.5 75.0 5.0 22.5 22.5 27.5 42.5 27.5 32.5 46.1
GNS 85.0 80.0 42.5 50.0 42.5 48.8 55.0 35.0 50.0 50.0 45.0 30.0 37.5 47.5 21.3 48.0
PGS 82.5 82.5 65.0 52.5 52.5 45.0 50.0 47.5 48.8 35.0 32.5 25.0 42.5 35.0 37.5 48.9
LIR 100.0 93.8 47.5 55.0 25.0 65.0 52.5 50.0 50.0 45.0 35.0 25.0 42.5 32.5 30.0 49.9
NS 52.5 63.8 66.3 50.0 95.0 50.0 51.3 50.0 48.8 50.0 33.8 46.3 75.0 68.8 50.0 56.8
A1N 85.0 77.5 76.3 67.5 77.5 50.0 65.0 55.0 50.0 50.0 47.5 30.0 62.5 67.5 52.5 60.9
STT 90.0 97.5 80.0 85.0 77.5 55.0 67.5 65.0 66.3 52.5 48.8 45.0 60.0 67.5 60.0 67.8
WR 75.0 75.0 87.5 77.5 72.5 70.0 75.0 75.0 53.8 70.0 55.0 50.0 62.5 72.5 72.5 69.6

GAB 70.0 82.5 87.5 70.0 57.5 62.5 57.5 57.5 25.0 37.5 40.0 37.5 48.8 57.5 55.0 56.4
SAB 85.0 80.0 82.5 72.5 72.5 52.5 65.0 67.5 31.3 32.5 32.5 27.5 42.5 50.0 56.3 56.7
A3N 95.0 95.0 80.0 77.5 67.5 78.8 62.5 70.0 50.0 47.5 40.0 27.5 45.0 43.8 50.0 62.0

Large Maps

NS AHT HR RR WR A1N SSS PGS STT LR PS GNS SAB GAB A3N Avg.
NS 50.0 68.3 33.3 0.8 30.0 15.8 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.3
AHT 31.7 50.8 88.3 28.3 11.7 0.8 6.7 0.0 0.0 24.2 10.0 3.3 10.8 1.7 2.5 18.1
HR 66.7 11.7 50.0 91.7 8.3 29.2 15.8 13.3 3.3 16.7 16.7 1.7 15.0 3.3 0.0 22.9
RR 99.2 71.7 8.3 50.0 83.3 37.5 3.3 0.0 18.3 0.0 0.0 5.0 0.0 0.0 0.0 25.1
WR 70.0 88.3 91.7 16.7 50.0 10.8 25.0 21.7 24.2 8.3 0.0 11.7 10.0 13.3 16.7 30.6
A1N 84.2 99.2 70.8 62.5 89.2 50.0 15.0 10.8 15.0 10.0 10.8 10.0 1.7 8.3 1.7 35.9
SSS 99.2 93.3 84.2 96.7 75.0 85.0 50.0 46.7 30.0 30.0 33.3 23.3 6.7 13.3 5.0 51.4
PGS 100.0 100.0 86.7 100.0 78.3 89.2 53.3 50.0 37.5 35.0 38.3 30.0 21.7 20.0 6.7 56.4
STT 100.0 100.0 96.7 81.7 75.8 85.0 70.0 62.5 51.7 36.7 51.7 50.0 28.3 20.8 11.7 61.5
LR 100.0 75.8 83.3 100.0 91.7 90.0 70.0 65.0 63.3 50.0 48.3 45.0 35.0 31.7 13.3 64.2
PS 100.0 90.0 83.3 100.0 100.0 89.2 66.7 61.7 48.3 51.7 50.0 41.7 38.3 40.0 17.5 65.2
GNS 100.0 96.7 98.3 95.0 88.3 90.0 76.7 70.0 50.0 55.0 58.3 50.0 41.7 48.3 8.3 68.4

SAB 100.0 89.2 85.0 100.0 90.0 98.3 93.3 78.3 71.7 65.0 61.7 58.3 54.2 40.8 21.7 73.8
GAB 100.0 98.3 96.7 100.0 86.7 91.7 86.7 80.0 79.2 68.3 60.0 51.7 59.2 53.3 30.0 76.1
A3N 100.0 97.5 100.0 100.0 83.3 98.3 95.0 93.3 88.3 86.7 82.5 91.7 78.3 70.0 50.8 87.7

Table 9: Winning rate of the row player against the column player, divided into small maps
(8×8 and 16×6) and large maps (24×24, 32×32 and 64×64).

plans for such units. Asymmetric action abstractions can be seen as an attention scheme,
where the search “pays more attention” to a subset of units.

We evaluated our algorithms with an extensive set of experiments on µRTS. If one con-
siders large maps such as those used in commercial games, then A3N presented the strongest
results. In smaller maps, a hard-coded script still outperformed all search algorithms tested.
Although we performed our experiments on µRTS, the ideas of this paper are general and
could be applied to other games. For example, card games such as Prismata (Churchill &
Buro, 2015), the player has to decide on the action of several cards. Algorithms could use
asymmetric action abstractions to focus their search on a subset of the cards. The ideas in-
troduced in this paper might also be applied to problems other than games. For example, a
robotic system that controls several actuators while trying to accomplish a task can benefit
from asymmetric action abstractions as some actuators might require a finer control than
the others, similarly to the different levels of control required over units in games.

1134



Asymmetric Action Abstractions for Real-Time Strategy Games

8. Acknowledgements

The authors gratefully thank Brazil’s FAPEMIG, CNPq, CAPES and Canada’s CIFAR AI
Chairs program and NSERC for financial support. The authors also thank the anonymous
reviewers for several great suggestions. We also thank Rob Holte for fruitful discussions
and suggestions on an earlier draft of this paper. Rubens O. Moraes performed part of the
work presented in this paper while visiting the University of Alberta. Levi Lelis is on leave
from the Departamento de Informática, Universidade Federal de Viçosa.

References

Atkin, L., & Slate, D. (1988). Computer chess compendium.. chap. Chess 4.5-The North-
western University Chess Program, pp. 80–103. Springer-Verlag, Berlin, Heidelberg.

Balla, R.-K., & Fern, A. (2009). UCT for tactical assault planning in real-time strategy
games. In Proceedings of the International Joint Conference on Artificial Intelligence,
pp. 40–45.

Barriga, N. A., Stanescu, M., & Buro, M. (2017). Combining strategic learning with tac-
tical search in real-time strategy games. In Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, pp. 9–15. AAAI Press.

Barriga, N. A., Stanescu, M., & Buro, M. (2018). Game tree search based on nondetermin-
istic action scripts in real-time strategy games. IEEE Transactions on Games, 10,
69–77.

Billings, D., Burch, N., Davidson, A., Holte, R., Schaeffer, J., Schauenberg, T., & Szafron, D.
(2003). Approximating game-theoretic optimal strategies for full-scale poker. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence, p. 661–668,
San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Bosanský, B., Lisý, V., Lanctot, M., Cermák, J., & Winands, M. H. M. (2016). Algo-
rithms for computing strategies in two-player simultaneous move games. Artificial
Intelligence, 237, 1–40.

Brown, N., & Sandholm, T. (2018). Superhuman ai for heads-up no-limit poker: Libratus
beats top professionals. Science, 359 (6374), 418–424.

Campbell, M., Hoane, A., & hsiung Hsu, F. (2002). Deep blue. Artificial Intelligence,
134 (1), 57 – 83.

Chung, M., Buro, M., & Schaeffer, J. (2005). Monte Carlo planning in RTS games. In
Proceedings of the IEEE Symposium on Computational Intelligence and Games.

Churchill, D., & Buro, M. (2013). Portfolio greedy search and simulation for large-scale
combat in StarCraft.. In Proceedings of the Conference on Computational Intelligence
in Games, pp. 1–8. IEEE.

Churchill, D., & Buro, M. (2015). Hierarchical portfolio search: Prismata’s robust AI ar-
chitecture for games with large search spaces. In AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, pp. 16–22.

1135



Moraes, Nascimento & Lelis

Churchill, D., Saffidine, A., & Buro, M. (2012). Fast heuristic search for RTS game com-
bat scenarios.. In Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment.

Hawkin, J. A., Holte, R., & Szafron, D. (2011). Automated action abstraction of imper-
fect information extensive-form games. In Proceedings of the AAAI Conference on
Artificial Intelligence, pp. 681–687.

Hawkin, J. A., Holte, R., & Szafron, D. (2012). Using sliding windows to generate action
abstractions in extensive-form games. In Proceedings of the AAAI Conference on
Artificial Intelligence. AAAI Press.

Helmert, M. (2006). The fast downward planning system. Journal of Artificial Intelligence
Research, 26 (1), 191–246.

Hoffmann, J., & Nebel, B. (2001). The ff planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14 (1), 253–302.

Justesen, N., Tillman, B., Togelius, J., & Risi, S. (2014). Script- and cluster-based UCT for
StarCraft. In IEEE Conference on Computational Intelligence and Games, pp. 1–8.

Knuth, D. E., & Moore, R. W. (1975). An analysis of alpha-beta pruning. Artificial
Intelligence, 6 (4), 293–326.

Kocsis, L., & Szepesvári, C. (2006). Bandit based monte-carlo planning. In Proceedings of
the European Conference on Machine Learning, pp. 282–293. Springer-Verlag.

Kovarsky, A., & Buro, M. (2005). Heuristic search applied to abstract combat games. In
Advances in Artificial Intelligence: Conference of the Canadian Society for Computa-
tional Studies of Intelligence, pp. 66–78. Springer.

Lelis, L. H. S. (2017). Stratified strategy selection for unit control in real-time strategy
games. In International Joint Conference on Artificial Intelligence, pp. 3735–3741.

Lelis, L. H. S. (2020). Planning algorithms for zero-sum games with exponential action
spaces: A unifying perspective. In International Joint Conference on Artificial Intel-
ligence.

Liu, S., Louis, S. J., & Ballinger, C. A. (2016). Evolving effective microbehaviors in real-
time strategy games. IEEE Transactions on Computational Intelligence and AI in
Games, 8 (4), 351–362.

Moraes, R. O., & Lelis, L. H. S. (2018). Asymmetric action abstractions for multi-unit
control in adversarial real-time scenarios. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, pp. 876–883. AAAI.

Moraes, R. O., Mariño, J. R. H., Lelis, L. H. S., & Nascimento, M. A. (2018a). Action
abstractions for combinatorial multi-armed bandit tree search. In Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, pp.
74–80. AAAI.

Moraes, R. O., Mariño, J. R. H., & Lelis, L. H. S. (2018b). Nested-greedy search for
adversarial real-time games. In Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, pp. 67–73.

1136



Asymmetric Action Abstractions for Real-Time Strategy Games

Ontañón, S. (2013). The combinatorial multi-armed bandit problem and its application
to real-time strategy games. In Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, pp. 58–64.

Ontañón, S., & Buro, M. (2015). Adversarial hierarchical-task network planning for complex
real-time games. In Proceedings of the International Joint Conference on Artificial
Intelligence, pp. 1652–1658.

Ontañón, S. (2017). Combinatorial multi-armed bandits for real-time strategy games. Jour-
nal of Artificial Intelligence Research, 58, 665–702.

Ontañón, S., Barriga, N. A., Silva, C. R., Moraes, R. O., & Lelis, L. H. (2018). The first
microrts artificial intelligence competition.. AI Magazine, 39 (1).

Richter, S., & Helmert, M. (2009). Preferred operators and deferred evaluation in satisficing
planning. Proceedings of the International Conference on Automated Planning and
Scheduling, 19 (1), 273–280.

Sailer, F., Buro, M., & Lanctot, M. (2007). Adversarial planning through strategy sim-
ulation. In Proceedings of the IEEE Symposium on Computational Intelligence and
Games, pp. 80–87.

Sandholm, T., & Singh, S. (2012). Lossy stochastic game abstraction with bounds. In
Proceedings of the ACM Conference on Electronic Commerce, p. 880–897. Association
for Computing Machinery.

Silva, C. R., Moraes, R. O., Lelis, L. H. S., & Gal, K. (2019). Strategy generation for
multiunit real-time games via voting. IEEE Transactions on Games, 11 (4), 426–435.

Stanescu, M., Barriga, N. A., Hess, A., & Buro, M. (2016). Evaluating real-time strategy
game states using convolutional neural networks. In Computational Intelligence and
Games (CIG), 2016 IEEE Conference on, pp. 1–7. IEEE.

Usunier, N., Synnaeve, G., Lin, Z., & Chintala, S. (2016). Episodic exploration for deep
deterministic policies: An application to StarCraft micromanagement tasks. CoRR,
abs/1609.02993.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi,
D. H., Powell, R., Ewalds, T., Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka,
I., Huang, A., Sifre, L., Cai, T., Agapiou, J. P., Jaderberg, M., ..., & Silver, D. (2019).
Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature,
575 (7782), 350–354.

Wang, C., Chen, P., Li, Y., Holmg̊ard, C., & Togelius, J. (2016). Portfolio online evolution in
StarCraft. In Proceedings of the Conference on Artificial Intelligence and Interactive
Digital Entertainment, pp. 114–120.

Yang, Z., & Ontañón, S. (2019). Guiding Monte Carlo Tree Search by Scripts in Real-
Time Strategy Games. In Proceedings of the Conference on Artificial Intelligence and
Interactive Digital Entertainment, pp. 100–107.

Zobrist, A. L. (1990). A new hashing method with application for game playing. ICGA
Journal, 13, 69–73.

1137


