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Abstract
The combination of tree search and neural net-
works has achieved super-human performance in
challenging domains. We are interested in trans-
ferring to humans the knowledge these learning
systems generate. We hypothesize the process in
which neural-guided tree search algorithms learn
how to solve a set of problems can be used to gen-
erate curricula for helping human learners. In this
paper we show how the Bootstrap learning system
can be modified to learn curricula for humans in a
puzzle domain. We evaluate our system in two cur-
riculum learning settings. First, given a small set of
problem instances, our system orders the instances
to ease the learning process of human learners. Sec-
ond, given a large set of problem instances, our sys-
tem returns a small ordered subset of the initial set
that can be presented to human learners. We eval-
uate our curricula with a user study where partici-
pants learn how to solve a class of puzzles from the
game ‘The Witness.’ The user-study results sug-
gest one of the curricula our system generates com-
pares favorably with simple baselines and is com-
petitive with the curriculum from the original ‘The
Witness’ game in terms of user retention and effort.

1 Introduction
Tree search algorithms guided by neural networks have
achieved super-human performance in challenging domains.
For example, AlphaZero learns how to play chess and Go by
playing the game with itself [Silver et al., 2018]. In this paper
we are interested in generating curricula for human learners
(students) that capture the knowledge intelligent systems such
as AlphaZero generate. We use a neural-guided tree search al-
gorithm to generate curricula for human learners in the con-
text of a single-agent sequential decision making problem.

A curriculum is an ordered set of problem instances that
is designed to ease learning. Students start by attempting to
solve the first instance in the curriculum and then they move
to the second. A well-designed curriculum gradually intro-
duces novel concepts so that concepts learned while solv-
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ing earlier instances can be used to support later learning.
A curriculum should introduce novel concepts at the right
time since students might be bored if instances are too easy
and they may become frustrated if instances are too hard
[Graesser and D’Mello, 2012]. Consequently, introducing
novel concepts at the wrong time could result in increased
drop-out rates. Finally, curricula should cover all concepts
needed for solving any instance from a class of problems.

We investigate Levin tree search (LTS) [Orseau et al.,
2018] and Bootstrap [Jabbari Arfaee et al., 2011] as a model
to generate curricula for decision-making tasks. We hypoth-
esize the order in which LTS solves a set of instances while
learning a neural policy can be used as an effective curricu-
lum for human learners. We evaluate our hypothesis in two
settings. The first orders a set of given instances to form a cur-
riculum (ordering problem). The second takes a large set of
instances and selects an ordered subset from these instances
to form a curriculum (order-and-select problem).

We tested our hypothesis through a user study with a
class of puzzles from the commercial game ‘The Witness.’
We conducted our between-subjects study (n = 685) via the
LabintheWild platform [Reinecke and Gajos, 2015]. Of the
five curricula tested, two were automatically generated by our
system. One of these generated curricula is a solution to the
ordering problem when we provide a small set of puzzles
from the original game as input. The second generated cur-
riculum is a solution to the order-and-select problem, where
we use a large set of computer-generated puzzles. The user-
study results support our hypothesis: a curriculum generated
by our system compares favorably with simple baselines and
is competitive with the curriculum from the original ‘The
Witness’ game in terms of user retention and effort.

Contributions. We show how a learning system can be mod-
ified to generate a curriculum for helping human learners. We
perform an extensive evaluation of our system through a user
study with a puzzle domain. To the best of our knowledge, we
are the first to investigate the transfer of computer-generated
knowledge to humans via automatically generated curricula.

2 Related Work
Our work is related to machine teaching [Zhu, 2015; Zhu
et al., 2018], where one is interested in generating a train-
ing set that allows a learner to efficiently learn a concept. A



challenge in machine teaching is curriculum design: the task
of generating a set of problems that is sufficient for learn-
ing. Often a curriculum starts with easy instances and gradu-
ally increasing difficulty [Bengio et al., 2009; Taylor, 2009].
Others have approached machine teaching from a theoretical
perspective [Goldman and Kearns, 1995; Zilles et al., 2011;
Zhu et al., 2017]. Our system approximates an optimal train-
ing set size for an algorithm, which is similar to the goals
of these previous works. In contrast to them, we evaluate a
subset of the near-optimal training set as a curriculum for hu-
mans.

Many have modelled the task of choosing the next activ-
ity for a learner as a planning [Chi et al., 2011; Rafferty et
al., 2011] or as an optimization problem [Patil et al., 2014;
Lindsey et al., 2013]. These methods observe how the learner
behaves before deciding the next activity. We develop a cur-
riculum beforehand and do not observe the learner. Often
planning and optimization-based methods assume the exis-
tence of a learner model while we evaluate a neural-guided
tree search algorithm as a learner model.

Khan et al. [2011] and Cakmak and Lopes [2012] evalu-
ated strategies humans use for teaching. Khan et al. showed
that human teachers use a strategy where students are first ex-
posed to easy problems and only later to harder ones. Like
this work, we compare the curriculum our system generates
with that of a human teacher. While Khan et al. focused on
classification tasks, we focus on a sequential task. Cakmak
and Lopes also deal with sequential tasks, but they focus on
training teachers, while we focus on teaching human learners.

3 Problem Definition
P = (S,A, T, s0, g) is a sequential-decision making prob-
lem, where S is a set of states with s0 and g in S being the
start and goal states. A is a function that receives a state s
and returns a set of valid actions at s. T is a determinis-
tic transition function that receives a state s and an action a
and returns the state reached once a is applied to s. A solu-
tion path is a sequence of state-action pairs {(si, ai)}mi=0 with
T (si, ai) = si+1 and T (sm, am) = g. A problem instance
(or instance for short) is a pair (s0, g) for fixed S, A, and T .

A learning algorithm L receives an ordered set of instances
D and a search algorithm; it returns a heuristic h that is used
to guide the search algorithm (e.g., a cost-to-go function or a
probability distribution over actions). h is optimal, denoted
h∗, if it minimizes the number of states a search algorithm
guided by h must visit to find solutions for instances in D.
The efficiency of L is measured in terms of the number of
states it visits while learning h, which depends on the order-
ing of D, as we explain in Section 5. The inverse L−1 is a
function that receives h and returns an ordered set D∗ that
minimizes the number of states L needs to visit to learn h.

In curriculum learning for sequential-decision making
problems, one receives a set of instances D in an arbitrary
order and returns an ordered set D∗ that minimizes the num-
ber of states L visits to learn an approximation of an optimal
heuristic h. We hypothesize the D∗ that L−1 returns can be
used as an effective curriculum for human learners.

We consider two variations of the curriculum learning

problem. In the first, we are given a small set of instances Do

and we need to provide a total ordering for Do. The instances
are then presented in the order defined by the curriculum to
students. We call this variant the ordering problem; the sub-
script in Do stands for ‘ordering’. The second variant consid-
ers a large set Ds and an integer c and the task is to provide
a totally ordered subset D′ of Ds of size c. The subset D′ is
used as a curriculum. We call this variant the order-and-select
problem; the subscript Ds stands for ‘select’.

4 Levin Tree Search (LTS)
We use a modified version of Bootstrap and LTS as the learn-
ing algorithm L, which approximates a policy π as the heuris-
tic h that guides the LTS search. A policy π(s, a) returns the
probability of taking action a at s. Other search algorithms
such as A* [Hart et al., 1968] could possibly be used in our
experiments. We use LTS because it performs well on the
puzzles we use in our experiments [Orseau and Lelis, 2021].

LTS is a best-first search algorithm that uses a policy. LTS
grows a search tree in which each node represents a state in
S and the tree is rooted at a node that represents s0. Since
each node represents a state, we use the words ‘nodes’ and
‘states’ interchangeably. There is a directed edge from n to
n′ in the tree if T (n, a) = n′ with a ∈ A(n). A node n is
expanded when we compute T (n, a) for all a in A(n); a node
n′ is generated when T (n, a) = n′ is computed.

Like A*, LTS uses a priority queue, which we refer to as
OPEN. LTS starts by inserting the node representing the start
state s0 in OPEN. In each iteration, it removes from OPEN
and expands the node n with lowest cost. The cost function
LTS employs is d(n)

π(n) . Here, d(n) is the depth of n in the
search tree and π(n) is the probability of n, which is com-
puted as follows. Let {(ni, ai)}mi=0 be the sequence of state-
action pairs starting at the root of the tree n0 and ending at
node T (nm, am) = n, then π(n) =

∏m
i=0 π(ni, ai). This

cost function allows LTS to focus on nodes n with higher val-
ues of π(n), while d(n) acts as an exploration term, forcing
the search to balance probability and depth values. LTS stops
searching once it generates a goal state.

5 Curriculum Learning with Bootstrap
Bootstrap receives as input a set of instances D and it returns
a policy π. In our experiments, Bootstrap starts with a policy
π0 given by a randomly initialized neural network and em-
ploys LTS guided by π0 to try to solve the instances in D;
the instances LTS can solve, denoted V0, are used to train the
policy, thus generating π1. The process is repeated with π1

for the instances that were not solved in the first iteration.
The instances LTS can solve with π1 form the subset V1 of
D. Policy π2 is obtained by training π1 with V0 ∪ V1. Boot-
strap stops once it solves all instances, i.e.,

⋃
i Vi = D, and it

returns the last policy πn as an approximation of π∗.
Bootstrap uses a schedule for adjusting the budget b al-

lowed for each instance. The search budget is measured in
terms of states LTS visits in search and it is fixed for an en-
tire iteration (i.e., LTS tries to solve all instances in D while
visiting at most b states per instance). The budget is set empir-
ically to minimize the search effort of learning a policy. For



example, Orseau and Lelis [2021] used an initial b of 2,000
for The Witness puzzle we use in our experiments. If LTS is
unable to solve any instances in a given iteration, Bootstrap
doubles b for the next iteration. Previous implementations of
Bootstrap ensure the budget increases monotonically.

The partially ordered set V = {V0, V1, · · · , Vn} approx-
imates L−1(πn) because it allows one to learn πn without
trying and failing to solve instances in D. That is, LTS solves
the instances in V0 with π0, which provides the updated pol-
icy π1. LTS then uses π1 to solve V1, and so on. We assume
the b value used to solve each Vi during training is stored in
memory and is used to learn πn. The partially ordered set V
only approximates L−1(πn) since there could exist other sets
that would allow one to learn πn more efficiently (e.g., use
smaller b-values that allow LTS to solve the instances).

We adapt the Bootstrap procedure for learning curricula as
follows. We set b = 1 and we double it if the the algorithm
completes an iteration without solving any of the unsolved
instances. We also set b = 1 every time the policy is up-
dated. Previous work has used larger b-values that monotoni-
cally increase since this tends to reduce the effort of learning
πn. Since in the curriculum learning problem we are not pri-
marily concerned with the efficiency of learning πn, we use
a small b and reset it to 1 whenever the policy updates. The
use of smaller b-values produces smaller subsets Vi (for suf-
ficiently large b we would have that V0 = D and Bootstrap
would provide no ordering of the instances). Having smaller
subsets Vi is important because all instances in Vi have the
same rank in V ’s partial ordering. Thus, when presented to
students, the instances in Vi are presented in an arbitrary or-
der. By minimizing the size of Vi we minimize the number of
instances that are presented in an arbitrary order to students.

Ordering Problem The number of instances in the set Do

provided as input to the ordering problem is much smaller
than the number of training instances required to train a neu-
ral policy. Instead of using only Do as the input set for Boot-
strap, we provide as input a larger training set for which Do

is a subset. Then, we run Bootstrap with this enlarged set.
The indexes i of the Vi subsets determine an ordering for the
instances in Do. Let (s, g) and (s′, g′) be two instances in
Do. The instance (s, g) is considered easier than (s′, g′) if
(s, g) is in Vi and (s′, g′) is in Vj and i < j. Since each run
of Bootstrap can result in a different policy due to the random
initialization of the network’s weights, we ran Bootstrap mul-
tiple times instead of only running it once. We determine the
ordering of instances using the average index i of the Vi sub-
sets of each instance in Do across all runs. The multiple runs
of the system and our budgeting scheme (i.e., b = 1) make it
unlikely that two instances will have the same average index,
which would imply a partial ordering. In our experiments,
our system always returned a total ordering for Do.

Order-and-Select Problem We assume the size of Ds for
the order-and-select problem is large enough to train a neu-
ral policy, so Ds is provided as is to Bootstrap. Similarly to
the ordering problem, we also run Bootstrap multiple times
and compute the average index i of the Vi subsets of each
instance in Ds, which provides an ordering of the instances
in Ds. We then select c instances in Ds to form a curricu-

Figure 1: Curriculum from the original game ‘The Witness.’ The
player solves the instances from left to right

lum as follows. Let {o0, o1, · · · , om} be a totally ordered
set of instances. We select instances with index

⌊
i×m
(c−1)

⌋
for

i = 0, · · · , c − 1 to compose a curriculum. This procedure
selects c equidistant instances according to their indexes. For
example, if m = 1000 and c = 5, we select the instances with
index 0, 250, 500, 750, 1000. If Bootstrap provides a partial
ordering of Ds, we order the instances with the same rank
arbitrarily. This procedure guarantees that the curriculum has
instances of varied difficulty, as evaluated by Bootstrap. In
particular, it includes the easiest and hardest instances of Ds.

6 Experimental Design
We performed a user study to evaluate the effectiveness of
the curriculum Bootstrap generates for both the ordering and
the order-and-select problems. Our study was performed on-
line with volunteers from LabintheWild (LitW) [Reinecke
and Gajos, 2015]. We used LitW because it offers a more
demographically and geographically diverse pool of partici-
pants than other platforms. Instead of financial compensa-
tion, LitW volunteers receive information about themselves
and about the experiment following completion. Our study
was approved by the research ethics board of our institution.

We used a between-subject design where each participant
was randomly assigned a curriculum. Participants started
with the consent process, answered a questionnaire, and then
attempted to solve the instances in the curriculum before try-
ing to solve a set of test instances. Participants could skip
instances or leave the experiment at any time. The next in-
stance in the curriculum (or test set) was made available only
after the person either solved or skipped the current instance.
After completing the test instances, people could return to
skipped instances to try to solve them; we did not analyze
these post-study attempts. The graphical user interface of our
system allowed participants to see an image of the instances
they had previously attempted in the experiment. Participants
finished by answering demographic questions.

6.1 Black and White Puzzles
We use the Black and White Squares (BWS) puzzle from the
‘The Witness’, where the player learns how to solve BWS
puzzles by solving them in a carefully designed curriculum.
Figure 1 shows 9 instances of the curriculum used in the
game, where the player solves the instances from left to right.
Initially, only the leftmost instance is available to the player
and the next instance becomes available only after the player
solves the current instance. We refer to these 9 instances as
the witness-exact curriculum. In BWS, the player needs to
draw a line starting at the circle located at an outer edge of the
grid (see bottom-left corner of all instances but the first in Fig-
ure 1) and finishing at the small line sticking out of the grid.



Figure 2: The test instances used in our study. The first instance is
from the original game and is fixed for all participants. The other
two are representative test instances.

Figure 3: Our system’s solution to the order-and-select curriculum
learning problem (equidistant curriculum).

The line must partition the grid cells such that no squares of
different colors fall in the same partition. If the player draws
a line from the start location to the end location that violates
the color-separation constraint, the line blinks indicating the
player has failed to solve the problem. The game does not in-
struct the player in the conditions for solving the puzzles (i.e.,
the start and end points and the need of separating squares of
different colors); the player needs to discover the conditions
as they solve instances in the curriculum. We follow exactly
the same approach in our user study.

6.2 Training the Neural Model
We developed a generator of BWS puzzles and used it to gen-
erate 2,360 puzzles: 10 with grid size 1×2; 50 with size 1×3;
300 with size 2×2; 1,000 with size 3×3; 1,000 with size 4×4.

We use the 9 instances from witness-exact as the set Do for
the ordering problem. The union of the 2,360 generated in-
stances and the 9 instances from the witness-exact curriculum
form both the augmented data set for the ordering problem
and the data set for the order-and-select problem.

We ran Bootstrap with LTS 100 times to compute the aver-
age ranking of the instances. Bootstrap obtained exactly the
same order used in the original game for the ordering problem
with the 9 instances from witness-exact. Under the assump-
tion that the game designer created a near-optimal curricu-
lum for human learners, this result is evidence that Bootstrap
with LTS can be an effective model for solving the ordering
problem of curriculum generation. Khan et al. [2011] also
made the assumption that humans design near-optimal cur-
ricula and performed a similar experiment, where they com-
pared human-designed curricula to computer-generated ones.

6.3 Curricula and Test Instances for the Study
We used the witness-exact curriculum to represent both the
curriculum of the original game and the Bootstrap solution to
the ordering problem. We also evaluated two baseline curric-
ula that present different orderings of these 9 instances: one
presents the reverse ordering (witness-reverse) and the other
the instances in random order (witness-random). For the
witness-random, the 9 instances are shuffled independently
for each participant. These baselines allow us to evaluate
whether the ordering chosen by the game designer and found
by the Bootstrap system is superior to other alternatives.

Figure 4: Example of all-random curriculum.

We also evaluate the Bootstrap’s solution to the order-and-
select problem, which is shown in Figure 3. We use c = 9
to allow for a fair comparison with the curricula based on the
instances from the original game. We refer to this curricu-
lum as the equidistant curriculum because it selects equidis-
tant instances according to Bootstrap’s ordering. Finally, we
evaluate a curriculum that randomly selects 9 instances from
the 2,369 instances used in our experiments. We refer to this
curriculum as the all-random curriculum. The 9 instances
are randomly and independently selected for each participant
who was assigned the all-random curriculum. Figure 4 shows
an example of the all-random curriculum.

We are primarily interested in comparing (i) witness-exact
(our system’s solution to the ordering problem) to the other
witness-based curricula and (ii) equidistant (our system’s so-
lution to the order-and-select problem) to the strong witness-
exact baseline. We considered including curricula based on
features of the game such as size of the grid and number of
colored cells. However, these features do not provide useful
information to the curriculum learning problem. Since most
of the puzzles are of size 4×4, grid size would not be helpful
in distinguishing puzzles of the that size. The number of col-
ored and empty cells provide little to no information about the
difficulty of the puzzle, e.g., the hardest instance in witness-
exact has several empty cells (Figure 1), while the hardest
instance in equidistant has only one empty cell (Figure 3).

Test Instances Figure 2 shows a representative set of the
test instances used in our study. The first instance in the
test set (p10) was identical for all participants. Instance p10
was also extracted from the original game. In the game, af-
ter finishing solving the 9 instances shown in Figure 1, the
player solves other types of puzzles before encountering p10.
We use p10 in our test set because, in the original game, the
player is able to unlock a door after solving it, as if the game
uses p10 to test the knowledge the player acquires by solving
the initial 9 instances. The other two puzzles shown in the fig-
ure can vary for each participant; we control for their solution
length (12 and 20 steps for the second and third instances).

6.4 Metrics
We evaluate the curricula described using proxies that indi-
cate how the curriculum relates to student persistence, ef-
fort, and performance. For persistence, we use participant
drop-out rate (i.e., user retention), where a participant has
dropped-out if they quit the experiment before attempting the
first test instance. We also count the number of puzzles each
participant solves before dropping out. For effort, we count
the number of times a participant attempted to solve each in-
stance. An attempt is completed when the path is cleared so
the participant can restart solving the instance. Clearing hap-
pens when participants push the ‘reset’ button or connect the
start and end locations without separating the squares of dif-



ferent colors. We also report the number of backtrack steps
each person performed. A backtrack step is when someone
undoes a segment of the path on the grid. For performance,
we report the number of puzzles solved. For all metrics we
report their average (M) and standard deviation (SD).

The metrics of effort and performance should not be ana-
lyzed individually because they are computed for participants
who did not drop out the experiment, which can lead to a
survivor bias effect [Wald, 1980]. Due to such an effect, cur-
ricula with high drop-out rate tend to have larger number of
test puzzles solved and fewer number of attempts and back-
tracks than curricula with low drop-out rate. In our analysis,
we consider the drop out rate while discussing puzzles solved,
attempts, and backtracks.

Statistical Tests Since the data is binomial, for the drop-
out results we use the Chi-Squared test for all curricula and
Fisher exact paired tests for comparing two averages. For the
other tests we use the non-parametric Kruskal-Wallis test for
all curricula and the non-parametric Mann-Whitney test for
comparing pairs of averages. We say the difference is sta-
tistically significant if the p-value for the test comparing all
curricula is less than .05 and if the paired test is also less
than .05. We use superscript letters to denote statistically
significant differences. If two numbers in the same column
have different superscript letters, then their difference is sta-
tistically significant. For example, in Table 1, the difference
in drop-out rate between witness-exact and witness-reverse
is statistically significant, while that between equidistant and
witness-exact is not. We do not use superscript letters if the
p-value of the statistical test of all averages is larger than .05.

7 User Study Results
We report the data collected between December 2018 and
January 2022 through the LitW platform: 777 people con-
sented to participate. We excluded the data from those who
had played ‘The Witness’ before (n = 92), resulting in a to-
tal of 685 participants. The average age was 28.6 (SD =
11.3), with their ages ranging from 18 to 99. Participant gen-
der was relatively balanced: 272 identified themselves as fe-
male, 219 as male, 9 as other, and 185 withheld gender in-
formation. Most (n = 555) had received or were pursuing
post-secondary training, and 130 had completed primary or
high school. We also asked two questions about their experi-
ence playing games and solving puzzles. We used a 7-point,
Likert-type scale from 1, “never play games/solve puzzle”, to
7, “always play games/solve puzzles.” The median response
for playing games was 5 (IQR = 2) and for solving puzzles
was 4 (IQR = 2). Most participants reported they play games
and solve puzzles occasionally. The demographics distribu-
tion is similar across curriculum conditions.

7.1 User Retention
A large drop-out rate could be due to the curriculum failing
to balance the difficulty of its instances. The middle column
of Table 1 shows the drop-out rate of each curriculum. For
example, 39% of participants in the witness-exact curricu-
lum dropped out before attempting the test instances. The
last column shows the average and standard deviation of the

Curriculum Dropout # Solved Before
Condition Dropping Out

witness-exact 39%a 3.38a (1.99)
witness-random 50%a 1.32b (1.83)
witness-reverse 63%b 0.38c (1.32)
all-random 63%b 0.73d (1.69)
equidistant 48%a 2.47e (1.87)

Table 1: The drop-out rate and number of puzzles solved, as M
(SD), per participant before dropping out.

Curriculum Number of Puzzles Solved

Condition Curriculum Test First Test

witness-exact 8.04a (1.43) 2.08 (0.87) 0.38 (0.49)
witness-random 7.61a (1.91) 1.92 (0.95) 0.33 (0.47)
witness-reverse 6.67b (2.23) 1.72 (0.97) 0.22 (0.41)
all-random 7.40 (2.4) 2.09 (1.03) 0.44 (0.50)
equidistant 7.42 (1.73) 2.03 (1.01) 0.44 (0.50)

Table 2: Number of puzzles solved as M (SD).

number of puzzles each participant solved before dropping
out. For example, out of the 9 curriculum puzzles, partici-
pants of the witness-exact curriculum solved 3.38 puzzles on
average (SD = 1.99) before dropping out.

The curriculum with best user retention was witness-exact
(39% drop-out) while the two worst were all-random (63%)
and witness-reverse (63%). Participants also solved far more
puzzles before dropping out in witness-exact. These results
suggest that order matters and that the order chosen by our
system in the ordering problem encourages superior user re-
tention to the witness-reverse and witness-random baselines.

While retention was not measurably different between
equidistant and witness-exact, participants solved more puz-
zles before dropping out when they were given the equidistant
curriculum than for all baseline curricula but witness-exact.
Also, the equidistant drop-out rate was significantly lower
than witness-reverse and all-random. These results suggest
equidistant retains participants longer than the simpler base-
lines and is competitive with the witness-exact.

7.2 Number of Instances Solved
There were 321 non-drop-out participants (128 female, 114
male, 5 ‘other’, and 74 did not specify their gender). The av-
erage age was 29 (SD = 10.2). The distributions of frequency
with which participants played games and solved puzzles and
participant education for the non-drop-out participants were
similar to that reported for the entire pool of users.

Table 2 shows how many curriculum (maximum is 9) and
test instances (maximum is 3) the participants solved. It also
shows the average number of p10 puzzles solved per partic-
ipant (maximum is 1). They solved significantly fewer cur-
riculum instances in the witness-reverse condition than they
did in witness-exact or witness-random. This result reinforces
those based on retention: the puzzle order influences the
number of puzzles solved. We only compared witness-exact,
witness-random, and witness-reverse because these curricula



Curriculum Attempts

Condition Curriculum Test First Test

witness-exact 2.80 (1.57) 3.95a (3.86) 7.40a (7.66)
witness-random 3.82 (1.86) 3.76a (3.44) 6.77a (6.08)
witness-reverse 3.66 (3.69) 4.13a (3.72) 7.70a (5.98)
all-random 3.94 (2.17) 3.30a (2.84) 7.02a,b (6.87)
equidistant 3.19 (1.80) 2.26b (2.29) 4.92b (5.63)

Table 3: Number of attempts, as M (SD), for the curriculum in-
stances, test instances, and the first test instance.

Curriculum Backtracks

Condition Curriculum Test First Test

witness-exact 0.92a (1.09) 4.91 (5.99) 9,98 (14.78)
witness-random 1.17a (1.37) 4.83 (5.15) 10.34 (13.32)
witness-reverse 0.91a (0.87) 3.73 (3.92) 8.53 (10.91)
all-random 1.41a (2.32) 4.44 (5.08) 9.78 (12.42)
equidistant 2.28b (2.33) 3.70 (3.99) 7.65 (9.92)

Table 4: Number of backtracks, as M (SD), for instance types by
curriculum.

use the same set of instances and differ only in their ordering.

7.3 User Effort
We now turn to the number of attempts and backtracks, our
proxies for user effort. The results we report are for the
non-drop-out participants, regardless of whether they solved
a given instance. Table 3 shows the number of attempts in
the test set and the first test instance. There is a statistically
significant difference between equidistant and all curricula on
the average number of attempts for solving the test instances.
While the average numbers of test instances solved are sim-
ilar (Table 2) for all curricula, equidistant has the smallest
number of attempts. A similar pattern emerges for the first
test instance. Table 4 shows the number of backtracks. There
is a significant difference between equidistant and the other
curricula on the numbers for curriculum instances.

7.4 Discussion
The backtrack results suggest equidistant requires more ef-
fort from users. The required effort seems to be well bal-
anced with participants’ learning because the equidistant
drop-out rate is significantly smaller than that of all-random
and witness-reverse. The results also suggest equidistant bet-
ter prepares learners for solving the test instances as they
needed fewer attempts to solve about the same number of test
instances as those solved by people given the other curricula.

The last instance of equidistant (p9) offers explanations
for the user effort results. p9 requires the solution path to
separate squares of the same color (rightmost puzzle in Fig-
ure 3), which is a rare feature that makes the puzzle hard.
We will refer to this feature as the same-color feature. Re-
call that p9 is the hardest instance according to our system
and, while the average number of attempts for equidistant is
3.19, p9 alone has an average number of attempts larger than
12 (not shown in the table). No other instance required more

attempts than p9. Despite containing the hardest instance of
the study, equidistant has a significantly lower drop-out rate
than witness-reverse and all-random. This is likely because
equidistant slowly introduces new concepts to the learner,
which is a desired property of a good curriculum.

Like p9, p10 also has the same-color division feature (see
Figure 2). Perhaps the game designer saved a puzzle with
this feature as a test for the player. Interestingly, our system
selects an instance with such a rare feature to be part of its
curriculum. A good curriculum should cover all important
aspects the learner needs to know and equidistant is the only
one to include an instance with this feature. One can argue
p10 is part of the curriculum found in the original game; the
game just enforces that the player solves other types of puz-
zles after solving the curriculum instances and before solv-
ing p10. In this case, the game designer chose p10 to be the
last instance of the curriculum, which is similar to our system
choosing p9 to be the last instance of equidistant.

While equidistant’s drop-out rate is only 9% larger than
witness-exact (Cohen-d of 0.19, which points to a negligible
effect size), it reduces the average number of attempts per-
formed in the test instances by more than 40% (Cohen-d of
0.51; medium effect size). Given the negligible increase in
drop-out rate and the dramatic reduction in attempts, equidis-
tant’s reduced user effort in the test instances is unlikely ex-
plained by a survivor effect alone, but likely by the effective-
ness of the curriculum. By comparison, all-random’s drop-
out rate is much larger than witness-exact (24%; Cohen-d of
0.49) and it reduces the number of attempts only from 3.95 to
3.30 (Cohen-d of 0.19). All-random has a much larger drop-
out rate than witness-exact and yet, a possible survivor’s bias
effect in terms of number of attempts in the test instances
is negligible. These results suggest that equidistant is at least
competitive with witness-exact. Equidistant is more challeng-
ing than witness-exact as it covers the same-color concept not
covered in the latter. As a result, it has a slightly higher drop-
out rate, but it better prepares the students for test instances.
These results support our hypothesis that LTS and Bootstrap
can be used to generate effective curricula for human learners.

8 Conclusions

We showed how to modify the Bootstrap system to learn cur-
ricula for humans in a puzzle domain. We performed an
extensive evaluation comparing two generated curricula to
baselines. The first generated curriculum took a set of in-
stances and ordered them to favor learning if the instances
were solved in order. The second took a large set of problem
instances and returned an ordered subset to serve as a curricu-
lum (order-and-select problem). We evaluated our curricula
and found they compare favorably with simple baseline cur-
ricula in terms of user retention and user effort when solving
test instances. Our results also suggested that our system’s
solution to the order-and-select problem is competitive with
the curriculum from the original ‘The Witness’ game: while
our system’s curriculum is more challenging than the game
designer’s, it better prepares humans to solve test instances.
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