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Abstract

Search-based systems have shown to be effective for plan-
ning in zero-sum games. However, search-based approaches
have important disadvantages. First, the decisions of search
algorithms are mostly non-interpretable, which is problem-
atic in domains where predictability and trust are desired such
as commercial games. Second, the computational complex-
ity of search-based algorithms might limit their applicabil-
ity, especially in contexts where resources are shared among
other tasks such as graphic rendering. In this work we intro-
duce a system for synthesizing programmatic strategies for
a real-time strategy (RTS) game. In contrast with search al-
gorithms, programmatic strategies are more amenable to ex-
planations and tend to be efficient, once the program is syn-
thesized. Our system uses a novel algorithm for simplifying
domain-specific languages (DSLs) and a local search algo-
rithm that synthesizes programs with self play. We performed
a user study where we enlisted four professional program-
mers to develop programmatic strategies for µRTS, a mini-
malist RTS game. Our results show that the programs synthe-
sized by our approach can outperform search algorithms and
be competitive with programs written by the programmers.

Introduction
Search and learning-based algorithms represent the cur-
rent state-of-the-art approaches for playing zero-sum games,
e.g., AlphaZero (Silver et al. 2018) and AlphaStar (Vinyals
et al. 2019). One disadvantage of such approaches is that
their decisions are often non-interpretable, which can be an
issue if the artificial agent is deployed in scenarios where
predictability, explainability, and trust are important, such
as commercial games. Programmatic strategies, which we
refer to as scripts, might not be as strong as strategies de-
rived by search or reinforcement learning algorithms. How-
ever, scripts can more easily be interpreted and modified by
a domain expert. The computer games industry heavily re-
lies on scripts for controlling artificial agents because game
designers and programmers are able to understand, predict,
and thus trust the agent behavior in production. In the indus-
try, scripted strategies are written by professional program-
mers in a trial-and-error process as they try to understand
how other agents (including the player) could react to the
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strategy that is encoded in a script. The process of manually
writing scripts can be time consuming. Moreover, strategies
written by programmers are fixed and, if a player creates new
content for a game (e.g., a new map for playing a real-time
strategy game), then the artificial agents might have to play
a strategy encoded in a script developed for a different map.

In this paper we introduce Local Search and Language
Simplifier (LS2), a system for synthesizing scripts for real-
time strategy (RTS) games. The inputs of LS2 are an RTS
map for which a strategy is to be synthesized and a domain-
specific language (DSL). LS2 returns a script encoding a
strategy that is specialized for the map provided as input.

The DSL is designed to be expressive enough to allow for
the synthesis of scripts encoding effective strategies, but also
restrictive enough to prune from the synthesis space pro-
grams encoding weak strategies. Since strategies can change
depending on the game map, features that make a DSL effec-
tive for a given map might not be necessary for another map.
LS2 uses an algorithm we call Domain-Specific Language
Simplifier (Lasi) to simplify the DSL according to the map
provided as input. Lasi receives as input a trace of the game,
i.e., a sequence of state-action pairs starting at the game’s
start state and finishing at a terminal state. This trace can be
generated, for example, by an algorithm playing the game
against itself or by a human demonstrator. Then, Lasi greed-
ily chooses the features from the input DSL that allows one
to synthesize a program that reproduces the trace provided as
input. The features selected by this greedy approach define
the simplified DSL. The intuition behind Lasi’s procedure
is that the DSL should contain only the features deemed as
important by the agent who generated the game trace, thus
allowing the synthesis to search on a more promising pro-
gram space. Once the DSL is simplified LS2 uses a local
search algorithm with self play to search over the simplified
program space.

We evaluate LS2 on four maps of µRTS, a real-time strat-
egy (RTS) game designed for research purposes. We enlisted
four professional programmers to write scripts for all four
maps used in our experiment. In addition to the scripts writ-
ten by programmers, we also compare the LS2’s scripts with
search algorithms and other scripts from the µRTS codebase
in a tournament-style experiment. A script LS2 synthesized
obtained the highest winning rate in two of the maps tested
and a script written by one of the programmers obtained the



highest winning rate in the other two maps. In addition to
this quantitative analysis, we also performed a qualitative
analysis of the interpretability of the LS2 scripts, showing
that the scripts synthesized in our experiments can be in-
terpretable. Our analysis also showed that LS2 was able to
synthesize scripts encoding strategies similar to those cre-
ated by the programmers, but with important optimizations
that would be difficult for a human to discover by themself.

Related Work
Our work is related to the fields of program synthesis, pro-
grammatic reinforcement learning, automatic generation of
scripts, and planning in real-time zero-sum domains. We re-
view relevant works in each of these areas in this section.

In program synthesis one has to synthesize a program
that satisfies a given specification (Gulwani, Polozov, and
Singh 2017). Approaches for program synthesis include
brute-force search (Alur et al. 2013), constraint satisfac-
tion (Jha et al. 2010), genetic programming (Koza 1992),
machine learning (Balog et al. 2017), and hybrid systems
that combine search with a learned function (Liang, Jordan,
and Klein 2010; Menon et al. 2013; Murali, Chaudhuri, and
Jermaine 2017). All these works assume some form of su-
pervision, which could be a logical formula that needs to be
satisfied or a set of input-output training pairs. Our problem
is not supervised, the synthesis algorithm has access to the
model of the game and it has to synthesize a program encod-
ing a strategy for playing the game.

In programmatic reinforcement learning (PRL) one repre-
sents policies as computer programs (Bastani, Pu, and Solar-
Lezama 2018; Verma et al. 2018, 2019), which might be
more easily interpreted and formally verified than policies
encoded in black-box representations. Instead of learning
policies as was done in PRL, in our work we learn strate-
gies for playing games. Moreover, it is possible that the idea
we introduce for simplifying DSLs might also be applicable
to speed up the program synthesis process in PRL.

Dynamic Scripting (DS) is a reinforcement-learning-
based technique for synthesizing scripts for zero-sum role-
playing games. DS allows for the generation of scripts by
extracting rules from an expert-designed rule base accord-
ing to a learned policy (Spronck, Sprinkhuizen-Kuyper, and
Postma 2004). DS has been applied to RTS games, but the
synthesized script is limited to a fixed number of consecutive
if-then clauses. Our method is more expressive as it searches
in the space of scripts defined by a DSL that allows for other
program structures (e.g., for loops).

Program synthesis has been applied to zero-sum games
in the context of synthesizing scripts to work as evaluation
functions (Benbassat and Sipper 2011) and as pruning poli-
cies (Benbassat and Sipper 2012) for tree search algorithms.
By contrast, in this paper we investigate the use of script syn-
thesis for deriving complete strategies for zero-sum games.

Program synthesis has also been applied to other non-
zero-sum games. Canaan et al. (2018) use an evolution-
ary approach for generating strategies to play a coop-
erative game. Similarly to DS, Canaan et al.’s method
generates sequences of if-then rules to play the game.

De Freitas, de Souza, and Bernardino (2018) use a genetic-
programming approach for evolving controllers for a Mario
AI simulator. Butler, Torlak, and Popović (2017) present
a method for synthesizing strategies for the puzzle game
nonograms. De Freitas, de Souza, and Bernardino, and But-
ler, Torlak, and Popović’s approaches are different than our
method because they deal with single-agent problems, while
we deal with two-players zero-sum games.

The Script Synthesis Problem
Let G be a zero-sum game, i and−i the pair of players for G,
S the set of states of the game, sinit the start state andAi(s)
the set of actions player i can perform at state s. A decision
point for player i is a state s ∈ S where i can act. A strategy
is a function σi : S → Ai for player i, mapping a state s to
an action a, for every decision point of player i in G. A script
is a strategy denoted as a function p(s) that returns a legal
action a ∈ Ai for player i at state s. The value of the game
rooted at state s is denoted by V(s, pi, p−i), which indicates
player i’s utility if i and −i follow the strategies given by pi
and p−i, respectively. Since G is a zero-sum game, the utility
of player −i is given by −V(s, pi, p−i).

A Domain-Specific Language (DSL) is a declarative lan-
guage that defines a space of programs in a particular do-
main (Van Deursen, Klint, and Visser 2000). Let JDK be the
set of scripts that can be synthesized with a DSL D. We are
interested in synthesizing a script pi ∈ JDK for player i that
maximizes the value of the game while player −i plays the
game with a script p−i from JDK that minimizes the value
of the game. We formulate the script synthesis problem as,

max
pi∈JDK

min
p−i∈JDK

V(sinit, pi, p−i) . (1)

The strategies encoded by scripts pi and p−i that solve the
Equation 1 define a Nash equilibrium profile if one consid-
ers only strategies encoded by scripts in JDK as valid strate-
gies. Searching for a Nash profile can be computationally
intractable, specially if D allows for the synthesis of a large
set of scripts JDK. LS2 uses a self play procedure with local
search for approximating a solution to Equation 1.

Domain-Specific Languages
We define a DSL to synthesize scripts for zero-sum games
through a context-free grammar (CFG) G = (V,Σ, R, S),
where V is a finite set of non-terminals, Σ is a finite set of
terminals, R is a finite set of relations corresponding to the
grammar production rules, and S is the start symbol.

As an example, the grammar G1 below defines a DSL.

S → C | if(B) then C else C | C if(B) then C
C → c1 | c2 | c3
B → b1 | b2 | b3

Here, V = {S,C,B}, Σ = {c1, c2, c3, b1, b2, b3, if, then,
else}, R is the set of relations, (e.g., C → c1 and B → b1),
and S is the start symbol. G1 allows scripts with a sin-
gle command (c1, c2, or c3), scripts with an if-then-else,
or scripts with a single command followed by an if-then.
We represent the scripts as derivation trees, where the root



Figure 1: Derivation tree for “c1 if (b1) then c3”.

node in the tree is the start symbol S, the internal nodes are
non-terminals from V , and leaf nodes are terminals from Σ.
Figure 1 shows an example of a derivation tree.

Domain-Specific Language Simplifier
The size of the space of possible programs to solve the script
synthesis problem can grow quickly with the size of the CFG
defining the DSL (i.e., the number of relations and symbols).
The search for effective strategies can become infeasible for
large grammars. On the other hand, if the grammar is too
constrained, then synthesized programs might not be expres-
sive enough to encode strong game strategies. In this section
we introduce Lasi, a method that simplifies DSLs while bal-
ancing the language size and expressiveness for a given task.
LS2 uses Lasi before running a self play procedure with lo-
cal search to approximate a solution to Equation 1.

Lasi receives a game G, a grammar G = (V,Σ, R, S)
defining a DSL, and a sequence of state-action pairs, T =
{(sinit, a1), (s2, a2), · · · , (sn, an)}, which we call a trace,
from sinit to a terminal state sn+1 ∈ F . The trace can be
generated by an agent playing the game (e.g., tree search al-
gorithm or human demonstrator). Lasi selects a subset of Σ
to define a grammar G′ that is more restrictive than G, but
that still allows a program synthesized with a DSL defined
by G′ to reproduce the trace T received as input. Intuitively,
the system designer should provide an expressive grammar
G as input and Lasi automatically produces a more restric-
tive grammarG′. We describe how Lasi defines grammarG′
in the next section.

The DSL Simplification Problem
It is common in a program synthesis task that the system
designer defines a set of high-level functions to be part of the
DSL. We will call these functions domain-specific functions
(DSFs). In our application domain, a DSF returns an action
for a given state of the game. For example, if grammar G1

is used in a game played in a grid-world, then command c1
could encode the knowledge to allow the agent to walk out
of a room through the exit door. That is, for any state of
the game, c1 returns an action that takes the agent closer to
leaving the room through the exit door. Similarly, terminal
symbols representing Boolean expressions can be defined as
domain-specific Boolean functions (DSBs). DSBs return a
Boolean value for a given state of the game. For example, in
G1 the terminal symbol b1 could be a DSB that returns true
if the agent is waiting by the exit door and false otherwise.
We formulate the DSL Simplification Problem as follows,

Definition 1 (DSL Simplification Problem) Let JGK be
the set of programs that can be synthesized with grammar
G = (V,Σ, R, S) and T be a trace with state-action pairs.
In the DSL simplification problem one has to find a gram-
mar G′ = (V,Σ′, R′, S) with the smallest set Σ′, such that
Σ′ ⊆ Σ andR′ ⊆ R, for which there exists a script p ∈ JG′K
such that p(sm) = am for all (sm, am) ∈ T .

In a DSL Simplification Problem we assume that all ter-
minals removed from Σ (i.e., Σ \ Σ′) are either DSFs or
DSBs. That is, the grammar can include non-DSFs and non-
DSBs terminals, but they are not be considered for removal
in the simplification task. We also assume that G is ex-
pressive enough so that there exists a script p ∈ JGK with
p(sm) = am for all (sm, am) ∈ T , otherwise the simplifi-
cation task does not have a solution.

Simplification Problem as Set Cover
Subset R′ of R can be trivially computed once subset Σ′ of
Σ is defined. This is because terminal symbols appear only
on the righthand side of the relations and, for that, subset R′
is the set R with the relations involving symbols Σ \ Σ′ re-
moved. Thus, the task of simplifying G into G′ is equivalent
to selecting a subset Σ′ of Σ.

Removing DSFs We start with the selection of termi-
nal symbols defined by DSFs. Each terminal symbol rep-
resented as a DSF in the grammar G provided as input to
Lasi returns an action a ∈ A(s) for any state s in the trace
T . The problem of selecting DSFs can be seen as a set cover
problem, where each DSF represents a subset of the actions
in the trace T and one needs to find the smallest subset of
DSFs that covers all actions in T .

While the set cover problem is NP-hard (Garey and John-
son 1979), a polynomial-time greedy algorithm provides a
good approximation. Let Q be the set of state-action pairs
(s, a) initialized with all (s, a) in T . Let Σ′ be the set of
DSFs selected by the greedy algorithm, which is initially
empty. One iteratively adds to Σ′ a DSF o that covers the
largest number of actions in Q, i.e., the DSF that maximizes
|{(s, a)|(s, a) ∈ Q ∧ o(s) = a}|. We remove from Q the
state-action pairs in {(s, a)|(s, a) ∈ Q ∧ o(s) = a} for the
selected o. This procedure is repeated until all actions in T
are covered by a DSF in Σ′.

In the worst case all symbols in Σ are DSFs and we select
all of them to ensure action coverage, i.e., Σ = Σ′. In this
case the algorithm’s time complexity is O(|Σ|2 · |T |). This
is because each iteration of the algorithm has complexity of
O(|Σ| · |T |) (each DSF in Σ is tested for its coverage) and
the algorithm performs |Σ| iterations in the worst case. The
performance ratio of the solution encountered by the greedy
algorithm is ln(|Σ|)− ln(ln(|Σ|))−Θ(1) (Slavı́k 1996).

Removing DSBs Lasi adds to Σ′ all DSBs from Σ but
those that return either true or false for all states in T , i.e., it
does not add the DSBs in {b|b ∈ Σ ∧ b(s) = false ∀s ∈ T}
nor the DSBs in {b|b ∈ Σ ∧ b(s) = true ∀s ∈ T}. Let
b be a DSB that returns false for all states in T . Any pro-
gram using b can be rewritten without b. That is, the com-
mands if(b){c1}, if(not b){c1}, while(b){c1},



while(not b){c1}, and var ← b can be replaced by
ε, c1, ε, while(True){c1}, and var ← false, re-
spectively, where ε is an empty string. Similarly, all pro-
grams using DSBs that always return true can be replaced by
equivalent programs that do not use the DSBs. The DSL only
needs DSBs b for which b(s) returns true for some states and
false for other states in the trace T to be able to synthesize
a program that reproduces T . Lasi runs in O(|Σ| · |T |) for
removing DSBs because each terminal in Σ might be a DSB
that needs to be verified against all states in T .

Synthesizing Scripts with Self Play
Once Lasi simplifies the DSL, LS2 uses the self play pro-
cedure described in Algorithm 1 to synthesize a script for
game G. Algorithm 1 starts by generating a random script
from the DSL D (see line 1). This is achieved by starting
from the D’s initial symbol and selecting rules uniformly at
random to be applied to non-terminal symbols; a script is
returned once it contains no non-terminal symbols.

Algorithm 1 iteratively improves the initial random solu-
tion p with a local search algorithm. The local search re-
ceives the game G, the DSL D, and current script p, and re-
turns an approximated best response for p, denoted as pBR.
The script pBR is then attributed to p if pBR defeats p. In
the context of µRTS, to ensure fairness, p and pBR play two
matches, one with p as player 1 and another with pBR as
player 1. We consider that pBR defeats p if it either wins
both matches or if it wins one match and draws the other. In
the next iteration, the local search will approximate a best
response to the current’s iteration best response.

In our implementation of Algorithm 1 we use a local
search algorithm that creates m mutated versions of the
script p provided as input and generates i other scripts at
random. All m + i newly generated scripts are evaluated
with two matches against p, where we vary which script as-
sumes the role of player 1 for fairness; the best performing
script is returned as an approximated best response to p. The
best performing script is determined by a score function that
attributes the value of 1 to a victory, 0 to a loss, and 0.5 to
a draw; we break ties at random. A script p is mutated by
randomly selecting a node representing a non-terminal sym-
bol in the derivation tree representing p and replacing the
sub-tree rooted at the selected node by a sub-tree randomly
generated according to the rules of the CFG describing the
DSL. For example, if nodeB in the tree shown in Figure 1 is
selected for mutation, then the sub-tree b1 would be replaced
by another sub-tree (b1, b2, or b3 in our example). If the root
of the tree is selected, then the entire tree is replaced.

Empirical Methodology
We evaluate LS2’s scripts in µRTS (Ontañón 2017) by com-
paring them with tree search algorithms and scripts written
by programmers. We are primarily interested in evaluating
the effect of Lasi in LS2 and in comparing the scripts written
by professional designers with those LS2 synthesizes. We
present a quantitative evaluation of all approaches in terms
of strength of play, and a qualitative evaluation of the inter-
pretability of the synthesized scripts. Our implementation of

Algorithm 1 Self play with local search

Require: Game G, DSL D, number of steps n.
Ensure: Script p for playing the game G.

1: p←random-script(D)
2: for k = 1 to n do
3: pBR ← local-search(G, D, p)
4: if pBR defeats p in G then
5: p← pBR

6: return p

LS2 is available online.1

Problem Domain: µRTS
We chose to use µRTS in our experiments because it has
an active research community with competitions being orga-
nized (Ontañón et al. 2018), with all competing algorithms
available in a single codebase.2 Moreover, in 2017 a script
won two tracks of the µRTS competition, cf. Table 1 of
(Ontañón et al. 2018), demonstrating that scripts can outper-
form other approaches for this type of game. Finally, µRTS
can offer a diverse set of challenges because the agents can
be easily evaluated on different maps of the game.

Most µRTS matches start with each player controlling a
set of units known as workers on a gridded map. Workers
can be used to collect resources, build structures, and bat-
tle the opponent. In some of the maps, players also start
with a structure called base, which is used to train work-
ers and store resources. In addition to the base, workers can
build a barracks, which can be used to train the following
units: light, ranged, and heavy. Units differ in how much
damage they can take before being removed from the game,
how much damage they can inflict to other units, and how
close they need to be from an opponent unit to be able to
attack it. A player wins a match if they are able to remove
all the other player’s units from the game. Every algorithm
is allowed 100 milliseconds for planning before deciding the
units actions. We call a unit everything that can issue an ac-
tion, including bases and barracks.

We used four µRTS maps in our evaluations, with a map
of size 18 × 8 being novel. This map contains no worker
units neither resources to be harvested, and has three heavy,
four ranged units, and a base. The ranged units are initially
placed in front of the heavy units and closer to the oppo-
nent units, which we hypothesized to be suboptimal as the
ranged units are able to inflict damage to enemy units from
far, but they are weaker than heavy units and can be quickly
eliminated from the game. We expected to see strategies in
which ranged and heavy units switch positions so that the
latter protect the former. In the second map, of size 8 × 8,
each player starts with a base and one worker. The third map
is a map of size 9 × 8 where players start with a base, a
worker, and the resources are placed as a wall separating the
players. The fourth map, of size 24 × 24, is divided in the
middle by a wall, and players start with two bases and four

1https://github.com/julianmarino/LS2
2https://github.com/santiontanon/microrts



workers, one base placed on each side of the map. The maps
8× 8, 9× 8, and 24× 24 were used in µRTS competitions.

Generating Trace for Simplifying the DSL
In our experiments we use A3N (Moraes et al. 2018) to gen-
erate Lasi’s required demonstration trace by having it play
a match with itself. We chose A3N because Moraes et al.
showed that it performs well in a variety of maps. We could
have also used other search algorithms such as Naive Guided
Sample (GNS) (Yang and Ontanón 2019) or human demon-
strations to produce the trace.

A3N requires a set of scripts as input and, for a subset of
the units controlled by the player (known as restricted units),
it considers only the actions returned by the scripts; all other
actions are disregarded during search. A3N accounts for all
legal actions of the remaining units (known as unrestricted
units). A3N uses a policy to decide which units are unre-
stricted in each state of the game. Since we would like to
explore the action space, we use a policy that randomly
chooses three unrestricted units in each state. The size of
the unrestricted set was chosen empirically in preliminary
experiments.

Since A3N is being used in the context of script synthesis,
we do not provide expert-designed scripts as input to A3N,
as is described in its original paper (Moraes et al. 2018).
Instead, we generate a random script that obeys our DSL
and provide it as input to A3N. This randomly synthesized
script defines the action of the restricted units. Naturally, the
quality of the actions returned by A3N depends on the qual-
ity of the set of scripts provided as input and the use of a
randomly synthesized script reduces its strength of play. We
compensate for this reduction in quality by allowing A3N
more planning time. Instead of 100 ms, we allow A3N 500
ms of planning time in the self play match that generates T .

Competing Agents
We use the following search algorithms: Portfolio Greedy
Search (PGS) (Churchill and Buro 2013), Stratified Strat-
egy Selection (SSS) (Lelis 2017), the MCTS version of
Puppet Search (PS) (Barriga, Stanescu, and Buro 2017b),
Strategy Tactics (STT) (Barriga, Stanescu, and Buro 2017a),
Naı̈veMCTS (NS) (Ontañón 2017), A3N (Moraes et al.
2018), and Naive Guided Sample (GNS) (Yang and On-
tanón 2019). We also use the scripts Worker Rush (WR),
Light Rush (LR), Heavy Rush (HR), and Ranged Rush
(RR) (Stanescu et al. 2016). These scripts train one worker
to collect resources and then continuously train one type of
unit that is sent to battle to opponent. WR, LR, HR, and RR
train workers, light, heavy, and ranged units, respectively.
Although simple, these scripts were shown to perform well
in a wide range of maps. We also experiment with a baseline
of LS2, denoted as LS, that does not employ Lasi. That is,
LS uses the self play algorithm with local search to synthe-
size a script while using the original DSL provided as input.

µLanguage: a Domain-Specific Language for µRTS
We have developed a DSL for µRTS, which we name
µLanguage, to allow for the development of scripts in µRTS.

Both users in our study and synthesizers use the same DSL.
The CFG below summarizes the µLanguage.

S1 →C S1 | S2 S1 | S3 S1 | ε
S2 → if(B) then {C} | if(B) then {C} else {C}
S3 → for (each unit u) {S4}
S4 →C S4 | S2 S4 | ε
B → b1 | b2 | · · · | bm
C → c1 C | c2 C | · · · | cn C | c1 | c2 | · · · | cn | ε

S1 is the initial symbol, ε is an empty string, and sym-
bols c1, c2, · · · , cn are DSFs and b1, b2, · · · , bn are DSBs.
µLanguage does not allow nested conditionals and nested
loops, but it allows programs with if-clauses inside and out-
side for-loops and infinitely large sequences of DSFs.

Scripts Written by Programmers
We have enlisted four professional programmers, who are
not involved in this research, to write one script for each
of the four maps used in our experiments. All programmers
used the same DSL we provide as input to LS2, so both sys-
tem and programmers had access to the same space of pro-
grams. The experiment was carried out online, advertised by
email, with the participation being anonymous. Each par-
ticipant watched a 10-minute video explaining the rules of
µRTS and showing a few examples of µLanguage, and also
had access to a manual describing each DSF and DSB im-
plemented in the µLanguage. The participants were allowed
as much time as they wanted to develop their scripts. After
the participants developed the four scripts they answered a
questionnaire. Our study had 3 males and 1 female partici-
pants, with an average age of 26.5 years. The average years
of programming experience was 5.5 years. All participants
had taken at least one course on artificial intelligence and
three participants had played an RTS game at least one time,
the average minutes spent to write all four scripts was 66.25
minutes. We will refer to the scripts written by the program-
mers as P1, P2, P3, and P4 in our table of results.

Empirical Results
Evaluation of Strength of Play
Our experiment consists in performing ten independent runs
of LS and LS2 for each map. We use n = 400 for Algo-
rithm 1, and m = 70 and i = 20 for our local search algo-
rithm. Each run takes approximately 30 minutes for maps of
sizes 18×8, 8×8, and 9×8, and 7 hours for the 24×24 map.
We use one machine with 56 cores for our experiments.

We determine the script returned by LS and LS2 by per-
forming a round-robin tournament among the scripts re-
turned in each run of LS and LS2. The purpose of the tour-
nament is to select the best solution encountered by LS and
LS2 in the ten independent runs. In our round-robin tour-
naments, each strategy plays against all the other strategies
ten times, five as player 1 and five as player 2. This is to
ensure fairness in µRTS. The time required to generate one
trace with A3N is negligible compared to the time required
to perform the 10 independent runs of the local search al-
gorithm and the round-robin tournament to select the best



Map 8 × 8

WR GNS P3 P1 P4 P2 LS LS2 Avg

STT 30.0 0.0 15.0 55.0 30.0 20.0 35.0 6.0 54.1
NS 20.0 30.0 40.0 20.0 10.0 10.0 51.0 6.0 56.4
A3N 30.0 10.0 70.0 50.0 30.0 15.0 69.0 30.0 62.8
WR - 30.0 100.0 50.0 50.0 75.0 60.0 25.0 75.6
GNS 70.0 - 65.0 60.0 30.0 90.0 67.0 69.0 81.9

P3 0.0 35.0 - 25.0 25.0 50.0 45.0 11.0 55.1
P1 50.0 40.0 75.0 - 50.0 0.0 5.0 0.0 62.2
P4 50.0 70.0 75.0 50.0 - 50.0 65.0 20.0 75.6
P2 25.0 10.0 50.0 100.0 50.0 - 70.0 64.0 76.5

LS 40.0 33.0 55.0 95.0 35.0 30.0 - 26.0 66.2
LS2 75.0 31.0 89.0 100.0 80.0 36.0 74.0 - 83.9

Map 9 × 8

A3N RR P4 P1 P3 P2 LS LS2 Avg

LR 0.0 0.0 100.0 0.0 0.0 0.0 74.0 59.0 46.1
PS 0.0 0.0 100.0 35.0 0.0 0.0 82.0 73.0 54.4
GNS 60.0 60.0 85.0 65.0 20.0 0.0 86.0 81.0 70.4
A3N - 20.0 100.0 80.0 40.0 10.0 100.0 92.0 79.5
RR 80.0 - 100.0 75.0 0.0 0.0 100.0 95.0 80.6

P4 0.0 0.0 - 0.0 0.0 0.0 36.0 40.0 16.9
P1 20.0 25.0 100.0 - 15.0 0.0 83.0 47.0 62.8
P3 60.0 100.0 100.0 85.0 - 0.0 100.0 99.0 89.0
P2 90.0 100.0 100.0 100.0 100.0 - 100.0 100.0 99.4

LS 0.0 0.0 64.0 17.0 0.0 0.0 - 41.0 27.9
LS2 8.0 5.0 60.0 53.0 1.0 0.0 59.0 - 39.4

Map 18 × 8

NS A3N P1 P4 P3 P2 LS LS2 Avg

HR 40.0 45.0 50.0 50.0 0.0 0.0 20.0 10.0 37.8
PS 20.0 35.0 50.0 50.0 50.0 50.0 25.0 20.0 42.8
STT 50.0 30.0 65.0 45.0 75.0 40.0 49.0 56.0 52.5
GNS 25.0 45.0 65.0 55.0 55.0 25.0 53.0 58.0 53.8
NS - 65.0 70.0 70.0 65.0 65.0 68.0 70.0 68.6
A3N 35.0 - 75.0 90.0 85.0 50.0 82.0 75.0 70.4

P1 30.0 25.0 - 50.0 0.0 0.0 20.0 10.0 34.7
P4 30.0 10.0 50.0 - 0.0 0.0 20.0 10.0 35.6
P3 35.0 15.0 100.0 100.0 - 25.0 80.0 70.0 71.6
P2 35.0 50.0 100.0 100.0 75.0 - 75.0 65.0 80.3

LS 32.0 18.0 80.0 80.0 20.0 25.0 - 10.0 57.4
LS2 30.0 25.0 90.0 90.0 30.0 35.0 90.0 - 68.5

Map 24 × 24

WR GNS P3 P1 P2 P4 LS LS2 Avg

STT 50.0 0.0 95.0 90.0 35.0 20.0 47.0 6.0 50.2
A3N 15.0 0.0 80.0 50.0 30.0 35.0 40.0 17.0 52.6
PS 45.0 35.0 80.0 65.0 50.0 45.0 44.0 32.0 54.8
WR - 90.0 0.0 100.0 100.0 0.0 45.0 20.0 69.1
GNS 10.0 - 100.0 5.0 65.0 85.0 39.0 21.0 69.4

P3 100.0 0.0 - 100.0 0.0 20.0 62.0 50.0 38.9
P1 0.0 95.0 0.0 - 65.0 0.0 0.0 0.0 45.9
P2 0.0 35.0 100.0 35.0 - 50.0 42.0 11.0 63.0
P4 100.0 15.0 80.0 100.0 50.0 - 50.0 62.0 74.8

LS 55.0 61.0 38.0 100.0 58.0 50.0 - 50.0 67.4
LS2 80.0 79.0 50.0 100.0 89.0 38.0 50.0 - 82.6

Table 1: Average winning rate of the row player against the
column player. The average winning rate of row players was
computed considering matches played with all methods used
in our experiment, and not only those shown in the table.

synthesized script. Once scripts of LS and LS2 are deter-
mined, we perform another round robin tournament with the
synthesized scripts, tree search algorithms, and the scripts
written by the programmers in our study.

We execute the experiment described above ten times and
calculate the average winning rate considering the ten ex-
ecutions. The results are presented in Table 1, where each
number shows the average winning rate of the row method
against the column method (e.g., LS2 wins 89% of its
matches against P3 on the 8 × 8 map). The last column
shows the average winning rate of the row methods. The ta-
ble presents LS2, LS and the scripts the programmers wrote.
In the interest of space, we present the best five and the best
two methods among the remaining ones, in terms of average
winning rate, in the rows and in the columns of the table.

LS2 achieves a much higher average winning rate than its
baseline LS and wins more direct matches in all maps tested.
This result shows that LS2’s simplification scheme given by
Lasi allows for a more focused search in the scripts space.
LS2 achieves the highest average winning rate in the 8 × 8
and 24× 24 maps. In the 9× 8 and 18× 8 maps, the highest
average value is obtained by P2. In the 18× 8 map, LS2 was
also outperformed by P3 and by the search-based methods
A3N and NS. A3N and NS can be very effective in the map
18×8 because they are able to micromanage well their units.

LS2 outperforms A3N in terms of average winning rate on
the 8×8 and 24×24 maps. This result suggests that although
the synthesis process is being constrained to a region of the
scripts space containing strategies similar to the ones played
by A3N, the script synthesizer is able to encounter stronger
strategies than the ones derived by A3N in its regular setting
(i.e., the one described by Moraes et al. (2018), which was
used to generate the results of Table 1).

Table 2 shows the average winning rate of the methods
evaluated across all four maps. The scripts synthesized by
LS2 are outperformed only by programmer P2, and performs
similarly to the tree search algorithm GNS. These results are
promising as they show that it is possible to automatically
synthesize programmatic strategies for playing non-trivial
games that are able to defeat scripts written by programmers
and tree search algorithms. The table also highlights the im-
portance of Lasi in the synthesis process as LS obtained only
a 54.7% average winning rate across all maps.

Interpretability of Scripts
Table 3 shows the best scripts synthesized by LS2 and the
best scripts written by programmers in terms of average win-
ning rate for the 8 × 8 and 24 × 24 maps. The objective of
this analysis is two-fold. First, we want to verify if the pro-
grammatic strategies LS2 synthesizes can be interpretable.
Second, we want to perform a qualitative comparison of the
LS2 scripts with those written by the programmers.

The script P2 follows an strategy similar to the WR strat-
egy. P2 sends one worker to harvest resources (line 19) and
the remaining workers are sent to attack the closest enemy
unit (line 21). P2 continuously trains workers (line 20). This
strategy has shown to be effective in previous µRTS compe-
titions. The script LS2 synthesized for map of size 8 × 8
(LS2-8x8) iterates through all units the player controls



Average Winning Rate on All Maps

HR SSS PGS LR RR NS PS STT WR P4 P1 LS P3 A3N LS2 GNS P2

26.7 28.6 29.6 36.2 38.5 44.1 44.7 47.6 49.9 50.8 51.4 54.7 63.6 66.3 68.6 68.9 79.8

Table 2: Average winning rate across all four maps tested.

1 def LS2-8x8()
2 for(each unit u)
3 if(DistanceEnemy(u, worker, 5))
4 attack(u, worker, closest)
5 else
6 harvest(u)
7 train(u, worker, Right)
8 harvest(u)
9

10 def LS2-24x24()
11 for(each unit u)
12 if(HaveQtdUnitsHarvesting(2))
13 attack(u, worker, closest)
14 train(u, worker, right)
15 else
16 harvest(u)
17
18 def P_2-8x8()
19 harvest(1)
20 train(worker, enemyDirection)
21 attack(worker, closest)
22
23 def P_4-24x24()
24 train(worker, up)
25 harvest(5)
26 attack(worker, closest)

Table 3: Scripts synthesized by LS2 and the best two scripts
written by the programmers for maps 18× 8 and 24× 24.

and, if a unit u is at a distance of 5 or less from an enemy
unit, u is sent to attack the closest opponent unit (lines 3–
4). If no enemy unit is nearby, the script will send workers
to harvest resources (line 6). The strategy continuously train
worker units (line 7). LS2’s script has a seemingly unnec-
essary instruction in line 8 (“harvest(u)”). This is because,
once we reach line 8, all units will have received an action
to be performed in the game. However, if we remove line
8, the winning rate of this specific LS2 script is reduced
from 50% to 0% in matches against P3 (not shown in Ta-
ble 1). We discovered that this extra instruction optimizes
the pathfinding system of µRTS. That is, the pathfinding al-
gorithm might fail to find a path for a unit because the path
is momentarily blocked and the unit stays idle despite the
script having issued an action for the unit. In these cases it is
helpful to add an extra action for the units. In LS2’s script,
if worker units are unable to attack the enemy, then the units
will move toward their resources, as indicated by the instruc-
tion “harvest,” possibly clearing the path for the next round

of actions. This is a case where LS2 is able to synthesize a
script that contains a feature that would be difficult for hu-
man programmers to discover by themselves.

For the 24 × 24 map, script P4 encodes a strategy that is
similar to the strategy LS2 synthesized: both strategies train
a large number of worker units and send them to attack. A
key difference between the two scripts is the number of units
used to collect resources. While P4 uses five units to collect
resources (line 25), the LS2 script uses two units (lines 12
and 13). This is also a case where LS2 is able to synthe-
size a script that contains a feature that might be difficult for
human programmers to optimize by themselves.

The scripts synthesized by LS2 can be improved too. For
example, in the 9× 8 map, LS2 is able to synthesize a strat-
egy that, similarly to P2, trains ranged units and sends them
to attack the opponent. One of the drawbacks of the LS2
strategy is that it also sends worker units to continuously
build barracks, which exhaust almost all resources available
to the player. The script also trains a large number of workers
that clutter the region around the base, thus making it diffi-
cult for the workers themselves to move around and collect
resources. The result on the map 9 × 8 suggests that better
search algorithms could further improve the quality of the
scripts LS2 synthesizes.

Conclusions
In this paper we introduced LS2, a system for synthesizing
scripts for RTS games. LS2 employs Lasi, an algorithm for
simplifying DSLs for RTS games. Lasi uses A3N to play
the game against itself to generate a game trace. Then, Lasi
greedily chooses the features from the DSL that allows one
to synthesize a program that reproduces the trace generated
by the search algorithm. The features selected by this greedy
procedure define the simplified DSL. LS2 then uses a lo-
cal search algorithm with self play to search in the space of
programs defined by the simplified DSL. We evaluated the
scripts synthesized by LS2 on µRTS by comparing the syn-
thesized scripts with tree search algorithms, scripts written
by four programmers, and scripts synthesized by a baseline
that does not use the DSL simplification step. Our results
show that the LS2 scripts were able to outperform the scripts
synthesized by the baseline by a large margin. The LS2
scripts obtained the highest winning rate on two of the four
tested maps and a script written by a programmer obtained
the highest winning rate on the other two maps. A qualita-
tive analysis of the scripts showed that LS2 was able to syn-
thesize scripts encoding strategies similar to those derived
by the programmers. The qualitative analysis also showed
that LS2 was able to synthesize scripts with important opti-
mizations that would be difficult for a human to discover by
themself.
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