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Abstract
In this paper we review several planning algorithms
developed for zero-sum games with exponential ac-
tion spaces, i.e., spaces that grow exponentially
with the number of game components that can act
simultaneously at a given game state. As an ex-
ample, real-time strategy games have exponential
action spaces because the number of actions avail-
able grows exponentially with the number of units
controlled by the player. We also present a unify-
ing perspective in which several existing algorithms
can be described as an instantiation of a variant of
Naı̈veMCTS. In addition to describing several ex-
isting planning algorithms for exponential action
spaces, we show that other instantiations of this
variant of Naı̈veMCTS represent novel and promis-
ing algorithms to be studied in future works.

1 Introduction
In this paper we review algorithms for planning in two-
players zero-sum games with exponential action spaces. In
games with exponential action spaces each player controls a
set of “components” that can individually issue actions in the
game. For example, in real-time strategy (RTS) games each
player controls a set of units [Ontañón et al., 2013]. The set
of player-actions is given by the combinations of all compo-
nent actions; the action space grows exponentially with the
number of components controlled by the players. Other ex-
amples of exponential action spaces include collectible card
games [Ward and Cowling, 2009], where one decides on
the action of several cards. In addition to being excellent
testbeds for planning algorithms, games with exponential ac-
tion spaces are of industrial interest [Churchill and Buro,
2015]. Although we focus on planning algorithms for games,
we note that other problems such as multi-agent pathfind-
ing also have exponential action spaces and other approaches
such as learning algorithms have also been successfully ap-
plied to this class of problems [Vinyals et al., 2019].

Most of games with exponential action spaces impose a re-
strictive time limits for planning. For example, card games
impose limits on the order of seconds, while RTS games im-
pose limits on the order of milliseconds. Thus, the success
of planning algorithms for this class of games depends on

how effectively they are able to eliminate from consideration
a large portion of the action space. Action abstractions in-
duced by a set of scripts were developed to effectively re-
duce the action space and are arguably the most important
development within this research area. A script is a func-
tion mapping a state and a component to a component-action.
An action abstraction can be defined by considering during
search only the actions returned by scripts [Churchill and
Buro, 2013]. Several algorithms were developed for search-
ing in action-abstracted spaces (e.g., [Justesen et al., 2014;
Barriga et al., 2017]). Another form of abstraction also in-
troduced for this class of games is asymmetric action abstrac-
tions, which allow the search to “pay more attention” to more
important components in the game [Moraes and Lelis, 2018].

In addition to planning algorithms, the community has de-
veloped methods for designing action abstractions. Mariño et
al. [2019] introduced an evolutionary approach for learning
scripts for inducing action abstractions. Search algorithms
using action abstractions produced by their procedure were
shown to be stronger than the same algorithms using action
abstractions designed by human experts in an RTS game.

In this paper we review several planning algorithms for
games with exponential action spaces and show that these al-
gorithms can be described as a special case of a variant of
Naı̈veMCTS [Ontañón, 2017], which we call General Com-
binatorial Search for Exponential Spaces (GEX). The instan-
tiation of these algorithms in GEX points to novel algorithms
that can be obtained by combining characteristics of existing
ones. Implementing and evaluating such algorithms is left as
future work for researchers interested in this class of games.

2 Games with Exponential Action Spaces
Although some of the games we consider have simultaneous
moves, we focus on two-player zero-sum games with sequen-
tial moves and exponential action spaces. This is because pre-
vious works framed simultaneous moves as sequential games.
We explain below how this was done in previous works.

Let the tuple (N,S, sinit, A,R, T ) be a two-player zero-
sum game with sequential moves and exponential action
spaces. Here, N = {i,−i} is the pair of players (i is the
“max” player and −i is our opponent, the “min” player).
S is the set of states, which can be non-terminal or ter-

minal. Every state s ∈ S defines a joint set of components
Cs = Csi ∪ Cs−i, for players i and −i. Every component



c ∈ Cs has properties that are specific to the game. For ex-
ample, in RTS games, the units controlled by the player are
the components of the states. The states include properties
such a unit’s position on a map. sinit is the game’s start state.
Ai(s) (resp. A−i(s)) is the set of legal actions player i

(resp. −i) can perform at state s. Each action a ∈ Ai(s) is
denoted by a vector of n component-actions (m1, · · · ,mn),
where mk ∈ a is the action of the k-th ready component of
player i. A component is not ready if it is already performing
an action (component-actions can have different durations).
We denote the set of ready components of players i and−i as
Csi,r and Cs−i,r. For component c, we write a[c] to denote the
action of c in a. We denote the set of component-actions as
M and the set of legal actions of component c at s asM(s, c).
Ri(s) is a utility function with Ri(s) = −R−i(s), for any

terminal state s. The transition function T (s, a) deterministi-
cally determines the sucessor state for an action a applied at
state s. Since actions can be durative, components might still
be executing their actions in a in the state returned by T (s, a).

A decision point of player i is a state s in which i has at
least one ready component. A script is a function mapping a
component c and a state s to a component-action m. We de-
note as aσ̄ the player-action defined by script σ̄ at state s. The
state s is not included in aσ̄ to ease the notation and because
s will be clear from the context when the notation aσ̄ is used.

2.1 From Simultaneous to Sequential Games
Some of the exponential action spaces considered in the
works reviewed in this paper are of simultaneous moves (e.g.,
RTS games). The works we review perform search on a “seri-
alized” model of the simultaneous-move game. A simple se-
rialization approach is to, during search, always allow player
i to choose their action first, with player −i being able to see
i’s choice before deciding on their action. Once both players
chose their actions, they are applied to the state, thus generat-
ing the next state of the game. Kovarsky and Buro [2005] in-
troduced an approach that randomly selects who is to choose
first. This randomized approach is intended to reduce the ad-
vantage a player has if they systematically choose second.
Another approach is to alternate the player who chooses first:
if at a given state player i chooses first, then at the next state
player −i chooses first [Churchill et al., 2012].

Naı̈veMCTS ignores the actions available to player −i in
a simultaneous-move state. If both players are to act simulta-
neously, then player i chooses an action and player −i does
not issue an action. Ontañón [2013] noted that other serializa-
tions produced similar results to ignoring −i’s actions. The
explanation for Ontañón’s results lies on the testbed used in
his experiments: µRTS, an RTS game with durative moves.
At a simultaneous-move state s of µRTS, player i issues their
action, resulting in state s′, while player−i issues no actions.
Then, since all units of player i are busy executing their ac-
tions at state s′, player −i is the only one who can act at s′.
That is when player−i issues their action. In µRTS, ignoring
player−i’s actions at a simultaneous-move state has an effect
similar to always allowing player i to choose their action first.

The difference between Ontañón’s approach and the serial-
izations studied by Kovarsky and Buro and Churchill et al. is
the time in which the action effects take place. In Ontañón’s

scheme player i’s actions might finish earlier than player−i’s
actions as they start to be executed earlier. In contrast with
Ontañón’s scheme, in the Kovarsky and Buro and Churchill
et al.’s schemes, the chosen actions start to be executed at the
same time, only after i and −i have made their decisions.

PGS [Churchill and Buro, 2013], POE [Wang et al., 2016],
and SSS [Lelis, 2017] bypass the serialization problem by ap-
proximating a best response to the action returned by a model
of the opponent. That is, at state s, PGS, POE, and SSS as-
sume that the opponent will perform an action a given by the
model and they approximate a best response to a at s.

We unify these serialization approaches by assuming that
the logic for deciding when the actions start to be executed
to be encoded in the transition function T (s, a). If one is to
use Ontañón’s scheme of ignoring a player’s action, then a
is applied to s as soon as T (s, a) is invoked. Moreover, s is
modified as a reference parameter in the call for T so that if
A(s) is invoked after T (s, a), the state s passed as parameter
to A is the modified state where action a was executed.

If one is to use a serialization scheme in which both actions
are executed simultaneously, then action a is stored (but not
executed) in s during the execution of T (s, a) if a is the action
of the player who chooses first; action a is executed jointly
with the action stored in s if a is the action of the player who
chooses second. The advantage of “hiding” the serialization
logic in T is that the algorithms discussed in this paper can
be applied to a larger class of games with exponential ac-
tion spaces, including games with sequential or simultaneous
moves and games with durative or non-durative actions.

3 Planning Algorithms
We divide the planning algorithms into three categories,
according to the kind of action space used in search:
uniformly-abstracted action spaces (PGS, NGS, POE, and
SSS), asymmetrically-abstracted action spaces (A3N), and
regular action spaces (Naı̈veMCTS and GNS). For ease of
presentation we review the algorithms in the following order-
ing: PGS, NGS, SSS, Naı̈veMCTS, and A3N. GNS, A1N,
A2N, and POE are described later, directly as instantiations
of GEX, a general version of Naı̈veMCTS.

3.1 Uniform Action Abstractions
A uniform action abstraction for i is a function mapping the
set of legal actions Ai to a subset A′i of Ai. Action abstrac-
tions can be defined by a set of scripts P by defining A′i(s)
with the set of actions returned by the scripts in P for s.

Definition 1. A uniform abstraction Φ is a function receiving
a state s, a player i, and a set of scripts P . Φ returns a subset
of Ai(s) denoted A′i(s). A′i(s) is defined by the Cartesian
product of actions in M(s, c, P ) = {σ̄(s, c)|σ̄ ∈ P} for all c
in Csi,r, where Csi,r is the set of ready components of i in s.

Algorithms using a uniform abstraction consider only the
actions inA′i(s) for all s encountered during search. The idea
is to let the algorithms focus their search on actions deemed
as promising by the scripts in P , as the actions in A′i(s) are
composed of component-actions returned by the scripts in P .



Algorithm 1 Portfolio Greedy Search

Input: state s, set of scripts P , time limit e, a player-action
ao for −i, and evaluation function Ψ

Output: action for player i
1: T (s, ao)
2: σ̄i ← argmax

σ̄∈P
Ψ(T (s, aσ̄))

3: ai ← aσ̄i

4: while time elapsed is not larger than e do
5: for each c ∈ Csi,r do
6: for each σ̄ ∈ P do
7: a′i ← ai; a′i[c]← σ̄(s, c)
8: if Ψ(T (s, a′i)) > Ψ(T (s, ai)) then
9: ai ← a′i

10: if time elapsed is larger than e then
11: return ai
12: return ai

Portfolio Greedy Search (PGS)
Churchill and Buro [2013] introduced Portfolio Greedy
Search (PGS), a greedy search procedure for uniformly-
abstracted action spaces. Algorithm 1 shows the pseudocode
of PGS, which receives as input a state s, a set of scripts P , an
opponent player-action ao, a time limit e, and an evaluation
function Ψ. PGS returns an action vector a for player i.

The opponent player-action ao is defined by a model of
opponent. For example, action ao for player −i can be de-
fined by a default script (i.e., a script that is known to per-
form well in the task) or by a seeding procedure for player
−i that chooses a script σ̄ from P for such that aσ̄ performs
best against player i, which is assumed to play the action aσ̄d

given by a default script σ̄d. PGS was originally presented
with this seeding approach [Churchill and Buro, 2013].

In line 1 of PGS we invoke the transition function so that
the action ao is stored in s, but is not executed, if PGS is
playing a simultaneous-move game. If the game is sequential,
then ao is a void action and T (s, ao) has no effect on state s.
Then, in line 2 the transition function is invoked for the ac-
tion aσ̄ that maximizes the estimated value of game given by
function Ψ, this argmax operation is known as the seeding
process for player i. This call of function T generates a new
state s′, which is generated by the application of ao and aσ̄ to
s; state s′ is then evaluated by Ψ. Player-action ai is initial-
ized with aσ̄i (see line 3). PGS then performs a greedy search
to improve the assignment of component-actions to ai.

In its greedy search PGS iterates through all components
c in Csi,r and tries to greedily improve the component-action
assigned to c in ai, denoted by ai[c]. Note that PGS only
considers the component-actions in the uniform abstraction,
i.e., those in M(s, c, P ). PGS evaluates ai while replacing
ai[c] by each of the possible component-actionsm for c. PGS
keeps in ai the action vector found during search with the
largest Ψ-value. This process is repeated until PGS reaches
time limit e; it then returns ai (see lines 11 and 12).

Algorithm 1 differs in an important way from the original
PGS. The opponent action ao is fixed throughout search. Al-
though in its original formulation PGS alternates between im-
proving player i’s and player −i’s action vectors, in their ex-

Algorithm 2 GREEDY SEARCH (GS)

Input: state s, set of scriptsP , action ao for player−i, action
ai for player i, and evaluation function Ψ.

Output: value of action by player −i in response for ai.
1: B ← ∞; T (s, ai)
2: for each c ∈ Cs−i,r do
3: for each σ̄ ∈ P do
4: a−i ← ao; a−i[c]← σ̄(s, c)
5: if Ψ(T (s, a−i)) < B then
6: ao ← a−i ; B ← Ψ(T (s, ao))
7: return B

periments, Churchill and Buro allowed PGS to improve only
player i’s action vector while player −i’s is fixed. Moraes et
al. [2018b] showed that, if set to improve both ai and ao, PGS
can suffer from a pathological issue that can cause PGS to
find worse strategies than PGS with ao fixed, even if the for-
mer is granted more computation time than the latter. In ad-
dition to identifying the pathology, Moraes et al. introduced
an algorithm called Nested-Greedy Search (NGS), which we
discuss next, that fixes the pathology identified.

Nested-Greedy Search (NGS)
Instead of assuming a fixed opponent action ao, NGS chooses
for player i the action ai with largest Ψ-value assuming that
the opponent −i will play an approximated best response to
ai. This is achieved by replacing the Boolean expression in
line 8 in Algorithm 1, Ψ(T (s, a′i)) > Ψ(T (s, ai)), by the ex-
pression GS(s, ao, a

′
i,Ψ) > GS(s, ao, ai,Ψ), where GS is a

greedy search procedure similar to PGS’s procedure for ap-
proximating a best response for player −i for a fixed action
for player i. The GS procedure is presented in Algorithm 2.

GS stores in variable B the value of the action for player
−i with lowest Ψ-value encountered during search, i.e., the
value of the best response approximated by the greedy search.
In line 1 GS initializes B to∞ and invokes T (s, ai) to store
ai in s so that the subsequent calls to T with actions a−i for
−i returns a state resulting from the application of both ai
and a−i to s. GS then performs the same greedy search per-
formed by PGS to approximate a best response to ai. Moraes
et al. [2018b] showed empirically in µRTS that NGS does not
suffer from PGS’s pathology. They also suggested that, if a
good opponent model is known, then one should use PGS as
we present in this paper; otherwise, one should use NGS.

Stratified Strategy Selection (SSS)
Similarly to PGS, SSS performs a greedy search [Lelis,
2017]. However, in contrast with PGS, SSS searches in the
space of script assignments induced by a type system, which
is a partition of a player’s components. SSS always assigns
the same script to components of the same type. For example,
in RTS games, all units with low hit points (type) move away
from the battle (strategy of a script). Formally, we have

Definition 2 (Type System). Let Ci be the set of player i’s
components. T = {t1, . . . , tk} is a type system for Ci if it is
a partitioning of Ci. If c ∈ Ci and t ∈ T , we say that c is of
type t if c ∈ t.



Algorithm 3 Stratified Strategy Selection

Input: state s, set of scripts P , player-action ao for player
−i, time limit e, evaluation function Ψ, and a type system
T for the set of components Ci in s.

Output: action for player.
1: T (s, ao)
2: σ̄i ← argmax

σ̄∈P
Ψ(T (s, aσ̄))

3: ai ← aσ̄i

4: while time elapsed is not larger than e do
5: for each t ∈ T do
6: for each σ̄ ∈ P do
7: a′i ← ai with the actions of all components c of

type t replaced by σ̄(c)
8: if Ψ(T (s, a′i)) > Ψ(T (s, ai)) then
9: ai ← a′i

10: if time elapsed is larger than e then
11: return ai
12: return ai

Algorithm 3 presents SSS, which receives as input a state s,
a set of scripts P , an opponent player-action ao, a time limit
e, an evaluation function Ψ, and a type system T for compo-
nentsCi at state s. SSS returns a player-action for i. The main
difference between PGS and SSS is that the former tries dif-
ferent script assignments to all components, while the latter
tries different script assignments to all types of components
(see line 5 of Algorithm 3). The type system, which can be
constructed with domain knowledge (e.g., all units with the
same hit points and attack range have the same type), reduces
the action space. That is, instead of evaluating |Csi | × |P |
different actions like PGS, SSS evaluates |T |× |P | actions in
each iteration, with T being designed to be smaller than Csi .

3.2 Regular Action Spaces
Several algorithms were developed to search on the regular
action spaces of games with exponential action spaces. Ex-
amples include Monte-Carlo methods [Chung et al., 2005;
Balla and Fern, 2009; Ontañón, 2013], Minimax search with
Alpha-Beta pruning [Churchill et al., 2012], and hierarchical
search [Ontañón and Buro, 2015]. We present Naı̈veMCTS
as a representative of such a family of algorithms [Ontañón,
2013; Ontañón, 2017].

Naı̈ve Monte Carlo Tree Search (Naı̈veMCTS)
Ontañón [2017] modeled the search problem of deriving
strategies in games with exponential action spaces as a com-
binatorial multi-armed bandits (CMAB) problem. A CMAB
problem can be defined by a tuple (X,µ), where,
• X = {X1, · · · , Xn}, where each Xi is a variable that

can assume Ki values Xi = {v1
i , · · · , v

Ki
i }, with X =

{(v1, · · · , vn) ∈ X1×· · ·×Xn} being the possible com-
binations of value assignments for the variables in X; a
value assignment V ∈ X is called a macro-arm.
• µ : X → R is a reward function, that receives a macro-

arm and returns a reward value for that macro-arm.
The goal in a CMAB problem is to find a macro-arm that

maximizes the expected reward. This can be achieved by bal-

ancing exploration and exploitation until converging to an op-
timal macro-arm. In the context of games with exponential
action spaces, each decision point s can be cast as a CMAB
problem in which X contains one variable for each ready
component of a player in s. Thus, a macro-arm V ∈ X
represents a player-action and each value v ∈ V represents
a component-action. The set Xi = {v1

i , · · · , v
Ki
i } repre-

sents the set of Ki legal actions for the i-th component. The
goal is to find a macro-arm (player-action) that maximizes the
player’s reward, which is defined by an evaluation function.

Since the number of macro-arms in X is often too large
in games with exponential action spaces, Ontañón [2017] de-
rived a sampling procedure called Naı̈ve Sampling (NS) to
help deciding which macro-arms should be evaluated during
search. NS divides a CMAB problem with n variables into
n+ 1 multi-armed bandit (MAB) problems.

• n local MABs, one for each variable Xi ∈ X . For vari-
ableXi representing the i-th component, the arms of the
MAB are the Ki values (component-actions) in Xi.
• 1 global MAB, denoted MABg , that treats each macro-

arm V considered by NS as an arm in MABg . Naturally,
MABg has no arms in the beginning of NS’s procedure.

At each iteration, NS uses a policy π0 to determine whether
it adds an arm to MABg through the local MABs (explore) or
evaluates an existing arm in MABg (exploit).

1. If π0 decides to explore, then a macro-arm V is added
to MABg by using a policy πl to independently choose a
value for each variable inX . NS assumes that the reward
of a macro-arm V can be approximated by the sum of the
rewards of the individual values vi ∈ V , denoted µ′(vi).
That is, µ(V ) ≈

∑
vi∈V µ

′(vi).

2. If π0 decides to exploit, then a policy πg is used to select
an existing macro-arm in MABg .

Ontañón [2017] showed that NS can be used in the context
of Monte Carlo Tree Search (MCTS) [Browne et al., 2012] by
introducing an algorithm named Naı̈veMCTS, for which we
present the pseudocode when introducing GEX. Naı̈veMCTS
differs from other MCTS algorithms in that it uses NS to
decide which player-actions should be evaluated at a state.
By contrast, a vanilla MCTS algorithm iteratively selects all
player-actions to be evaluated at a given state.

Recently, Yang and Ontañón [2019] introduced Guided
Naı̈ve Sampling (GNS), a variant of Naı̈veMCTS whose ex-
ploration step is biased by a set of scripts, as we explain in
Section 4.1.

3.3 Asymmetric Action Abstractions
Moraes and Lelis [2018] introduced the concept of asymmet-
ric action abstractions for exponential action spaces. Uniform
abstractions are restrictive in the sense that all components
have their legal actions reduced to those specified by scripts.
By contrast, asymmetric abstractions reduce the number of
legal actions of only a subset of the player’s components;
the sets of legal actions of the other components remain un-
changed. The subset of components that do not have their set



of legal actions reduced are known as the unrestricted com-
ponents; the complement of the unrestricted components are
known as the restricted components.

Definition 3. An asymmetric abstraction Ω is a function re-
ceiving as input a state s, a player i, a set of unrestricted com-
ponents C ′i ⊆ Csi,r, and a set of scripts P . Ω returns a subset
of actions of Ai(s), denoted A′′i (s), defined by the Cartesian
product of the component-actions in M(s, c, P ) for all c in
Csi,r \ C ′i and of component-actions M(s, c′) for all c′ in C ′i.

Algorithms using an asymmetric abstraction Ω consider
only the actions in A′′i (s) in search. If the set of un-
restricted units is equal to the set of units controlled by
the player, then the asymmetrically-abstracted space equals
the regular space, and if the set of unrestricted units is
empty, the asymmetrically-abstracted space is the same as the
uniformly-abstracted space induced by the same set of scripts.

Asymmetric abstractions allow search algorithms to divide
their “attention” differently among components at a given
state of the game. That is, depending on the state, some com-
ponents might be more important than others (e.g., in RTS
games, units with low hit points can be more important), and
asymmetric abstractions allow for finer strategies for these
components by accounting for a larger set of actions for them.

Asymmetrically Abstracted Naı̈veMCTS (A3N)
Moraes et al. [2018a] introduced a version of Naı̈veMCTS,
named A3N, that searches in asymmetrically-abstracted
spaces by using an abstraction Ω and a modified version of πl.
A3N’s πl is able to select any component-action for the unre-
stricted components but only component-actions returned by
scripts in P for the restricted components. Thus only macro-
arms representing actions in A′′i (s) are added to MABg .

An asymmetric abstraction is defined for a set of unre-
stricted components. Moraes et al. [2018a] evaluated several
policies for choosing the unrestricted set and showed empiri-
cally in µRTS that A3N performs well even with a policy that
randomly selects a subset of units as the unrestricted units.

4 GEX: A Unifying Algorithm
In this section we introduce General Combinatorial Search
for Exponential Action Spaces (GEX) and show how all al-
gorithms described in this paper can be seen as a special case
of GEX. Algorithms 4 and 5 show the pseudocode for GEX.
These two procedures are identical to Naı̈veMCTS. The dif-
ference between GEX and Naı̈veMCTS is how the policies
π0, πl, πg , and π (all parameter inputs to Algorithm 4)
are defined and how the functions PROPAGATEEVALUATION,
GETBESTACTION, and MACROARMSAMPLER are imple-
mented. Next, we explain how the algorithms reviewed in
this paper can be instantiated from Algorithms 4 and 5.

4.1 Naı̈veMCTS, GNS, A1N, A2N, and A3N
Naı̈veMCTS builds a search tree by adding a new node to the
tree in each of its iterations. Algorithm 5 defines which node
is added to the tree. Here, a node contains a state and other in-
formation, which depends on the algorithm GEX instantiates.
The node to be added (leaf in Algorithm 4) is evaluated with
Ψ and the value v thus obtained is propagated upward the tree.

Algorithm 4 GEX

Input: State s, sampling strategies π0, πl and πg , serializa-
tion strategy π, opponent model O, and evaluation func-
tion Ψ, transition function T .

Output: Action a
1: root← node(s)
2: while hasTime() do
3: leaf← SELECTANDEXPAND(root, π0, πl, πg , π, T )
4: v ← Ψ(leaf.state)
5: PROPAGATEEVALUATION(leaf, v)
6: return GETBESTACTION(root)

Algorithm 5 SELECTANDEXPAND

Input: A game tree node n0 and sampling policies π0, πl
and πg , serialization policy π, and transition function T .

Output: A node in the tree
1: j ← π(n0.state)
2: n← MACROARMSAMPLER(n0.state, π0, πl, πg , j)
3: if n ∈ n0.children then
4: return SELECTANDEXPAND(n0.child(α))
5: else
6: n0.addChild(n)
7: return return n

GEX repeats this procedure while there is time available for
planning. The algorithm then returns the best action available
from the state in the root of the tree (line 6 of Algorithm 4).

We now describe the implementations of the policies and
functions that allow GEX to instantiate Naı̈veMCTS.
Macro-Arm Sampling. Naı̈veMCTS uses NS as the function
MACROARMSAMPLER with each of the policies π0, πl, and
πg implementing an ε-greedy policy.
Serialization Strategy. The policy π for deciding the player
j that acts first (see line 1 of Algorithm 5) returns player i if
i has ready components in the state; π returns −i otherwise.
The function T (s, a) passed as parameter to GEX applies ac-
tion a to s as soon as T is invoked. This way, the node n
returned by MACROARMSAMPLER contains the state result-
ing from the application of a player j’s action to n0.state.
Evaluation Function. Naı̈veMCTS uses a random play-out
as Ψ, i.e., a state is evaluated by randomly choosing player-
actions for both players. If a terminal state is encountered
after m steps, then the value of that state is returned; other-
wise a heuristic value of the state reached is returned.
Propagation of Evaluation. The function PROPAGATEE-
VALUATION propagates the value v returned by function Ψ
to all nodes on the path from the leaf to the root of the MCTS
tree. In each node on the path Naı̈veMCTS updates the esti-
mated average reward value µ′(vi) for each component vi.

Returning Best Action. Function GETBESTACTION re-
turns the player-action (macro-arm) most visited at the root
of the tree, i.e., the macro-arm that NS chose to be exploited
the largest number of times at the root of the tree.

GNS, A1N, A2N, and A3N also use the same policies and
functions described above, except for policy πl that samples



macro-arms to be added to MABg . GNS prefers macro-arms
returned by a script. That is, GNS’s πl returns the component
actions returned by a script selected at random from a pool of
options if the macro-arm to be added is the first of a node. In
subsequent iterations, with probability ε, GNS’s πl returns a
component action from a randomly selected script and, with
probability 1− ε, a component action returned by NS.

A1N searches in uniformly-abstracted spaces and can be
implemented by having πl sample component-actions re-
turned by scripts in P . A2N is similar to A3N in that it also
searches in asymmetrically-abstracted spaces, but it defines
its abstraction according to the “type” of the player’s compo-
nents. In A2N each component type has access to a possibly
different set of scripts P , thus making the abstraction asym-
metric as some components can have access to sets P of dif-
ferent sizes. Finally, A3N can be defined by a policy πl that
samples actions from an asymmetric abstraction.

4.2 PGS, SSS, POE, and NGS
Next, we discuss the implementations of the policies and
functions that allow GEX to instantiate PGS. We will then
discuss the functions to instantiate SSS, POE, and NGS.
Macro-Arm Sampling. PGS evaluates each macro-arm at
most once. This is achieved by GEX if policy π0 always
returns “explore” and adds an unseen macro-arm to MABg .
Since PGS always chooses to explore, then policy πg can be
implemented arbitrarily, as it will never be invoked. Pol-
icy πl stores information in the tree node so that it remem-
bers which macro-arm should be evaluated next time πl is
invoked. Namely, πl retrieves from the tree node the best
incumbent action (this information is stored and updated by
function PROPAGATEEVALUATION as explained below) and
the indexes of the last component p and the last script q eval-
uated in the state. This way πl is able to modify p and/or q so
that πl returns the macro-arms in the same order as PGS (see
for loops in Algorithm 1). The first time πl is invoked it per-
forms the seeding step described in Section 3.1 by iteratively
returning the actions aσ̄ for each of the scripts σ̄ in P before
returning the actions according to PGS’s greedy search.
Serialization Strategy. The policy π always returns −i in
PGS. The first time πl is invoked it uses the model of the
opponent O, which for PGS is the seeding procedure we de-
scribed in Section 3.1, to return an action ao for −i. Action
ao is then passed to the transition function T , so that the value
of ao is stored within the function. The transition is only ex-
ecuted when policy πl invokes T again with an action for i.
Evaluation Function. The function Ψ of PGS is determinis-
tic, as described in PGS’s original paper [Churchill and Buro,
2013]. It simulates the game from the leaf that is passed as
parameter to Ψ by using a deterministic script for both play-
ers. If a terminal state is encountered after a fixed number m
of steps, then the value of that state is returned; otherwise a
heuristic value of the state reached after m steps is returned.
Propagation of Evaluation. The function PROPAGATEE-
VALUATION verifies if v is larger than the Ψ-value of the best
incumbent action stored in the tree node. If it is, then PROPA-
GATEEVALUATION updates the best incumbent action to the
leaf returned by SELECTANDEXPAND with Ψ-value of v.

Returning Best Action. Function GETBESTACTION re-
turns the best incumbent action at the root of the tree.

SSS can be instantiated with the functions described above,
but with a small change. Instead of having πl iterating over
all components, πl for SSS should iterate over all types in a
type system T . A version of POE [Wang et al., 2016] can also
be obtained by implementing πl as a genetic algorithm where
the population is formed by a set of player-actions uniformly
sampled at random from the uniform action abstraction. In
POE, πl returns the actions from the population that needs to
be evaluated. The procedure PROPAGATEEVALUATION as-
signs v as the fitness value of the macro-arm evaluated.

To instantiate NGS, we change the serialization scheme,
since in PGS and SSS player −i chooses first while in NGS
player i chooses first. In NGS, the policy πl initially chooses
‘explore’ to add the first macro-arm ai and its corresponding
node n into the tree. Then, at the root, πl chooses to ‘exploit’
ai a number of times equal to the number of components con-
trolled by −i times the number of scripts in P , to allow for
the evaluation of all actions of −i that are considered by GS
as responses to ai. During this procedure, πl always chooses
to ‘explore’ at node n so that the algorithm evaluates all pos-
sible responses of the player −i. After all responses have
been evaluated, πl chooses to explore another macro-arm for
player i at the root, thus repeating the procedure.

4.3 GEX Instantiating Novel Algorithms
The study of existing algorithms as instantiations of GEX
points to the discovery of algorithms by combining the char-
acteristics of existing methods. For example, a new algo-
rithm is given by an instantiation similar to Naı̈veMCTS in
which the policy πl only samples macro-arms where com-
ponents of the same type are assigned component-actions re-
turned by the same script, as in SSS. Another novel algorithm
is given by an instantiation of Naı̈veMCTS in which the func-
tion MACROARMSAMPLER implements the NGS’s greedy
search instead of NS’s policy. Such an algorithm would it-
eratively perform a greedy search for player i and greedily
approximate a best response for player −i. However, instead
of performing a 2-step lookahead as in NGS, the tree could
grow deeper. The instantiations of SSS, PGS, and POE only
differ on the local search used within πl, suggesting that other
local search methods can be used as policies πl.

5 Conclusions
In this paper we reviewed several algorithms for planning in
games with exponential action spaces. We then presented a
unifying perspective where a variant of Naı̈veMCTS, named
GEX, can be used to describe several existing approaches. By
instantiating existing algorithms in GEX one can easily see
how combinations of features of existing approaches can lead
to novel algorithms for this challenging class of games. We
leave as future work for the research community the task of
implementing and evaluating these novel search approaches.
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Monte Carlo Tree Search by Scripts in Real-Time Strat-
egy Games. In Proceedings of the Conference on Artificial
Intelligence and Interactive Digital Entertainment, pages
100–107, 2019.


	Introduction
	Games with Exponential Action Spaces
	From Simultaneous to Sequential Games

	Planning Algorithms
	Uniform Action Abstractions
	Portfolio Greedy Search (PGS)
	Nested-Greedy Search (NGS)
	Stratified Strategy Selection (SSS)

	Regular Action Spaces
	Naïve Monte Carlo Tree Search (NaïveMCTS)

	Asymmetric Action Abstractions
	Asymmetrically Abstracted NaïveMCTS (A3N)


	GEX: A Unifying Algorithm
	NaïveMCTS, GNS, A1N, A2N, and A3N
	PGS, SSS, POE, and NGS
	GEX Instantiating Novel Algorithms

	Conclusions

