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Abstract

Sample-based planning is a powerful family of algorithms for generating intelligent
behavior from a model of the environment. Generating good candidate actions
is critical to the success of sample-based planners, particularly in continuous or
large action spaces. Typically, candidate action generation exhausts the action
space, uses domain knowledge, or more recently, involves learning a stochastic
policy to provide such search guidance. In this paper we explore explicitly learning
a candidate action generator by optimizing a novel objective, marginal utility.
The marginal utility of an action generator measures the increase in value of an
action over previously generated actions. We validate our approach in both curling,
a challenging stochastic domain with continuous state and action spaces, and a
location game with a discrete but large action space. We show that a generator
trained with the marginal utility objective outperforms hand-coded schemes built
on substantial domain knowledge, trained stochastic policies, and other natural
objectives for generating actions for sampled-based planners.

1 Introduction

Sample-based planning is a powerful family of algorithms used in decision-making settings where the
objective is to find the best action from among a number of possibilities. These algorithms involve
an agent repeatedly sampling actions for evaluation in order to find an optimal action. In domains
with large (possibly continuous) action spaces, the number of samples needed to identify optimal
actions renders an exhaustive search intractable. In many domains, such as sequential games, the
outcome of an action can be stochastic, which further inflates the search space. In this paper, we
consider problem domains with continuous or very large discrete action spaces.

Monte Carlo tree search (MCTS) methods such as UCT [8] performs search in discrete action spaces
by balancing between sampling promising actions to improve the estimates of their outcomes and
exploring other candidate actions. MCTS algorithms, though, might fail to encounter effective actions
if the action space is very large, as the algorithm is unable to consider all available actions during
search [11]. Search algorithms such as MCTS can thus benefit from an action candidate generator,
that given a state, returns a set of promising actions to be executed at that state.

For search in a continuous action setting, Yee et. al [18] introduced Kernel Regression UCT (KR-
UCT), an MCTS algorithm for continuous spaces and stochastic outcomes that requires an action
candidate generator. Yee et. al [18] used hand-coded generators in their experiments. Meanwhile,
reinforcement learning with self-play was shown to be successful at training agents to search in
domains with a relatively large action space, such as Go [13, 15], using a learned policy to guide
search. Lee et al. [9] then combined this idea with KR-UCT to learn an action generator for search in
continuous domains by sampling a set of actions from the policy. The key insight in this work is that
sampling from a good policy does not necessarily produce a good set of actions for planning.
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In this paper, we introduce a novel approach that explicitly generates sets of candidate actions for
sample-based planning in large action spaces. Our approach trains a neural network model while
optimizing for the marginal utilities of the generated actions, a concept we introduce in this paper.
The marginal utility measures the increase in value for generating an action over previously generated
actions, thus favoring diversity amongst the generated actions. We evaluate our approach in curling, a
stochastic domain with continuous state and action spaces, and in a location game with a discrete
but large action space. Our results show that our generator outperforms trained policies, hand-coded
agents, and other optimization objectives when used for sample-based planning.

2 Related Work

Monte Carlo tree search (MCTS) is a simulation-based planning method that incrementally builds a
search tree of sequential states and actions. However, they require evaluating every action at least once,
which can be infeasible in large action spaces. To address this, other variations have been introduced
that try to limit the search space. One such variant is progressive widening or unpruning [5, 3], which
limits the number of actions that are evaluated at a node. Additional actions are sampled only after
the state has been evaluated a sufficient number of times to provide a reliable estimate. Double
progressive widening [4] extends progressive widening in MCTS to settings with continuous action
spaces and stochasticity. Kernel Regression with UCT (KR-UCT) [18] combines double progressive
widening with information sharing to improve value estimates and consider actions outside the initial
set of candidate actions. All previous methods require an initial candidate set to commence the search
procedure, thus these ideas are orthogonal to the action generators we introduce in this paper.

Naı̈veMCTS is an MCTS algorithm that searches in domains with action spaces defined by the
combination of the actions performed by “state components” [11]. Units in a real-time strategy game
or the actuators of a robot are examples of state components that can be controlled by a centralized
agent. Naı̈veMCTS samples actions to be considered in search by independently sampling component
actions. The action generator schemes we introduce are more general because they can be applied to
any action space, and not only to those defined by state components.

Learning methods now play a key role in sample-based planning. One example is AlphaGo Zero [15]
and AlphaZero [14], which demonstrated state-of-the-art performance in Go, chess, and shogi. The
AlphaZero approach foregoes most human domain knowledge for machine learning models trained
from self-play games. These learned models are employed in two ways. First, Monte Carlo rollouts
are replaced with learned value estimates. Second, a learned policy is used in action selection to
focus samples on actions that have high probability according to the policy using a modification of
PUCB [12]. Learned policies can be used as action generators by sampling actions according to the
policy distribution. We show empirically that action generators trained while optimizing for marginal
utilities are better suited when used with search than actions sampled by these learned policies.

3 Sample-Based Planning

While we are interested in investigating the sequential decision-making setting, for simplicity we
constrain ourselves to planning in a single-decision problem. We define S to be the set of all decision
states and A the set of all actions. There exists a deterministic mapping T : S ×A → Z such that
upon taking an action a ∈ A at a state s ∈ S, the agent observes an outcome z ∈ Z . There is also a
reward function R : Z → R that associates an outcome with a real-valued reward.

The Q-value of a state-action pair (s, a) is the expected reward obtained by applying a at s. For
domains with continuous actions spaces we introduce stochasticity through an explicit execution
model E : A×A → R. E(a, a′) is the probability action a′ is executed when action a is selected.
This can be thought of as the agent’s imprecision in executing actions due to imperfect motors or
physical skill. The Q-value in continuous action spaces with stochasticity is defined as,

Q(s, a) =

∫
a′∈A

E(a, a′)R(T (s, a′)) . (1)

The goal of a planner is to select actions in a given state to maximize Q(s, a).

Although we restrict our investigation to a single-decision setting where an agent sees an outcome
immediately after taking an action, this still can pose a challenging search problem [1], especially
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when S and A are continuous or discrete and very large. This simplification allows us to focus on the
evaluation of candidate generators rather than rollout policies or value function approximations. Our
approach can be extended to the sequential setting by recursively defining Q-values in terms of the
values of successive state-action pairs, a direction we intend to investigate in future works. Next, we
describe two sampled-based planning algorithms we use in our experiments.

3.1 UCB

A commonly used planning method in the single-decision setting is the Upper Confidence Bounds
(UCB) algorithm [2]. UCB performs efficient sampling by balancing its budget between sampling
promising actions to compute reliable estimates (exploitation) and sampling newer actions to find
better actions (exploration). This algorithm tracks the average rewards and the selection counts for
each action and chooses an action that has the highest one-sided confidence value calculated as:

arg max
a

(
Q̄(s, a) + C ·

√
logN

na

)
(2)

where Q̄(s, a) is the average sampled reward of action a, na is the number of times a has been
sampled, N is the total number of samples, and C is a constant that tunes the rate of exploration. The
second term ensures that actions that have not been sampled enough will still be selected.

3.2 KR-UCB

Kernel Regression with UCB (KR-UCB) [18] leverages information sharing to improve the estimates
of the actions and add newer actions to be considered for sampling in stochastic settings. Kernel
regression is a non-parametric method to estimate the value of the conditional expectation of a random
variable given sampled data [10, 17]. Given a set of data points and their values, kernel regression
estimates the value of a new data point as an average over all data points in the set weighted by
a kernel function. In the stochastic domain we consider, the kernel function used is the execution
model, E , that adds uncertainty to actions. With a kernel function, K, and data set, (ai, ri)i=1,...,n,
the approximate expected value of action a is

Q̂(s, a) =

∑n
i=0K(a, ai)ri∑n
i=0K(a, ai)

. (3)

The value
∑n
i=0K(a, ai), which we will denote as W (a), is the kernel density. The kernel density

of any action is a measure of the amount of information from all other samples available to it.

Selection of an action with KR-UCB is governed using an adaptation of the UCB formula, where the
average reward of an action is approximated by its kernel regression estimate and its visit count is
approximated by its kernel density. With C being the exploration, the selection policy is defined as,

arg max
a∈A

(
Q̂(s, a) + C ·

√
log
∑
b∈AW (b)

W (a)

)
, (4)

Starting with an initial set of candidate actions, KR-UCB repeatedly samples actions according to
Equation 4. The rewards from all outcomes observed over all samples are used to calculate an action’s
kernel regression estimate. Due to its information sharing scheme, as more outcomes are observed,
more information is available about all actions at the state.

KR-UCB initially considers selecting only from the set of actions provided by an action generator.
Once enough outcomes have been sampled from the initial set of actions, KR-UCB considers new
actions based on their likelihood of being executed when sampling another action and on the amount
of new information they share with the actions already considered. As a result, KR-UCB can find
better actions than it is provided as input by an action generator through these added actions. A
thorough description of KR-UCB can be found in the work by Yee et. al [18].

4 Marginal Utility Optimization

KR-UCB was originally proposed using a hand-coded domain-specific action generator to create its
initial set of candidate actions for a given state. More recently, learned policies were used to provide
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search guidance [14] and explicitly as an action generator for sampled-based planning [9], where the
set of candidate actions are sampled from the policy. These policies are typically trained to match
the sampling distributions of the planner, which itself is aimed at focusing samples on actions with
high value. As a result, a policy π trained to match the planner’s sampling distributions is implicitly
maximizing the objective Ea∼π(s)[Q(s, a)]. However, this objective ignores that the policy is being
used to generate a set of candidate actions for planning. In this setting of generating a set of candidate
actions it is only important that some sampled actions have high value rather than all sampled actions.

In place of a policy, we propose explicitly optimizing a candidate action generator for sample-based
planning. Let g(s) ⊂ A be a generator function that given a state s returns a subset of m candidate
actions, i.e., |g(s)| = m. As noted above, a policy as a generator is implicitly optimized for

uSUM(g|s) =
1

m

∑
a∈g(s)

Q(s, a). (5)

In this form, it is clear that this objective emphasizes that all generated actions should have high value.
However, as the planner is itself aiming to identify the best action from the candidate actions, a more
suitable objective would be,

uMAX(g|s) = max
a∈g(s)

Q(s, a) , (6)

where one ensures identifying at least one high-valued action.

While the MAX objective may be more appropriate, it tends to have a poor optimization landscape
for gradient-based methods as it results in sparse gradients. For intuition, consider the partial
derivatives of the objective with respect to an action a ∈ g(s). ∂uMAX

∂Q(s,a) = 1 only where a =

arg maxa∈g(s)Q(s, a) and 0 for all other actions. We will instead derive an alternative objective that
is similar while being friendlier to gradient-based optimization. Let g(s) = {a1, . . . , am} be the
actions from the generator and qi = maxj≤iQ(s, aj) be the maximizing action value for actions
from the subset {a1, . . . , ai}, so that q1 ≤ q2 ≤ . . . ≤ qm. We can rewrite the MAX objective as

uMAX(g|s) = qm = q1 +

m∑
i=2

(qi − qi−1)

= Q(s, a1) +

m∑
i=2

(
Q(s, ai)−max

j<i
Q(s, aj)

)+

.

The terms in the summation are marginal utilities, representing how much utility is gained by the
planner considering one more action from the generator. However, maximizing the marginal utility
of an action can be achieved either by increasing the value of that action or by decreasing the value
of previously considered actions. In order to prevent learning an action generator that decreases the
value of previously considered actions we propose our marginal utility objective,

uMU(g|s) = Q(s, a1) +

m∑
i=2

(
Q(s, ai)−⊥

(
max
j<i

Q(s, aj)

))+

. (7)

where ⊥ denotes a stop gradient so that there is no encouragement to reduce the value of previously
considered actions. The marginal utility objective can be thought of as a sum of a set of semi-gradients,
where each action from the generator is optimized to improve on previously generated actions. This
objective has more dense gradients than the MAX objective function because the partial derivatives of
the utility with respect to each action, ∂uMU

∂Q(s,ai)
, equals 1 whenever Q(s, ai) > maxj<iQ(s, aj) and

0 otherwise. By contrast, only the action ai with largest Q-value has a non-zero gradient for the MAX
function. Thus, while uMU has the same value and global optimum as uMAX, we believe its landscape
is more conducive to optimization.1 We validate this empirically in Section 6. Another advantage
of the MU objective functions is that it reduces the encouragement for all actions to produce similar
outputs, as MU is maximized only if actions ai obtain higher values than actions aj , for i > j. We
also show empirically that MU encourages action diversity (see the supplementary material.)

1Our alternative loss follows the tradition of other optimization-friendly proxy objectives, e.g., cross-entropy
instead of 0-1 loss or the temporal difference sub-gradient instead of Bellman residual, which are used for their
strong empirical performance.
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4.1 Gradient Computation for Continuous Action Spaces

We now describe how we can use our marginal utility objective to optimize a generator function using
gradient ascent in continuous domains with execution uncertainty. Consider g as a parameterized
function gθ(s) = {a1, . . . , am}, such that ai is differentiable with respect to θ. For example, gθ
could be represented as a neural network. We cannot directly optimize uMU as Q(s, a) is not known
and can only be estimated with samples. We optimize a differentiable approximation of uMU where
the values of Q are approximated by KR, as shown by the following equation,

ûMU(gθ|s) = Q̂(s, a1) +

m∑
i=2

(
Q̂(s, ai)−⊥

(
max
j<i

Q̂(s, aj)

))+

, (8)

where

Q̂(s, a) =

∑n
i=1 E(a, a′i)r

′
i∑n

i=1 E(a, a′i)
. (9)

Here, {a′1, a′2, · · · a′n} is the set of action outcomes from the sample-based planner after the execution
model was applied to each selected action and r′i = R(T (s, a′i)) is the associated reward from out-
come a′i. By using kernel regression to approximate our value function, and assuming a differentiable
execution model for the kernel function, we have that ûMU(gθ|s) is differentiable with respect to θ.
So we can optimize θ with gradient ascent.

4.2 Gradient Computation for Discrete Action Spaces

In discrete-action domains, the generator gθ(s) does not explicitly generate actions. Rather the
generator produces a set of distinct policies over actions {πθ1 , . . . , πθm} from which it then samples
actions ai ∼ πθi where i = 1, . . . ,m. We derive a sampled gradient for uMU(gθ|s) using the standard
log-derivative trick, although some care is needed to properly handle the stop gradients.

Theorem 1 For a generator gθ(s) producing a set of policies over actions {πθ1 , . . . , πθm}, let

˜∇θuMU(gθ|s) ≡ ∇θ log πθ1(ã1|s)Q(s, ã1) +

m∑
i=2

∇θ log πθi (ãi|s)
(
Q(s, ãi)−max

j<i
Q(s, ãj)

)+

,

(10)
where ãi is an action sampled from policy πθi . Then, E

[
˜∇θuMU(gθ|s)

]
= ∇θuMU(gθ|s).

The proof of Theorem 1 can be found in Appendix A.

5 Experimental Setup

5.1 Hammer Shots in Curling

Following previous work [1, 18, 9], we use curling as the test bed for evaluating the performance of
marginal utility maximization for generating actions for search in the single-decision setting with
continuous actions. Curling is a sport that can be modeled as a two-player, zero-sum game with
continuous state and action spaces with uncertainty in the action outcomes. The game is played
between two teams of players on a sheet of ice. Typically a game consists of 10 rounds called ends. In
each end, teams alternate taking shots, sliding rocks from one end of the sheet to the other, targeting
a demarcated region called the house. After all shots, the score is tallied based on the number of
rocks in the house closer to the center than any of the opponent’s rocks. The team with the highest
cumulative points after all ends is declared the winner. The last shot of the end is called the hammer
shot. We restrict our investigation to hammer shots and evaluate the algorithms on the objective of
finding an action that maximizes the expected number of points scored in a hammer state.

We model a hammer shot problem as a single-decision problem where S is the set of all possible
hammer states, A is the set of actions available at each state, Z is the set of possible outcomes for
playing an action at a state andR is a function mapping shot outcomes to scores. Actions in curling
are parameterized by 3 variables: the velocity (ν) of the shot, the angle (φ) of trajectory, and the turn
on the shot, which is a binary value in the set {−1, 1} indicating whether the rock is rotating clock-
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or counter-clockwise. The turn of the rock causes it to “curl” right or left. Every time an action is
taken, uncertainty in execution results in perturbations of the velocity and angle such that we play an
action with velocity, (ν + εν) and angle, (φ+ εφ). In our setting, we select a constant turn parameter
— we can evaluate the other turn by laterally inverting the state configurations due to symmetry. All
state transitions were done by a curling simulator built using the Chipmunk simulator [1].

5.2 A Location Game

We present a two-player location game to evaluate the marginal utility objective in a setting with
discrete actions. The game states are represented as an (n× n) grid of cells where each cell has an
associated real value such that sum of values over all cells equals to 1. S = Rn×n and player i’s
action is the selection of ki cells in the grid i.e., A = {1, . . . , n× n}ki . After actions are selected,
each location receives a value equal to the sum of the values of the cells closest to it in terms of
their Manhattan distance and the reward of an action is the sum of the values of the constituent
locations. Cells have their values equally shared among equidistant locations. R is a mapping from a
(state, action) pair to a reward in [0, 1]. We investigate the case of a 10× 10 grid where we must
select 3 locations and an opponent selects 2 locations. The opponent deterministically selects the 2
highest valued cells reducing the game to a single-agent search problem with large discrete action
space (106 actions at each state). The cells have values drawn from an inverse gamma distribution,
with shape and scale parameters of α = 3 and β = 1, respectively, and normalized to sum to 1.

5.3 Training an Action Generator

In both settings we used neural networks for our generator function to learn mappings from states to
sets of actions. In curling, the state representations passed to the network depicted the configuration
of the curling rocks in the house and the local area near it. The input state consisted of a stack of
three (250× 125) matrices: two binary matrix representing the positions of the non-hammer team’s
and the hammer team’s rocks, and a matrix depicting the region covered by the house. The input was
passed through two convolutional layers. Each layer used 32 (5× 5) filters and max pooling with a
stride of 2. The output is processed by two feed-forward layers with 2,048 and 1,024 hidden units,
respectively. Hidden layers used Rectified Linear Unit (ReLU) activations and the output layer used a
sigmoid activation function. The output was a vector of action parameters for velocity and angle.

The neural network weights were initialized with Glorot and Bengio’s method [6]. A forward pass
through the neural network produces a set of actions. These actions are passed to the curling simulator
and evaluated by sampling 4 outcomes of each. Using the observed outcomes and their corresponding
values, the kernel regression estimates of the values of the actions are calculated (Equation 4) and their
marginal utilities are computed (Equation 7). The network weights, θ, are then updated by applying
gradient ascent on uMU. We trained on 640,000 hammer states for 20,000 iterations (approximately
3 days of training time on a single GTX 970 GPU). We used a mini-batch size of 32 inputs, Adam
optimizer [7] with a learning rate α = 10−4 and L2-regularization on the weights with λ = 0.0001.

For the location game, the input state to the network was a matrix representing the grid. The input
was passed through two convolutional layers with 32 (3 × 3) filters using ReLU activations and a
single feedforward layer using a sigmoid activation. A forward pass through this network produced 8
policies from which to sample 8 actions. Actions were sampled at each state from these policies and
the reward of each action observed. The network was trained by gradient ascent using Equation 10.
We trained on 2,400,000 states over 75,000 iterations (≈20 hours training time on a single GTX 970
GPU) with mini-batch size of 32, learning rate α = 10−4 and L2-regularization with λ = 0.0001.

5.4 Competing Algorithms

In curling, we compare the performance of our proposed action generator, trained to maximize total
marginal utility, uMU, against models trained with other objective functions and with other action
generation approaches. The first being a set of agents that use hand-tailored action generators of
different ‘skill levels’ built with substantial curling-specific knowledge [18]. We also compare against
three other objectives: MAX (uMAX), SOFTMAX (uSOFTMAX, a smoothed version of MAX), and SUM
(uSUM) utility functions. These models employed the same neural network architecture described
above. The softmax function has a temperature parameter, which we set to 0.1 after performing
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a parameter sweep. As discussed in Section 4, previous learning systems such as AlphaZero [14]
implicitly maximize uSUM.

The other approach we compare against is an agent that uses a learned selection policy model trained
using deep reinforcement learning and KR-UCB in accordance to the work of Lee et.a l [9]. The
policy-based model’s network output a (32× 32) policy, ρ, over a discretization of the action space.
The network parameters, θ, are optimized using a regularized cross-entropy loss objective with L2
regularization to maximize the similarity between policy output and the sample distributions, π:
−π logρ + λ‖θ‖2. Lee et. al [9] defined hyper-parameter values for their implementation. However,
since our simulator and network are different, we searched for good values for these parameters. We
found good performance by setting λ = 0.0001, having the algorithm produce 32 candidate actions,
and using a budget of 128 samples for obtaining the sample distribution π.

In the location game, we compare the performance of the generator trained using the uMU objective,
with those trained using uMAX and uSOFTMAX. We also compared its performance against REIN-
FORCE [16] which uses a network, parameterized by θ, to output a single policy from which 8
actions were sampled to update the parameters. The policy trained with REINFORCE implicitly
maximizes uSUM. After a parameter sweep, the learning rate for training with these objectives were
set to α = 10−4 for uMAX and α = 10−5 for uSOFTMAX and REINFORCE.

6 Results and Analysis

To evaluate the performance of the various methods in curling, we used each to generate a set of
actions for 3,072 test states. As outcomes are stochastic in this setting, we use UCB and KR-UCB as
the planners for selecting an action. The action a returned by the planning procedure is then evaluated
by averaging the number of points obtained by executing a 1,000 times in our curling simulator.
For each method we report the expected number of points scored for the 3,072 test states with 95%
confidence intervals of our approximations. For the location game, we used each of the trained
generators to produce actions for 510 test states and selected the generated action that achieved the
highest utility. This is achieved by computing the utility for each generated action and is the same
as applying a sample-bases planner as there is no stochasticity in this domain. We then calculate
the expected utility achieved by each generator over all states. We first discuss the results of our
experiments in curling and then we follow with a discussion on our experiments in the location game.
In addition, further results are provided in the Appendix B that show optimizing for marginal utility
encourages diversity in the candidate actions produced by generators.

6.1 Results in a Continuous Setting

Figure 1: Expected points with UCB on actions
produced by the generators in curling.

Figure 1 shows the expected points (y-axis) of
an action generator trained by optimizing uMU,
of hand-crafted action generators [18] (Bots A,
B, and C), and of the generator derived from
Lee et. al’s policy [9] (Policy). The shaded
regions and error bars denote the 95% confi-
dence intervals. We vary the number of actions
generated for planning (x-axis) from 1 to 32.
The number of actions produced by the hand-
crafted approaches vary from state to state, but
it is fixed for a given state. We show a single
point in the plot for Bots A, B, and C, where
the number of actions is the average number of
actions generated by the bots over all test states.
Marginal utility approach significantly outper-
forms all methods when used with UCB. Most
notably, UCB performs drastically better when
using a much smaller set of generated actions from marginal utility than from the policy. The marginal
utility objective results in an expected gain of over 0.15 points per hammer state over the previous
policy methods. As noted by Yee et. al [18], this can lead to over a full point increase in score in a
standard 10-end game of curling, and a significant increase in the likelihood of winning the game.
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(a) UCB (b) KR-UCB

Figure 2: Performance of search using candidate actions produced by the different models in curling.

Figures 2a and 2b plots the expected points of the generators trained on different objectives (uMU,
uMAX, uSOFTMAX, uSUM) using UCB and KR-UCB respectively. The shaded regions denote the 95%
confidence intervals. Both search methods were run for a total of 1,024 sample iterations and
evaluated after iterations 16, 32, 64, 128, 256, 512, and 1,024. All generators were trained to produce
32 actions. The figures show the expected number of points (y-axis) and the number of search samples
(x-axis) for UCB using action generators trained while optimizing for different objective functions.
Both planners initialized with actions from the marginal utility model significantly outperforms
planning with other generators. In particular, these results support our hypothesis that uMU yields an
optimization landscape that is easier to optimize than uMAX. Additionally, while KR-UCB improves
upon the actions generated by all the models, marginal utility still has considerably better performance
over the other generators at smaller search budgets. The actions generated by marginal utility are
likely in close proximity in the action space to high-valued actions, thus allowing KR-UCT to find
good actions even with a small number of samples.

6.2 Results in a Discrete Setting

Figure 3: Expected utility of different action gen-
erators in the location game.

Figure 3 plots expected utility of the actions
selected using the generators trained using dif-
ferent objectives where higher utility signifies
better performance. The lines at the top of the
bars denote the 95% confidence intervals and
the dotted line marks the average optimal utility
over all states. In the discrete domain, the gener-
ators trained with uMU and uMAX perform equally
well and the actions generated by these achieve
a significantly higher utility than the actions of
the other generators. This supports one of our
key claims that to generate actions for planning,
training a policy is not a suitable objective. Fur-
thermore, when the optimization problem is not
difficult, training either objective (uMU or uMAX)
can lead to good candidate generation.

7 Conclusion

We presented a novel approach to training a candidate action generator for sample-based planning.
We described how the commonly used policy-based method tries to optimize an objective that is less
suited for learning actions to be candidates in planning. We proposed a method that directly tries
to optimize the planner’s objective of finding maximally-valued actions. We derived an intuitive
reformulation of this objective, based on marginal utility, that is more conducive to optimization We
showed in a location game and in the olympic sport of curling that learning systems optimizing for
marginal utilities produce better search candidate actions than policy-based methods, other natural
objective functions, and hand-tailored action candidates
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[18] T. Yee, V. Lisỳ, and M. H. Bowling. Monte-Carlo tree search in continuous action spaces with

execution uncertainty. In IJCAI, pages 690–697, 2016.

9



A Proof of Theorem 1

Theorem 2 For a generator gθ(s) producing a set of policies over actions {πθ1 , . . . , πθm}, let

˜∇θuMU(gθ|s) ≡ ∇θ log πθ1(ã1|s)Q(s, ã1) +

m∑
i=2

∇θ log πθi (ãi|s)
(
Q(s, ãi)−max

j<i
Q(s, ãj)

)+

,

(11)
where ãi is an action sampled from policy πθi . Then, E

[
˜∇θuMU(gθ|s)

]
= ∇θuMU(gθ|s).

In order to understand the sampled gradient update we need to understand how expectations interact
with stop gradients (⊥).

Remark 1 We can use iterated expectation to remove the stop-gradient in a partial derivative.

∇θE[fθ(⊥(Xθ))] = ∇θE[E[fθ(⊥(X))|X = Xθ]]

= E[∇θE[fθ(⊥(X))|X = Xθ]]

= E[∇θE[fθ(X)|X = Xθ]]

= E[E[∇θfθ(X)|X = Xθ]]

We can now present the proof that the sampled gradient is unbiased.

Proof of Theorem 1. We begin by applying Remark 1 to the unsampled gradient.

∇θuMU(gθ|s) = ∇θE

[
Q(s, a1) +

m∑
i=1

(
Q(s, ai)−⊥

(
max
j<i

Q(s, aj)

))+
]

= ∇θE [Q(s, a1)] +

m∑
i=2

∇θE

[(
Q(s, ai)−⊥

(
max
j<i

Q(s, aj)

))+
]

= ∇θE [Q(s, a1)] +

m∑
i=2

∇θE

[
E

[(
Q(s, ai)−⊥

(
max
j<i

Q(s, aj)

))+∣∣∣∣ai,...,i−1
]]

= ∇θE [Q(s, a1)] +

m∑
i=2

E

[
∇θE

[(
Q(s, ai)−

(
max
j<i

Q(s, aj)

))+∣∣∣∣ai,...,i−1
]]

Let us now look at our expected sampled gradient.

E
[
∇θ ˜uMU(gθ|s)

]
≡ E

[
∇θ log πθ1(ã1|s)Q(s, ã1) +

m∑
i=2

∇θ log πθi (ãi|s)
(
Q(s, ãi)−max

j<i
Q(s, ãj)

)+
]

= E
[
∇θ log πθ1(ã1|s)Q(s, ã1)

]
+

m∑
i=2

E

[
∇θ log πθi (ãi|s)

(
Q(s, ãi)−max

j<i
Q(s, ãj)

)+
]

=
∑
a1

πθ1(a1|s)∇θ log πθ1(a1|s)Q(s, a1)

+

m∑
i=2

∑
a1,...,ai

∏
j<i

πθj (aj |s)

πθi (ai|s)∇θ log πθi (ai|s)
(
Q(s, ai)−max

j<i
Q(s, aj)

)+

10



Using the log-trick, we know∇θπθi (ai|s) = πθi (ai|s)∇θπ
θ
i (ai|s)

πθi (ai|s)
= πθi (ai|s)∇θ log πθi (ai|s). Substi-

tuting, we get,

=
∑
a1

∇θπθ1(a1|s)Q(s, a1)

+

m∑
i=2

∑
a1,...,ai

∏
j<i

πθj (aj |s)

∇θπθi (ai|s)
(
Q(s, ai)−max

j<i
Q(s, aj)

)+

= ∇θ
∑
a1

πθ1(a1|s)Q(s, a1)

+

m∑
i=2

∑
a1,...,ai−1

∏
j<i

πθj (aj |s)

∇θ∑
ai

πθi (ai|s)
(
Q(s, ai)−max

j<i
Q(s, aj)

)+

= ∇θE [Q(s, a1)]

+

m∑
i=2

∑
a1,...,ai−1

∏
j<i

πθj (aj |s)

∇θE[(Q(s, ai)−max
j<i

Q(s, aj)

)+∣∣∣∣a1...i−1
]

= ∇θE [Q(s, a1)] +

m∑
i=2

E

[
∇θE

[(
Q(s, ai)−max

j<i
Q(s, aj)

)+∣∣∣∣a1...i−1
]]

= ∇θuMU(gθ|s).

B Diversity of Generated Continuous Actions

(a) uMU (b) Policy (c) uMAX

Figure 4: Coverage of actions generated by methods trained on different objectives.

To further understand the behavior of the models, we can examine the ‘coverage’ of the actions
produced by the generators over the 2-dimensional action space (Figure 4). We define coverage as
the region of the action space in which a particular action is generated. Each subplot illustrates the
coverage of actions generated by a model. To produce these plots, we calculated the densities over
the locations of each action over all test cases. The area covered by a particular action is illustrated as
a shaded region where darker regions are areas in which an action is more likely to be generated.

Figure 4a plots the coverage of the action candidates produced by the marginal utility model over all
test cases. For uMU different actions cover separate regions in the space, i.e., the candidates generated
by marginal utilities are diverse. This contrasts with the actions generated by the policy (Figure 4b),
which are all concentrated in one region of the action space; if one needs to find an action a outside
this region of the action space, it is unlikely the actions generated by the policy will be near a. Search
algorithms such as UCB will not find a as UCB is restricted to searching amongst the initial set of
generated actions. KR-UCB might find and return a, but it can require a large number of samples to
find a.
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As observed in Figure 4c the model trained while optimizing for uMAX produces a diverse set of
candidate actions. However, likely due to the low density of gradients for uMAX, the actions produced
are specialized in the sense that they cover a small portion of the space. The diversity of actions
generated by MAX can be helpful as they provide a diverse set of starting points for KR-UCB but
could fail to generate a good set of actions for search algorithms such as UCB.
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