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Strategy Generation for Multiunit Real-Time
Games via Voting

Cleyton Silva , Rubens O. Moraes , Levi H. S. Lelis , and Kobi Gal

Abstract—Real-time strategy (RTS) games are a challenging ap-
plication for artificial intelligence (AI) methods. This is because
they involve simultaneous play and adversarial reasoning that is
conducted in real time in large state spaces. Many AI methods for
playing RTS games rely on hard-coded strategies designed by hu-
man experts. The drawback of using such strategies is that they
are often unable to adapt to new scenarios during gameplay. The
contribution of this paper is a new approach, called strategy cre-
ation via voting (SCV), that uses a voting method to generate a
large set of novel strategies from existing expert-based ones. Then,
SCV uses an opponent modeling scheme during the game to choose
which strategy from the generated pool of possibilities to use. By
repeatedly choosing which strategy to use, SCV is able to adapt to
different scenarios that might arise during the game. We imple-
mented SCV as a bot for µRTS, a recognized RTS testbed. The
results of a detailed empirical study show that SCV outperforms
all approaches tested in matches played on large maps and is com-
petitive in matches played on smaller maps.

Index Terms—Artificial intelligence, computational intelligence,
multiagent systems, machine learning algorithms.

I. INTRODUCTION

R EAL-TIME strategy (RTS) games require players to rea-
son in real-time in adversarial scenarios with simultane-

ous moves and large state spaces [1]. In RTS games the players
control units to gather resources, build structures, and battle
the opponent. The RTS games we consider can be cast as two-
player zero-sum simultaneous-move games, thus, they represent
a general class of research scenarios. Also, we focus on games
in which there is no fog of war, the only source of imperfect
information comes from the simultaneous moves.

RTS typically involve a large action space, which grows ex-
ponentially with the number of units controlled by the player,
making it challenging to generate strategies in the game without
some form of human intervention. The state of the art typically
relies on expert-designed hard-coded strategies [1]. Such strate-
gies can include high-level rules such as “if controlling at least 5
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combat units, then attack the opponent” and low-level rules such
as “do not cause more damage than the necessary to eliminate
an enemy unit from the game” to define the actions of all units
at any game state. In some cases, the expert strategies are used
as a basis for developing novel strategies. For example, Puppet
Search (PS) [2] is a method that searches over the parameter
space of rules (e.g., the number of units required to attack the
opponent in our example) instead of the much larger original
action space.

The problem of approaches that rely on hard-coded strate-
gies is that they are predictable, and thus, exploitable by the
opponent. Even methods that use search to alter the parameters
of a hard-coded strategy such as PS might be exploitable as
the rules comprising the strategies do not change, but only the
parameters.

The main contribution of this paper is a system called strategy
creation via voting (SCV). There are two main steps to SCV.
In its first step, SCV generates a large number of strategies
from a small pool of existing hard-coded ones. That is, for a
given set of existing strategies ΣI , our voting method is able
to generate a strategy for each subset in the power set of ΣI .
Our voting scheme defines a strategy from a subset S of ΣI by
defining the action of each unit according to the majority of the
strategies in S. As a result, each unit might behave according
to a different strategy in the subset, thus, allowing novel and
effective strategies to emerge.

The second step of SCV is a strategy selection step to choose,
which strategy to use during game play. This is achieved by
defining a set of opponent types and using supervised learning to
infer the opponent type during the match. For a given predicted
opponent ot , SCV chooses a strategy that maximizes the player’s
utility against ot . SCV adapts to the opponent’s behavior by
repeatedly choosing which strategy to use next from a large
pool of them.

Combining strategy generation with strategy selection during
game play allows SCV to adapt to its opponent strategies over
time and to avoid being exploited. For example, SCV can use a
strategy that requires the player to collect a substantial amount
of resources in order to expand its base to a different location on
the game’s map. Suppose then that SCV infers during the game
that the opponent is preparing an attack to the player’s current
base. SCV’s strategy selection scheme allows the algorithm to
switch to a strategy that counteracts the opponent’s plans. In this
case, instead of expanding its base, SCV can choose to build up
its defenses, bracing for the incoming attack. This change in
strategy is only possible because SCV is able to generate a
large and diverse pool of strategies, even when the initial set of
strategies is small.
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We evaluate SCV with an extensive empirical analysis on
μRTS, an RTS game used in artificial intelligence (AI) compe-
titions. The results show that SCV outperforms expert-based
strategies and state-of-the-art methods in matches played in
large maps and is competitive in matches played in smaller maps.
We also show that SCV requires considerably less computation
time than competing schemes. We then present a variant of SCV
that uses the remaining time allowed for planning to refine its
strategy with heuristic search.

Our approach provides insights for practitioners interested in
other multiunit domains. In principle, our voting scheme can
be applied to any problem domain in which one controls a
group of units (e.g., robots) to jointly solve a task. SCV can be
particularly useful in domains for which it is time consuming
to obtain expert-designed strategies as our voting method can
be an effective alternative to generate a large set of effective
strategies from a small set of existing ones.

II. RELATED WORK

This paper relates to two separate lines of research: strategy
design for adversarial games and strategy selection methods.

Heuristic search is a common approach to strategy design in
RTS games. Algorithm such as variations of Alpha Beta [3],
[4] and Monte-Carlo tree search [5], [6] are able to adapt to the
opponent’s strategy during game play. The problem of search-
based strategies is that they do not scale to large games as the
branching factor of RTS games grows exponentially with the
number of units controlled. For example, while Ontañón [6]
uses maps with 8 × 8 and 12 × 12 grid cells to test a search-
based approach. In this paper, we use maps as small as 8 × 8
and as large as 128 × 128 in our experiments.

Search-based approaches tend to be more effective if com-
bined with hard-coded strategies. For example, PS [2] defines a
search space over the parameter values of a hard-coded strategy.
PS adapts to some extent to the opponent’s strategy during the
game. However, since PS changes only the parameter values, it
is unable to encounter strategies that are fundamentally different
from the hard-coded strategy provided as input. Similarly to PS,
strategy tactics (STT) [7] also searches in the space of parame-
ter values of a hard-coded strategy. However, STT balances the
search over the space of parameters with a search in the actual
state-space through the NaiveMCTS search method [6]. Our
work differs from these algorithms in that our voting method is
able to generate strategies that can be fundamentally different
from the hard-coded strategies provided as input. That is, our
voting scheme can change not only the parameters used in the
rules, but also combine rules from different strategies to form
novel ones.

Another line of research focuses on combat scenarios that
arise in RTS games. These works have used either learning
algorithms [8], [9] or heuristic search and genetic algorithms [5],
[10]–[13]. These works differ from ours since they focus on
a particular aspect of the game, which are the combats. By
contrast, the methods we consider in this paper were designed
to play the entire RTS game.

Our work is inspired by Marcolino et al. [14], which use a
voting scheme to play the game of go. Their system accounts
for a set of strategies that vote to decide the player’s action. By
contrast, we use a voting scheme to decide the action of each

unit controlled by the player. Our voting scheme exploits the
multiunit structure of the game to generate a large pool of novel
strategies. Both our work and Marcolino et al.’s are inspired by
the “wisdom of the crowds” idea [15], which suggests that com-
bining and aggregating information from groups may increase
the quality of the solution as compared to each of the individual
solutions.

Our approach relates to works in AI using machine learn-
ing to choose among several candidate algorithms for solving
optimization problems. We mention some notable examples, re-
ferring the reader to a survey by Kotthoff et al. [16] for further
discussion. Xu et al. [17] builds models for predicting the run-
ning time of heuristic solvers for SAT problems that are based
on linear regression models. Guerri and Milano [18] used a deci-
sion tree to choose among several possible algorithms for deter-
mining the winner in combinatorial auctions. Other works used
reinforcement learning and classification techniques to choose
the branching rule to use when solving SAT problems [19] or to
switch during the search between different heuristics for solving
quantified Boolean formulas [20]. The focus of all of these works
is optimization problems with no domain uncertainty. Our set-
ting differs due to the inherently different nature of a multiagent
setting in which players outcomes depends on the strategies of
others. Ilany and Gal [21] used an algorithm selection approach
for determining negotiation strategies, but they did not consider
simultaneous games, and assumed a sufficiently large set of ex-
isting strategies. Finally, Aha et al. [22] used cases to map states
to strategies in an RTS game. Our approach is similar to Aha
et al.’s as it selects a strategy to counteract the strategy it predicts
the opponent to be following.

III. PRELIMINARIES

An RTS match can be described as a finite zero-sum
two-player simultaneous move game, and be denoted as
(N ,S, sinit ,A,R, T ), where we have the following.

1) N = {i,−i} is the set of players.
2) S = D ∪ F is the set of states, whereD denotes the set of

nonterminal states andF the set of terminal states. Every
state s ∈ S includes the joint set of units U s = U s

i ∪ U s
−i ,

for players i and −i, respectively. We write U , Ui , and
U−i instead of U s , U s

i , and U s
−i whenever the state is clear

from the context.
3) sinit ∈ D is the start state of a match.
4) A = Ai ×A−i is the set of joint actions. Ai(s) is the

set of legal player actions i can perform at state s. Each
action a ∈ Ai(s) is denoted by a vector of n unit actions
(m1 , . . . ,mn ), where mk ∈ a is the action of the kth
ready unit of player i.1 A unit u is not ready at s if u is
performing an action. We denote the set of ready units of
players i and −i as U r

i and U r
−i . For unit u, we write a[u]

to denote the action of u in a.
5) Ri : F → R is a utility function withRi(s) = −R−i(s),

for any s ∈ F , as matches are zero-sum games.
6) T : S ×Ai ×A−i → S is the transition function, which

determines the sucessor of a state s for a set of joint actions
taken at s.

1We write “action” instead of “player action” or “unit action” whenever it is
clear from the context that we are referring to an action of a player or unit.
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Fig. 1. A μRTS state of a game being played on a 8 × 8 map.

A decision point of player i is a state s in which i has at least
one ready unit. A pure strategy is a function σ : S → Ai for
player i mapping a state s to an action a. Although in general
one might have to play a mixed strategy to optimize the player’s
payoffs in simultaneous move games [23], we follow current
state-of-the-art RTS methods and consider only pure strategies
in this paper [2], [3], [5], [11], [12].

IV. THE μRTS DOMAIN

In this section, we detail μRTS, an RTS game developed for
research purposes that is actively used as a competition testbed
for evaluating and comparing state-of-the-art approaches [6],
[24].2 Fig. 1 shows a screenshot of a μRTS match played on
a 8 × 8 grid map. Each player is given a color (blue or red);
units are presented as circles and squares with a contour color
of the associated player. The contour of units in Fig. 1 were
emphasized to facilitate visualization.

a) Unit types: μRTS has the following types of units: work-
ers, light units, ranged units, heavy units, base, and barracks.
The units that can move and attack are represented by a circle,
the other units are represented by a square. Small dark-gray cir-
cles represent workers, large yellow circles heavy units, small
light-blue circles ranged units, and small orange circles light
units. Light-gray squares represent bases (the number in the
base shows the amount of resources available to the player).
The dark-gray squares represent barracks.

b) Map layout: The dark-green squares on the map are
walls that cannot be traversed by units. Light-green squares are
resources that can be collected by workers (the amount of re-
sources that can be collected is displayed in the square). The
layout of walls on the map might influence the strategies cho-
sen by the players. For example, players can choose to build
their structures where they are surrounded by walls as a way of
protecting their base against attacks of the opponent.

2https://github.com/santiontanon/microrts/wiki

c) Hit points: Every unit has an amount of hit points that
indicates the amount of damage the unit can suffer before being
eliminated from the game. Workers and ranged units have fewer
hit points than light and heavy units, and barracks. The base has
more hit points than any other unit. Some of the units can attack
an enemy unit. If unit u attacks enemy unit u′, then u reduces
the hit points of u′ according to its inflicted damage, which is
determined by the unit’s type. Workers and ranged units cause
the least amount of damage, light and heavy units cause more
damage per attack. Workers, light, and heavy units u can only
attack enemy units that are in cells orthogonally adjacent to
the grid cell u occupies. Ranged units u can attack any enemy
unit that is at an Euclidean distance of three grid cells or less
from u.

d) Action scheme: We refer to game cycles as the smallest unit
of time in the game. RTS games typically have from ten to 50
game cycles per second [6]. Most of the unit actions require ten
game cycles to be executed, but some of the unit actions (e.g.,
build a base) take much more than ten game cycles to complete
(i.e., actions have different durations). Any unit can take a no-op
action, which means that the unit waits until the next game cycle.
All units other than base and barracks can move one grid cell
at a time (up, down, left, and right). Only one unit can occupy
a given grid cell at a time. If two units move simultaneously to
the same grid cell, then the game server overwrites their actions
with the no-op action.

e) Collecting and spending resources: Bases and barracks
cannot move nor attack, but the former can train workers and
the latter can train light, heavy, and ranged units—all at a cost
of resources. Workers can build bases and barracks at the cost
of resources. Workers can also collect resources (one unit of
resource at a time). Once collected, the resource must be deliv-
ered to the base by the worker. Once the collected resource is
delivered at the player’s base, it can be spent to train other units
or build bases and barracks.

f) Utility function: The game uses a utility function introduced
by Ontañón [6], which we refer as Ψ in this paper. Ψ computes
a score for each player—score(i) and score(−i)—by summing
up the cost in resources required to train each unit controlled by
the player weighted by the square root of the unit’s hit points.
The Ψ value of a state is given by player i’s score minus player
−i’s score. The Ψ value is then normalized to a value in [−1, 1]
through the following formula 2∗score(i)

score(−i)+score(i) − 1.

V. HARD-CODED STRATEGIES

Hard-coded strategies for RTS games are represented as rules
that are created by domain experts. The state-of-the-art in RTS
games have incorporated expert strategies, whether to play ef-
fectively against an opponent, or to use as starting points in a
search for good strategies [1], [25]. As an example of a hard-
coded strategy, Algorithm 1 describes the strategy known as
the worker rush (WR),3 which receives as input a state s and
returns a vector a containing an action for each ready unit. The
strategy consists of building a base (if the player does not start
with one) and allocating one worker to collect resources. WR
constantly trains workers (line 5) and sends them to attack the

3WR was implemented by S. Ontañón and is available in μRTS codebase.
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Algorithm 1: Worker Rush.
Require: a state s with set of ready units U r

i and U r
−i .

Ensure: an action vector a for player i.
1: initialize all positions of a with no-op
2: for each u ∈ U r

i do
3: if u is a Base then
4: if player i has resources to train a Worker then
5: a[u]← train a Worker
6: else if u is a Worker then
7: if i has no Base and has resources to build a Base

then
8: a[u]← build a Base
9: else if i has no Worker harvesting resources then

10: a[u]← harvest resources
11: else
12: a[u]← attack enemy closest to u
13: else if u is able to move and attack then
14: a[u]← attack enemy closest to u
15: return a

enemy (line 12). That is, every worker u will attack its closest
enemy e. If there is no enemy within u’s attack range, the attack
action for u means that u will move toward the closest enemy
unit hoping that it will be able to attack in the next decision
point. WR assigns an attack-the-closest-enemy action to every
unit that is able to move and attack and is not a worker (see
line 1). It is useful to be able to control such units as sinit might
contain units which are not trained by the strategy. WR returns
the special no-op action for barracks as it initializes all actions
in vector a with no-op (see line 1) and it does not alter the action
for barracks.

A major drawback of hard-coded strategies is that they are
often unable to adapt to the opponent’s strategy. For example,
WR sends workers to attack the enemy even if they do not stand
a chance against the opponent’s defense.

VI. SCV ALGORITHM

We mitigate the lack of adaptability of hard-coded strategies
with an algorithm we call SCV. SCV is composed of two steps.
In the first step, SCV generates a large pool of strategies from an
initial set of hard-coded ones via voting (Section VI-A). In the
second step, SCV selects during the match, depending on the
opponent’s behavior, which strategy to use next (Section VI-B).
In Section VI-C, we show how to combine the two steps into
the overall SCV.

A. Strategy Creation via Voting

In this section, we describe SCV’s voting method, which
receives as input a (possibly small) pool ΣI of strategies and
outputs a large set of strategies Σ. Let 2ΣI be the power set
of the strategies in ΣI . For each subset S in 2ΣI the voting
approach generates a new strategy σ. We generate σ from a
subset of strategies S by using a majority voting method. That
is, each ready unit u in the current state of the game is assigned
the action a that receives the majority of the votes for u in
subset S. The rationale behind this scheme is the possibility of

creating novel strategies without additional expert knowledge
by combining existing ones. Consider the following illustrative
example of how our voting scheme generates novel strategies.

Example 6.1: Let S = {σ1 , σ2 , σ3} be a set of strategies and
σ be the strategy generated via voting with S. Here, σ1 trains
workers and sends them to attack. σ2 allocates a worker to build a
barracks and then to collect resources. The barracks is then used
to train light units. Similarly to what σ1 does with its workers,
σ2 sends light units to attack the enemy as soon as they are
trained. σ3 also builds a barracks and allocates a single worker
to collect resources. However, σ3 trains ranged units instead of
light units. Moreover, the ranged units are positioned around
the base, forming a defense line. Depending on its tie-breaking
rule, our voting scheme generates through S a novel strategy
σ, which trains ranged units which are sent to attack the enemy
as soon as they are created. σ emerges because the actions of
the base is determined by the majority of the strategies: σ2 and
σ3 , which is to train a single worker; the action of the worker is
also determined by σ2 and σ3 , which is to first build a barracks
and then collect resources. There is a draw in the voting of the
action of the barracks: σ1 votes for the no-op action, σ2 votes for
training a light unit, and σ3 votes for training a ranged unit. If the
draw is broken in favor of σ3 , then the barracks would produce
a ranged unit whenever possible. The action of the ranged units
is determined by σ1 and σ2 , which is to attack the enemy.

We always break ties by favoring the strategy that comes first
in a total ordering of the strategies in S. The total ordering we
consider is arbitrary. Although one could use several orderings
to obtain an even larger pool of novel strategies, in this paper, we
consider a single ordering and show that this approach already
generates a large set of useful strategies.

SCV assumes that the strategies in ΣI follow the same pro-
cedure for selecting workers to build structures. For example,
if ΣI = {σ1 , σ2 , σ3} σ1 , and σ2 issue the action “build struc-
ture A at position x and y” to two different workers, then the
action can be outvoted, despite the majority of the strategies in
ΣI issuing the same build action. SCV also assumes that the
strategies in ΣI choose the same location in which structures
are built. For example, if σ1 issue the action “build A at posi-
tion x1 and y1” and σ2 issue the action “build A at position x2
and y2” to the same worker, then the action can be outvoted if
(x1 , y1) �= (x2 , y2), despite the majority of the strategies in ΣI

issuing an action to build A.
SCV requires a minimal size of 3 strategies in S to generate a

strategy that is different than the strategies in S. If S contains a
single strategy, then the strategy generated through voting will
trivially be equal to the strategy in S. If S = {σ1 , σ2} with the
total ordering defining that σ1 is preferred over σ2 , then for
every unit u in a given state s, σ1 , and σ2 will either agree or
disagree with respect to u’s action at s. If they agree, then the
resulting strategy will be equal to σ1 and σ2 . If they disagree,
the tie will be broken in favor of σ1 and the strategy output
by voting will be equal to σ1 . Thus, SCV considers only the
strategies generated from subsets with size in [3, |ΣI |].

We further reduce the number of subsets used by considering
subsets of size [3, N ] with N < |ΣI |. This is because the time
required for training a system that uses the strategies generated
with our voting scheme increases with the number of strategies
generated (as we explain in Section VI-B), and the parameter
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N allows one to control the number of strategies generated.
Moreover, we prefer to generate strategies from smaller rather
than larger subsets because the running time of a voting-based
strategy depends on the size of the subset used to generate the
strategy. Even simple strategies such as WR runs shortest path
algorithms such as A* [26] (e.g., to find the closest enemy unit),
which can use a substantial portion of the time allowed for
planning, depending on the state. We show in our experiments
with μRTS that N = 4 allows one to generate effective strategies
that use only a small fraction of the time allowed for planning
for most of the decision points.

We denote as SN the set of all subsets of ΣI with size [3, N ]
and as ΣN the strategies generated via voting from the subsets
in SN . Finally, we denote Σ = ΣN ∪ ΣI .

B. Strategy Selection

In order to adapt to different scenarios that occur during the
game, SCV uses a strategy selection scheme to choose during
the match, which strategy from Σ one should use next. Our
strategy selection algorithm accounts for the units the opponent
currently controls as well as the layout of the map in which
the match takes place. We assume a group of n opponent types
O = {o1 , o2 , . . . , on} and r maps M = {m1 ,m2 , . . . , mr}.
We then play each strategy in Σ against each opponent in O in
each map in M . We store in a lookup table T the Ψ value of the
end-game state of each match played. We store one table T for
each map tested.

We used an information gain method [27] to choose which
features to use to describe the opponent. Namely, the method
chose the following features: number of workers, light, ranged
and heavy units, bases, and barracks controlled by the opponent.
We also considered other features such as the total amount of
resources in the opponent’s base, which were eliminated by the
information gain method. We record the chosen features for
every ten decision points of the game, as well as the opponent
type being played while playing all |Σ| × n× r matches. The
collected data is used to train a logistic regression model that,
given a set of opponent features, outputs a value pj between 0
and 1 to each opponent type oj such that

∑n
j=1 pj = 1. The pj

values can be interpreted as the probability of the enemy being
of type j.

As mentioned in Section IV, the layout of the map plays an
important role in the strategy used by the players during the
game. That is why in order to select a good strategy from Σ
we also account for the map layout. Although one could use
richer features, we simply account for the in-game distance, as
computed by μRTS’s pathfinding system, between the player’s
base to the opponent base. The map classifier we use is simple:
our player assumes it is playing on the training map for which
the distance of the bases is the most similar to the distance of
the bases on the map of the match in question.

Given the predicted probability distribution over opponent
types oj and the predicted map mk , SCV selects a strategy
from Σ that maximizes the player’s expected end-game Ψ value,
which is given by

arg max
σ∈Σ

n∑

j=1

pj · Tmk
(σ, oj ) . (1)

Algorithm 2: SCV Training.
Require: set of opponent types O, training maps M , basic

set of expert strategies ΣI , and maximum subset size N .
Ensure: set of strategies Σ, opponent type classifier Co , map

classifier Cm , a lookup table Tm for each map m in M .
1: SN ← all subsets with size in [3, N ] of ΣI

2: ΣN ← generate a strategy σ for each subset in SN via
voting.

3: Σ← ΣN ∪ ΣI

4: for each map m in M do
5: for each opponent type o in O do
6: for each strategy σ in Σ do
7: Tm (σ, o)← Ψ value of σ versus o in m.
8: Store opponent features Fo for every 10 decision

points of the match of σ versus o; store the
opponent type o as the label of Fo ; store the
distance of the players’ bases.

9: train a opponent classifier Co and a map classifier Cm on
the features collected.

10: return Σ, classifiers Co and Cm , and lookup tables T .

Here, Tmk
(σ, oj ) is the Ψ value of the strategy σ against oj

for the predicted map mk . Next, we describe the overall SCV
algorithm.

C. Overall SCV Algorithm

In this section, we show how to combine Algorithms 2 and
3 to form the SCV approach. We begin with SCV’s training
step (Algorithm 2), which requires as input a set of opponent
types O (each opponent type is a hard-coded strategy), training
maps M , basic strategies ΣI , and maximum size N of the
subsets composing SN . The algorithm returns a set of strategies
Σ, a classifier for opponent type Co and a classifier for maps
Cm , as well as a set of lookup tables T , one for each training
map. SCV generates one strategy for each subset of strategies
in SN via voting. We denote as ΣN the set of strategies thus
generated (line 2). We then define Σ as the union of ΣN and
ΣI (line 3). In its training step, SCV plays each strategy in Σ
against each opponent type in every training map. The result
of the matches are stored in lookup tables T (see line 2). SCV
stores in memory the opponent features Fo as well as the map
feature. After all matches are played and their Ψ values stored,
SCV trains a classifier Co for identifying opponent types as well
as a map classifier Cm . SCV returns the set Σ of vote-generated
strategies, the classifiers, and the lookup tables.

Algorithm 3 uses the components produced in Algorithm 2 to
play μRTS matches in real time. Algorithm 3 receives a state s,
classifiers Co , and Cm , window size w, time step t indicating the
decision point that s represents in the game, a default strategy
σd , the strategy σt−1 returned by SCV in the previous time step
(t− 1), the set of strategies Σ, and the lookup tables T . If s
represents a decision point that happens early in the game (i.e.,
t < w), then SCV returns the default strategy σd (line 1). The
reason SCV uses a default strategy σd in the beginning of the
game is that both players normally start the game by training
at least one worker, thus, making different opponent strategies
almost indistinguishable in the beginning of the match. After
the wth decision point, SCV starts to use its classifiers to choose
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Algorithm 3: SCV.
Require: state s, classifiers Co and Cm , window size w, time

step t, default strategy σd and strategy returned in
previous time step σt−1 , pool of strategies Σ, lookup
tables T .

Ensure: strategy from Σ.
1: if t < w then
2: return σd

3: if t mod w = 0 then
4: Tm ← Cm (s)
5: �p← Co(s)
6: return arg maxσ∈Σ

∑n
j=1 pj · Tm (σ, oj )

7: return σt−1

a strategy that maximizes the expected end-game value (line 6).
SCV classifies the opponent and map only in time steps that are
multiples of w (see line 3).

In order to choose a strategy that maximizes the expected end-
game Ψ value, SCV uses the map classifier Cm to select the most
similar map m to the map used in the match in question (line 4).
Map m indicates the lookup table Tm to be used. SCV also uses
the opponent type classifier to obtain a probability distribution
�p over the possible opponent types (line 5). Once Tm and �p
are defined, SCV returns the strategy in Σ that maximizes the
expected end-game Ψ value according to (1) (line 6). If t ≥ w
and t mod w �= 0, then SCV returns σt−1 , the strategy used in
t− 1.

As we show in Section VII, SCV often uses only a small
fraction of the time allowed for planning to choose a strategy
and then an action for the player to perform. We show that the
remaining time allowed for planning can be used to refine the
strategies generated by SCV, by introducing a variant of SCV
we call SCV+. Similarly to how STT refines its own strategy [7],
SCV+ refines a strategy selected by Algorithm 3 with a variant
of Alpha Beta called ABCD [3]. The ABCD search is performed
as follows. For every state s representing a decision point, we
verify if s includes units engaged in combat (i.e., units with
enemy units within attack range). If that is the case, then we
create a partial state of the game state that contains only the
player’s and the opponent’s units engaged in combat. We run
ABCD for this partial state for the remaining time allowed for
planning and use the actions, thus, encountered to control the
units in the partial state; all other units act according to the
strategy select by Algorithm 3 as usual. Note that this strategy
refinement step could be performed with other search algorithms
such as NaiveMCTS [6].

VII. EMPIRICAL EVALUATION

We compare SCV and SCV+ to several competing schemes:
the hard-coded strategies used to compose ΣI , a baseline we
call strategy basic selection (SBS) (Section VII-D), and state-
of-the-art methods for the game of μRTS (Section VII-F).

A. Empirical Methodology

In our experiments all actions are deterministic and both play-
ers can see all units on the map, the only source of imperfect

information comes from the simultaneous moves of the game.
The player who eliminates the enemy’s units is the winner of
the match. Each player is allowed 100 ms for planning in every
game cycle. In all experiments each algorithm plays 20 times
against every other algorithm in each map tested. To ensure fair-
ness, the players switch their starting location an even number
of times on the maps tested. For example, for a map with starting
locations A and B, Algorithm 1 starts in A with Algorithm 2
starting in B for ten matches; we then switch the starting posi-
tions for the remaining ten matches. All experiments are run on
2.6 GHz CPUs.

In order to test, if the strategies generated through our voting
scheme are effective, we compare SCV with a baseline called
SBS. The only difference between SCV and SBS is that the
former uses voting to generate a large pool strategies Σ to select
from during the match, while the latter selects strategies only
from the initial strategies ΣI . SCV and SCV+ use an arbitrary
total ordering to break the ties in the voting method.

1) Maps: We use a large diversity of maps in our ex-
periments. Namely, we use maps of size x× x with x ∈
{8, 16, 32, 64, 128}. Following the diversity of initial states used
in μRTS’s latest competition [24], we used maps in which each
player starts with 1 base and 1 worker, 1 base, 1 worker and 1
barracks, 1 base, 2 barracks and 1 worker, and 4 bases and 4
workers. Every match is limited by a number of game cycles
and the match is considered a draw once the limit is reached.
We present the number of matches won by each algorithm, the
matches finishing in draws are not accounted for in our tables
and figures of results. The maximum number of game cycles is
map dependent. We use the limits defined by Barriga et al. [2]:
3000, 4000, 5000, 6000, 8000, and 12000 game cycles for maps
of size 8, 16, 32, 64, and 128, respectively. We train the SCV
approaches and SBS on a set of maps and test them on a differ-
ent set. Namely, for training, we use three maps of size 64, eight
maps of size 128, and four maps of the remaining sizes. We use
five maps of each size for testing.

2) Basic Strategies: The set of basic strategies ΣI is com-
posed of the following eight hard-coded strategies: worker de-
fense (WD), WR, ranged defense (RD), ranged rush (RR), heavy
rush (HR), light defense (LD), light rush (LR), and military rush
(MR). These strategies are described in the appendix of this pa-
per. Since we use all combinations of subsets of size 3 and
4 in addition to the basic strategies, our set Σ has a total of(8
3

)
+

(8
4

)
+ 8 = 134 strategies. We used the following hard-

coded strategies as opponent types in our experiment: WR, LR,
RR, HR, and MR. These strategies cover several styles of play
that arise in the μRTS game. The default strategy for each map
is determined by the strategy that obtained the largest average
Ψ value during training.

As an example of the training running time, each match on
a 128 × 128 map lasts for approximately 12 min, thus, it takes
approximately 134× 5× 8× 12 = 64 320 min of CPU time
to run SCV training step while considering the 134 strategies,
five opponent types, and eight training maps. Although time
consuming, this step is highly parallelizable as all the 134×
5× 8 = 5360 matches can be run in parallel.

3) Competing Schemes: We test SCV against the following
state-of-the-art methods: Adversarial hierarchical task network
(AHT) [28], an algorithm that uses Monte Carlo tree search
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Fig. 2. Comparison of SBS and SCV with various w values. The maximum
number of wins is 1 440.

and HTN planning; NaiveMCTS [6] (henceforth referred as
Naı̈ve), an algorithm based on combinatorial multiarmed bandit
algorithms; an extension of Monte Carlo algorithms for dealing
with partial observability called BS3 [29]; the MCTS version
of PS and STT mentioned in Section II. All approaches except
STT are used in their default settings, as provided in μRTS’s
codebase. STT is used as provided in STT’s codebase.4

B. Evaluation of Logistic Regression

The logistic regression obtained a 90.83% accuracy in a 10-
fold cross validation over our training data. The training data
is composed of data collected from 134× 2× 5× 23 = 30 820
matches (134 strategies playing twice each of the five opponent
types on the 23 training maps); we play each strategy twice
against each opponent type on each map because we switch
the starting location of the players to ensure fairness. Since the
number of opponent types is five, a random classifier is expected
to be 20% accurate on average, which suggests that our system
is able to accurately detect the opponent type.

C. Evaluation of Window Size

We start our study by testing both SBS and SCV with different
window sizes. In theory, search-based algorithms such as AHT,
Naı̈ve, BS3, PS, and STT can adapt themselves during gameplay
to the strategy being used by their opponent. The window size
w gives SBS and SCV similar capability. In every w decision
points SBS and SCV can reassess their strategy and possibly
switch to a different one.

We test SBS and SCV with various window sizes on the
maps used for training. The y-axis in Fig. 2 denotes the total
number of wins of each approach. The x-axis denotes the differ-
ent approaches, where SBS(10) and SCV(10) denote SBS and
SCV with w = 10. The method that performs best is SCV(50),
which wins approximately 1300 matches against the different
versions of SBS and SCV. The method that performed worst
was SCV(1), which wins approximately 400 matches against
the other versions SCV and SBS.

Different w values do not affect much the number of wins
of SBS—all SBS variants win approximately 700 matches. By

4https://github.com/nbarriga/microRTSbot

contrast, there is a large difference in the number of wins of
SCV for different values of w. This is because SCV’s voting
scheme generates strategies that are more effective than others
depending on the game scenario. In contrast with SBS, SCV
does not have a dominant strategy in its pool of options and it
often chooses to switch strategies.

The result for SCV(1) contrasts with the intuition that re-
assessing, which strategy to use in every decision point of the
game is more advantageous to SCV as a frequent verification
scheme should allow the algorithm to adapt its strategies accord-
ing to the opponent’s behavior in a timely manner. A possible
explanation for this result is the fact that we use an accurate but
imperfect classifier, thus, posing a tradeoff between strategy se-
lection accuracy and strategy adaptability. Calling the classifier
more often (smaller w values) increases the chances of incor-
rectly classifying the opponent type at least once during a match,
which can reduce a player’s chances of winning the match. This
is because classification mistakes of the opponent type could
make SCV switch back and forth between competing objec-
tives, thus, making the SCV’s overall strategy less effective. For
example, if a player wrongfully chooses to build an extra bar-
racks instead of training heavy units, this decision can reduce
the chances of the player winning the match as the resources
that should have been spent training units was spent building
an extra barracks. On the other hand, for larger w values, the
classifier is called less often and SCV has a smaller chance of
incorrectly identifying the opponent type at least once, but it
also has fewer opportunities to adapt to the opponent’s strategy
or to recover from early misclassifications. Our results show
w = 50 offers a good balance between selection accuracy and
strategy adaptability.

Another possible reason for SCV(1) performing poorly is
the training data including only Ψ values of matches played
between a strategy and an opponent for the entire match. That
is, the training data does not account for scenarios in which one
switches strategies during the match. As an example of how
this can be a problem, SCV might start following RD, which
requires the player to train ranged units and place them around
the base. The classifier might eventually detect that the opponent
is following a strategy σ that is effective against RD and that
HR is the best strategy against σ. What SCV knows is that HR
is effective against σ if played from the beginning to the end of
the match. SCV uses this knowledge as an approximation for
how well HR will behave after the match is played for a number
of time steps with RD. SCV with smaller w values will be more
affected by the errors of such approximations as it considers
switching strategies more often than SCV with larger w values.
In order to deal with this problem we would have to account for
strategy transitions during training, which would substantially
increase the computational cost of SCV’s training step.

We use SBS(150) and SCV(50) in all other experiments of this
paper, as these are the w-values that the algorithms performed
best in the training maps.

D. SCV versus Basic Strategies

Once we have defined that SBS performs best with w = 150
and SCV with w = 50, we compare them with the basic strate-
gies in ΣI . Fig. 3 shows the winning rate on the test maps.
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Fig. 3. SBS and SCV against the basic strategies.

Fig. 4. Average running time in milliseconds of several approaches.

Overall SCV has a much larger winning rate than SBS and the
other strategies. However, depending on the map size, some of
the strategies from ΣI present a large winning rate. For example,
WR is competitive with SCV in maps of size 24× 24 and LR is
the best performing strategy in maps of size 16 × 16. We also
observed that, for maps of size 128 × 128, MR is a dominant
strategy in ΣI and SBS almost always plays according to MR.
This explains why the numbers of both MR and SBS are very
similar for maps of that size. By contrast, SCV does not have a
dominant strategy and is able to adapt to different scenarios that
arise during the matches. These results suggest that SCV’s vot-
ing scheme is able to successfully generate effective strategies
by combining the basic strategies from ΣI .

E. Evaluation of Running Time

We compare the running time of the algorithms used in our
comparison of SCV and SCV+ with other approaches in all
training maps. The average running time per game cycle in
milliseconds and the standard deviations are shown in Fig. 4.
In this comparison, we only account for SCV’s and SCV+’s
running time during the game. This is because, we assume that
the training time is amortized over a large number of matches.
Both SBS and SCV use a much smaller fraction of the time
allowed for planning than the other approaches tested. SCV+ is
5.8 times slower than SCV, but it still does not use all the time

available for planning, as in many decision points no units are
engaged in combat and the SCV approaches are only invoked
in game cycles with ready units.

F. SCV Versus State-of-the-Art Methods

In this section, we evaluate SCV and SCV+ against current
state-of-the-art methods for μRTS. Table I presents the number
of wins of the row player against the column player. Since there
are five test maps and every method plays against each other
20 times in every map, the maximum number of wins is 100.
We highlight the cells in which a method wins more matches
than another. For example, in maps of size 8× 8 SCV+ wins 65
and loses 34 matches against Naı̈ve, thus, we highlight the cell
containing the number 65. We also highlight the cell with the
largest number of total victories for a given map size.

SCV+ is only outperformed in terms of total number of vi-
tories by STT in maps of size 16 × 16. Nonetheless, SCV+
has more victories against STT in matches played in maps of
that size. Namely, SCV+ won 53 and lost 46 matches against
STT. STT outperforms SCV+ in maps of size 24 × 24 and 32
× 32. As one increases the map size, the strategies encountered
through SCV’s voting system seem to be more effective than
STT’s strategies. This is because in maps of size 128 × 128
SCV+ defeated STT in 89 matches and lost only in one match.

SCV+ outperforms SCV and SBS in all settings tested, sug-
gesting that both the set of strategies generated via voting and
the heuristic search approach to refine the selected strategy con-
tribute to improve the system’s overall performance.

The methods that do not use hard-coded strategies perform
poorly in larger maps. That is, Naı̈ve, BS3, and AHT lost all
their matches against the methods that rely on hard-coded strate-
gies (STT, PS, SBS, SCV, and SCV+) in maps of size 128 ×
128. Naı̈ve and BS3 perform so poorly in maps of that size that
they draw all matches they play against themselves as they are
unable to encounter each other on the map and all matches fin-
ish by reaching the 1200th game cycle. Expert-based strategies
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TABLE I
SCV AND SCV+ AGAINST STATE-OF-THE-ART METHODS

Fig. 5. Distribution of strategies chosen by SCV during matches played on
maps of different sizes.

provide domain-specific information that allows one to guide
their search towards more effective strategies.

G. Strategies Used in Matches

Fig. 5 shows how often different strategies are chosen in
matches played in maps of different sizes. Strategies s1 through
s10 are the ten strategies chosen more often by SCV in any
given map. The number inside each cell shows the fraction
of times a given strategy is chosen for a fixed map size; the
numbers are rounded up to either two or three decimal places.
For example, s1 is the strategy returned by SCV in 88% of the
times the algorithm is invoked in maps of size 64 × 64. The
column “...” shows the number corresponding to the sum of
the fractions of the remaining strategies. Strategies s1 through
s10 are all generated by SCV’s voting scheme, which suggests

that the strategies SCV generates through voting can be more
effective than the strategies created by domain experts. This is
because SCV’s strategies are preferred by its selection method
over the strategies created by domain experts. Fig. 5 also shows
that several strategies can be effective for a given map size,
which suggests that SCV’s selection scheme allows the system
to adapt to different scenarios that arise during a match.

VIII. CONCLUSION AND FUTURE WORK

In this paper we introduced SCV, a system that generates
through voting a large pool of novel strategies from a small
set of existing ones. In principle, SCV’s voting scheme can
be applied to any problem domain in which one controls a
group of units (e.g., robots) to jointly solve a task. SCV can be
particularly useful in domains for which it is time consuming to
obtain expert-designed strategies as it can generate a large set
of strategies from a small set of expert-based ones. In addition
to a voting scheme, SCV uses a strategy selection system to
adapt to the opponent’s strategy during the game. An empirical
study with μRTS highlighted the importance of expert-designed
strategies for algorithms playing large-scale RTS matches. The
methods that do not use hard-coded strategies were substantially
outperformed in larger maps by methods that rely partially or
fully on hard-coded strategies.

We also showed empirically that SCV uses on average only
a small fraction of the time allowed for planning, which allows
one to enhance SCV with a heuristic search algorithm to refine
its selected strategy; we called the resulting algorithm SCV+.
Our empirical study also showed that SCV is able to generate
effective strategies with its voting scheme as SCV+ outper-
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formed the current state-of-the-art methods in larger maps and
was competitive in smaller maps.

Although we used a strategy selection method to showcase
the potential of the set of strategies generated by voting, SCV’s
voting-based strategies could be used to enhance other algo-
rithms. For example, PS could search in the parameter space of
a strategy generated by SCV.

APPENDIX A
HARD-CODED STRATEGIES

RR, HR, and LR were introduced by Ontañón [30], WD, RD,
LD, and MR are introduced in this paper.

a) RR, HR, and LR: These strategies train a worker to collect
resources and to build a barracks as soon as possible. Then, each
of the rush strategies train specific units: RR trains ranged units,
HR trains heavy units, and LR trains light units. Once trained,
these units are sent to attack the nearest enemy. If the number
of workers is reduced to zero, the base trains another worker,
which is allocated to collect resources.

b) Worker Defense: This strategy assigns the first worker
to collect resources while the base trains more workers. The
workers stand at a distance from their base equal to the height
of the map divided by two, forming a defense line. If an enemy
unit e gets within a distance of also the height of the map divided
by two from the workers, all units are sent to attack e.

c) RD and LD: These strategies behave similarly to WD, with
the difference being that the defense line is formed by ranged
and lights units for RD and LD, respectively. Since RD and LD
train ranged and lights units, they build a barracks with their
worker as soon as there is enough resources; the worker returns
to collecting resources once the barracks is built.

d) MR: This strategy trains six workers. The first five workers
collect resources, while the last worker is sent to build a base
near the second closest set of resources from the player’s base.
Once the base is constructed, it trains five other workers, which
also collect resources. Next, one of the workers builds a barracks
nearby the first base. The barracks then repeatedly trains: a light,
a ranged, and a heavy unit. These units are immediately sent to
attack the nearest enemy unit.
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