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Abstract

System accuracy is a crucial factor influencing user experi-
ence in intelligent interactive systems. Although accuracy is
known to be important, little is known about the role of the
system’s error distribution in user experience. In this paper
we study, in the context of background music selection for
tabletop games, how the error distribution of an intelligent
system affects the user’s perceived experience. In particular,
we show that supervised learning algorithms that solely op-
timize for prediction accuracy can make the system “indeci-
sive”. That is, it can make the system’s errors sparsely dis-
tributed throughout the game session. We hypothesize that
sparsely distributed errors can harm the users’ perceived ex-
perience and it is preferable to use a model that is somewhat
inaccurate but decisive, than a model that is accurate but of-
ten indecisive. In order to test our hypothesis we introduce an
ensemble approach with a restrictive voting rule that instead
of erring sparsely through time, it errs consistently for a pe-
riod of time. A user study in which people watched videos of
Dungeons and Dragons sessions supports our hypothesis.

Introduction
System accuracy is a crucial factor influencing user expe-
rience in interactive and autonomous systems. For exam-
ple, de Vries, Midden, and Bouwhuis (2003) and Desai
et al. (2012) have linked system accuracy to trust in au-
tonomous systems, and according to Lee and See (2004),
the wrong level of trust can lead to system misuse or disuse.
While it is known that system accuracy can affect user expe-
rience in terms of trust, little is known about how the distri-
bution of system errors affects user experience. For example,
if system errors are inevitable, should one prefer a system
whose errors are distributed uniformly during the system’s
execution or a system whose errors occur in a period of time
and is accurate for the rest of its execution?

In this paper we study how the error distribution of an
intelligent system affects the user’s perceived experience.
Our work is motived by the application domain of automatic
background music selection for tabletop games. Padovani,
Ferreira, and Lelis (2017) introduced Bardo, a system that
uses supervised learning to identify through the players’
speech the emotion in the story being told in sessions of
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Dungeons and Dragons (D&D),1 a storytelling-based table-
top game. Bardo chooses a background song to be played
according to the identified emotion. The domain of back-
ground music selection for tabletop games is interesting be-
cause it allows one to evaluate intelligent systems interacting
with humans in a scenario in which system errors are in-
evitable and directly affect the users’ perceived experience.

In this paper we show that supervised learning algorithms
that solely optimize for prediction accuracy can make the se-
lection system “indecisive”. That is, the system’s errors can
be sparsely distributed throughout the game session. We call
these sparsely distributed errors short misclassifications. We
hypothesize that short misclassifications can harm the user’s
perceived experience and that it is preferable to use classi-
fication models that are somewhat inaccurate but decisive,
than models that are accurate but often indecisive.

In order to test our hypothesis we introduce an ensem-
ble classifier (Dietterich 2000), which we name EC, to min-
imize short misclassifications. EC changes the background
music only if all models composing its ensemble agree with
the change. As a result of its voting rule, instead of erring
sparsely throughout a game session, EC tends to err consis-
tently for a period of time. In addition to showing that EC
is expected to reduce the number of short misclassifications,
we derive the conditions in which EC is expected to be more
accurate than a classifier c. Namely, we show that if the emo-
tion of the story does not change “too often” and c is “not
too accurate”, then EC will be more accurate than c.

Empirical results on Call of the Wild (CotW), a set of
game sessions of D&D available on Youtube,2 show that EC
is able to dramatically reduce short misclassifications while
being slightly more accurate than the models in the ensem-
ble. We test our hypothesis that short misclassifications can
harm the user’s perceived experience with a user study. In
our study, people watched video excerpts of CotW with the
background music selected by EC and by Bardo’s original
model. In order to test our hypothesis, we select excerpts in
which Bardo’s model is either as accurate or more accurate
than EC and performs more short misclassifications than EC,
thus giving Bardo’s model an advantage in terms of accu-
racy. We approximate the user’s perceived experience with

1http://dnd.wizards.com
2https://www.youtube.com/watch?v=tZWU5iPjQpI



the participants reported preferences for the music selected
by the two approaches. The results of the study support our
hypothesis that sparsely distributed errors can negatively af-
fect the user’s perceived experience and that it might be pre-
ferred to be somewhat inaccurate and decisive than accurate
and indecisive in the context of background music selection.

Although we evaluate our system with an ensemble of
classifiers in the domain of background music selection, we
expect our results to generalize to other classifiers and ap-
plication domains. That is, in principle, any classifier that
solely accounts for prediction accuracy can suffer from inde-
cisiveness. Moreover, the negative effects of indecisiveness
might arise in other application domains such as recommen-
dation systems for financial investments (Chou et al. 1996;
Seo, Giampapa, and Sycara 2004).

Related Work
The relation between system accuracy and user experience
in terms of trust has been extensively studied, see the work
of Yang et al. (2017) for a recent example. Most works on
accuracy and trust involve one manipulating the error dis-
tribution of an autonomous system and measuring the user’s
trust on the system. Sanchez (2006) controlled system errors
to occur either in the first or the second half of a simulated
task. They found that the users’ trust was significantly lower
if the errors occurred on the second half of the simulation.
Desai et al. (2012) observed that users tend to switch an au-
tonomous system to manual mode more often if the system
errors occur in the middle of a task. In addition to studying
the impact of system errors in user perceived experience, we
introduce a learning model that shifts the prediction error
distribution of a music selection system. Also, we measure
the impact of the error distribution on how the users perceive
the background music, and not the user’s trust on the system.

An ensemble of diverse classifiers that perform slightly
better than random guessing is known to result in accurate
models (Hansen and Salamon 1990; Schapire 1990). Sev-
eral algorithms were developed to create such ensembles. In
Bagging, one trains several classifiers with a different sam-
pling of the training data (Breiman 1996). AdaBoost also
manipulates the training data by applying a weight to the
training error of each training instance (Freund and Schapire
1997). Another way to create a set of potentially diverse
classifiers is by training models on different subsets of the
instances’ features (Cherkauer 1996). We use an approach
similar to Cherkauer’s as we train a set of classifiers with
and without a feature selection procedure to compose EC’s
ensemble. Nonetheless, one could use any of the previous
approaches to train a set of diverse classifiers to compose
EC’s ensemble. In contrast with other ensemble methods
which primarily try to improve prediction accuracy, EC is
designed to alter the error distribution of its base classifiers.

The problem of identifying which song to play in sessions
of a tabletop game has a temporal structure that could be bet-
ter captured by other models such as Hidden Markov Mod-
els and Long-Short Term Memory networks (Hochreiter and
Schmidhuber 1997). Moreover, aiming at having an accu-
rate and decisive system, instead of training an ensemble of
classifiers, one could train a model that directly minimizes

short misclassifications and maximizes prediction accuracy.
Although we could have used in our experiments any of the
approaches mentioned above, we note that the contribution
of evaluating how the system’s error distribution affects user
perceived experience is algorithm agnostic. This is because
system indecisiveness can potentially occur with the use of
any classifier that is solely concerned with prediction accu-
racy. The use of an ensemble of classifiers is a solution to
the short misclassification problem that allowed us to test
our hypothesis that sparsely distributed errors can harm how
the user perceives their experience in the context of back-
ground music selection. We expect future works to develop
other solutions to the system indecisiveness problem.

Bardo
Padovani, Ferreira, and Lelis (2017) introduced Bardo, a
system that automatically selects background music for
tabletop games. Bardo uses a speech recognition (SR) sys-
tem to translate into text what players say during a game ses-
sion. Since Bardo was originally tested with Youtube videos,
Padovani et al. employed Youtube’s SR system, which is
normally used to generate subtitles, to convert speech into
sentences. We follow the same approach in this paper and
what we refer as a sentence we mean a subtitle generated by
the SR system. A Naive Bayes (NB) approach was then used
in Bardo to classify each sentence being produced by the SR
system into one of the four “story emotions”: Happy (H),
Calm (C), Agitated (A), and Suspenseful (S). Bardo selects
a song from a library of songs that corresponds to the current
classified emotion (Bardo requires the songs to be labeled
according to the four emotions). The selected song is then
played as background music in the game session. Bardo op-
erates in real time and switches the background music when-
ever NB detects an emotion transition in the story.

Padovani et al. used a sliding window approach in which,
instead of providing only the last sentence produced by
the SR system to the classifier, Bardo provides the last z
sentences produced by the SR system. Also, as argued by
Padovani et al., the sentences provided by the SR system are
often noisy as the system captures the speeches of all players
simultaneously. For that reason, Padovani et al. did not ex-
tract the structure of the sentences and used the sentences as
a bag of words for classification. We take the same approach
in this paper. Whenever referring to a bag of words, we are
referring to the last z sentences returned by the SR system.

We use Padovani et al.’s dataset, which includes 9
episodes of CotW. The dataset contains 5,892 sentences and
45,247 words, resulting in 4 hours, 39 minutes, and 24 sec-
onds of gameplay. There are 2,005 Agitated, 2,493 Sus-
penseful, 38 Happy, and 1,356 Calm sentences in the dataset.

Sparsely Distributed Errors
Bardo was originally evaluated in terms of prediction accu-
racy. However, system accuracy does not provide informa-
tion about the system’s error distribution. The distribution of
errors is important in the domain of music selection because
even an accurate but imperfect system could harm user ex-
perience if it switches the background music too often.



Figure 1: Comparison between the true labels (red lines), NS’s clas-
sifications (blue lines), and EC’s classifications (green lines) for an
excerpt of episode 6. The y-axis shows the four different story emo-
tions and the x-axis the sentences in the order of appearance in the
episode.

Figure 1 shows the actual emotions and the classifications
of two models in an excerpt of episode 6 of CotW. The x-axis
shows the sentences of the episode ordered by appearance,
and the y-axis the emotions. The red lines show the actual
labels of the sentences, the blue lines show the classifications
of Bardo’s original model, called NS, and the green lines
show the classification of EC. As an example of how to read
Figure 1, both NS and EC are accurate in the beginning of
the episode as their classification match the actual emotion.

Although NS is more accurate than EC in episode 6 (NS
has an accuracy of 69% and EC of 59%), we hypothesize
that NS is more likely to harm the players’ perceived ex-
perience than EC. This is because EC is consistent in the
sense that its errors are not sparsely distributed in the ex-
cerpt. For example, NS quickly switches between the Agi-
tated and Calm emotions around sentence 500. We quantify
these switches in terms of short misclassifications (SM ),

SM(C,W ) = |T (C,W )− T (W )| .
Here, C(w) is a classifier that receives as input a bag of
words w and returns for w a class in Padovani et al.’s emo-
tion model. Also, W = {w1, w2, · · · , wm} is an ordered
collection of bag of words, whose order is defined by the
order of appearance of the m sentences of an episode. That
is, wi is the bag of words of the i-th sentence appearing in
the episode. We refer to the subscript i as the time step in
which the bag of words appears in the episode. T (C,W ) is
the number of times C classified two adjacent sentences in
W with different labels, formally defined as,

T (C,W ) = |{wi|wi ∈W ∧ C(wi) 6= C(wi+1)}| .
T (W ) is the number of actual emotion transitions in W ,

T (W ) = |{wi|wi ∈W ∧ L(wi) 6= L(wi+1)}| .
Here, L(w) is the true label of sentence w. SM(C,W ) mea-
sures if C performs a number of emotion transitions sim-
ilar to the actual number of emotion transitions in W . We
use SM as a surrogate for short misclassifications. In the
next section we introduce EC, an ensemble method that re-
duces the value of T (C,W ) by using a restrictive voting
rule. Since in practice the value of T (W ) is small (the av-
erage is 7 in Padovani et al.’s dataset) and T (C,W ) tends
to be larger than T (W ), by reducing T (C,W ), EC reduces
SM(C,W ).

Ensemble Classifier (EC)
Given a set of classifiers C, EC classifies the emotion of the
first sentence in the episode according to a majority voting
rule of the classifiers in C; ties are broken randomly. For any
other bag of words w, Bardo with EC only transitions from
one emotion to another emotion e if all classifiers in C agree
that w is of emotion e. That is, for the first sentence in the
episode EC uses a majority voting rule and for every other
sentence EC uses a unanimity voting rule. This unanimity
rule is a special case of the rule introduced by Xu, Krzyzak,
and Suen (1992). In Xu, Krzyzak, and Suen’s rule a sample
is “rejected” by the ensemble if all classifiers do not agree
on the sample’s label. In our case, if the classifiers do not
agree on a label, we assume the emotion has not changed.

Theoretical Analysis
Our analysis is divided into two parts. First, we show that
EC is expected to perform fewer emotion transitions than a
single classifier. Then, we show sufficient conditions for EC
to be more accurate than a single classifier in expectation.

Reduced Number of Transitions Let E be a set of emo-
tions, C a set of classifiers used with EC, and n = |C|. We
assume the probability of a classifier c ∈ C classifying a
bag of words w of emotion ej as being of emotion ei to be
the same for all w of emotion ej . We denote such proba-
bility as pc(ei|ej). Similarly, pC(ei|ej) is the probability of
all classifiers in C classifying any w of emotion ej as being
of emotion ei. We write pc and p instead of pc(ei|ej) and
pC(ei|ej) whenever ei, ej , and C are clear from the context.

Two events can occur in our problem: (i) EC correctly
classifies the current emotion ej or (ii) EC incorrectly clas-
sifies the current emotion ej . In this part of the analysis we
assume these events to be independent (i.e., the chances of
a bag of words wt+1 being of emotion e is independent of
the emotion of wt). Assuming independence, the expected
number of trials EC performs for event (i) to occur is given
by B(C, ej) = pC(ej |ej)−1. Similarly, the expected num-
ber of trials EC performs for event (ii) to occur is given by
R(C, ej) = bC(ej)

−1. Here, bC(ej) =
∑

e∈E
e 6=ej

pC(e|ej).

R(C, ej) is the expected number of trials until all classifiers
agree on an emotion different than ej . We write b instead of
bC(ej) whenever ej and C are clear from the context. Note
that EC with C = {c} is equivalent to c alone.

The following observation states that Bardo using EC
with n > 1 is expected to change emotions less frequently
than Bardo with any of its classifiers individually.
Observation 1 For C = {c1, c2, · · · , cn} and a subset of
size one C ′ = {c} with c being any classifier in C, we have
that B(C, ej) ≥ B(C ′, ej) and R(C, ej) ≥ R(C ′, ej).

If all classifiers in C are identical, B(C, ej) = B(C ′, ej)
and R(C, ej) = R(C ′, ej), as the classifiers will always
agree on the emotion transitions. If the classifiers in C are in-
dependent, then pC(ei|ej) =

∏
c∈C pc(ei|ej) and the values

of B and R will grow quickly with the size of C. Large B
and R values mean that Bardo switches the background mu-
sic less often (i.e., small T (C,W ) values). Since the num-
ber of emotion transitions T (W ) is small in practice, by



reducing T (C,W ) one is expected to reduce the value of
SM(C,W ), our surrogate for short misclassifications.

Improved Overall Accuracy As one adds distinct classi-
fiers into C, EC will require an increasingly larger number
of trials before detecting an emotion transition. In particular,
if the number of trials is larger than the number of sentences
in a scene, then EC might miss the emotion transition en-
tirely. A scene is an excerpt of a game session composed of
bag of words with the same emotion.

Definition 1 (Scene) Let S = {wi, wi+1, · · · , wj−1, wj}
be a subset of W with i ≥ 1 and j ≤ m. Also, all w ∈ S
have the same emotion e and the emotions of wi−1 and wj+1

are different from e (if i > 1 and j < m); we call S a scene.

The execution of EC within S can be modeled with two
states: X and Y . EC is in X at time step t if it correctly
identified the emotion of wt−1. Since wt−1 and wt have the
same emotion (they belong to the same scene), if the classi-
fiers do not agree on an emotion, then EC correctly classifies
wt by assuming it has the same emotion as wt−1. EC is in
Y at time step t if EC classified wt−1 as being of an emo-
tion different from wt’s actual emotion. In our analysis we
assume EC to start in Y . EC starts in X if the classification
performed by EC correctly identifies the emotion of the first
bag of words in the first scene of an episode, or if it mis-
classifies the last bag of words of a scene and the predicted
emotion is the emotion of the next scene.

We define as q the size of a scene S and model the ex-
pected number of bag of words correctly classified by EC in
S as FY (q), which can be written with the recurrence:

FY (q) = p(FX(q − 1) + 1) + (1− p)FY (q − 1) (1)

FX(q) = bFY (q − 1) + (1− b)(FX(q − 1) + 1) . (2)
Here, FY (0) = 0 and FX(0) = 0, and p and b are the
probabilities of EC correctly and incorrectly classifying the
emotion of the current sentence of the scene, respectively.
Function FY (q) reads as “the number of bag of words EC is
expected to correctly classify in the remaining q bags of the
scene, given that EC is in state Y ”. Function FX(q) can be
read similarly, except that it computes the expected number
of bag of words classified correctly if EC is in state X .

Once a scene starts in Y , EC correctly classifies the cur-
rent bag of words with probability p, thus adding one to the
summation and transitioning to state X with q − 1 bag of
words remaining in the scene (see first term of FY (q)). EC
misclassifies the current bag of word with probability 1− p
and remains in state Y with q − 1 bag of words remaining
in the scene (see second term of FY (q)). Once in X , EC
correctly classifies the remaining bags of words if the clas-
sifiers do not agree on an incorrect emotion (probability b).
Equations 1 and 2 assume p and b to be the same for all w.

The following lemma shows that FY (q) can be written as
a closed-form equation. The proof is in the Appendix.

Lemma 1 FY (q) can be written as follows,

p

(
(1− p− b)q+1 + p+ b− 1 + q(p+ b)

)
(p+ b)2

.

FX(q) can be written as follows,

−b(1− p− b)q+1 + p2q + pbq − pb− b2 + b

(p+ b)2
.

Lemma 1 allows us to derive the minimum size q of a
scene to guarantee that EC is expected to be more accurate
than a single classifier with accuracy k.

Theorem 1 Let S be a scene of size q ≥ 0 and c a classifier
with accuracy k ∈ (0, 1] in S. Assuming that the probability
values p, b ∈ (0, 1] are fixed for all bag of words in S, EC is
more accurate than c if q > p2−p+pb

(p+b)2k−p2−pb and k < p
p+b .

The proof of Theorem 1 is in the Appendix. Theorem 1
states that if S is long enough and c is not too accurate, then
EC is expected to be more accurate than c in S. Note that a
regular classifier is a special case of EC with an ensemble
of size one. In that case, b = 1 − p, which according to
Theorem 1, q > 0 as long as k < p, as one expects.

Our theoretical results suggest that EC is able to reduce
short misclassifications and can be more accurate than a sin-
gle classifier. On the other hand, EC might miss the emo-
tion transitions of short scenes. This is because short scenes
might finish before EC transitions from state Y to state X .

Although EC uses the restrictive unanimity rule, our anal-
ysis holds for other voting rules such as the majority rule.
In that case, p and b mean the probability of the major-
ity of the classifiers in the ensemble classifying a bag of
words correctly or incorrectly, respectively. We chose to use
the unanimity rule because this rule is expected to result in
larger values of B and R, which can potentially reduce the
sparsely distributed errors and thus allow us to test empiri-
cally our hypothesis that it might be preferred to be some-
what inaccurate and decisive than accurate but often indeci-
sive. Also, note that one could also analyze EC by treating
it as a Markov Chain with states X and Y whose transition
matrix is defined by p, p− 1, b, and b− 1.

Empirical Evaluation
In this section we evaluate variants of EC and Naive Bayes
(NB) on the 9 episodes of CotW. The goal of this experiment
is to show empirically that EC is able to reduce the number
of short misclassifications and is thus suitable to test our hy-
pothesis that short misclassifications can harm how the user
perceives their experience with the system.

NB classifies a bag of words w according to the proba-
bility of each word in w belonging to a class and accord-
ing to the a priori probability of a sentence belonging to
a class (Manning et al. 2008). Two of the NB models we
use are created by choosing different sliding window sizes
z. We use a leave-one-episode-out cross-validation proce-
dure in the set of training episodes to select the two sizes.
In the leave-one-episode-out cross-validation procedure we
remove one episode from the set of training episodes and
train the model on the remaining episodes. The model is
then evaluated on the held-out training episode. This pro-
cess is repeated for all possible episodes in the training set.
One NB model is obtained by selecting the sliding window
size that yields the model with largest average accuracy in



Alg. Episodes Avg.
1 2 3 4 5 6 7 8 9

Accuracy

Baseline 10 53 35 44 75 64 29 24 47 42
NS 64 62 76 71 54 69 44 59 79 64
NHS 71 57 79 69 56 59 55 59 76 64
NM 64 62 80 72 52 60 43 61 78 64
NHM 68 57 79 69 47 65 56 61 76 64

EC(2) 71 60 78 69 54 59 56 59 81 65
EC(4) 76 59 79 70 50 59 55 64 80 65

SM

Baseline 7 8 5 12 8 9 4 6 4 7
NS 42 29 43 40 37 41 59 35 36 40
NHS 45 28 23 33 35 22 50 42 50 36
NM 40 24 39 27 45 30 58 31 36 36
NHM 47 28 19 29 33 37 49 25 50 35

EC(2) 14 4 4 10 9 0 25 10 13 9
EC(4) 5 3 4 6 5 0 12 2 11 5

Table 1: Accuracy and SM for different classification algorithms.

the cross-validation procedure; we call this model NS. The
other model, called NM, is defined similarly, but by selecting
the sliding window size that yields the model with lowest av-
erage SM . We test windows with size: {20, 25, 30, 35, 40}.
The classifier NS is identical to the one used by Padovani,
Ferreira, and Lelis (2017).

We create two extra NB models by using a feature se-
lection scheme. A NB model with feature selection uses
only the h words with largest mutual information (MI)
value (Manning et al. 2008) in its classification procedure.
The MI value of a word measures how discriminative the
word is to identify or to rule out a given class. We then cre-
ate NHS and NHM, which are similar to NS and NM, except
that in the cross-validation procedure we choose the value
of z and h that maximizes accuracy (for NHS) and mini-
mizes SM (for NHM). We test the following values of h:
{500, 600, · · · , 1500}, resulting in a total of 55 values tested
for NHS and NHM. We test two versions of EC, one with NS
and NHS composing its ensemble (EC(2)) and one with NS,
NHS, NM, and NHM in its ensemble (EC(4)).

Since the number of transitions is small in CotW and EC
tries to minimize SM by reducing the number of emotion
transitions, a reasonable baseline is to assume Bardo plays
as background music a song related to the Suspenseful emo-
tion, which is the majority class in Padovani et al.’s dataset.
We call this approach Baseline in our table of results.

We separate each episode to be tested and train the algo-
rithms on the other episodes. For example, when testing a
method on episode 1, we train it with episodes 2–9 and the
resulting model is applied to episode 1.

Accuracy and SM Results
Table 1 shows the percentage accuracy (upper part) and SM
values (bottom part) of the tested algorithms (“Alg.”) in each
episode of CotW. The “Avg.” column shows the algorithm’s

average results across all episodes. All numbers are rounded
to the closest integer and the values in the “Avg.” column
were computed before rounding the numbers. We highlight
the background of a cell if the number in the cell represents
the best result across all algorithms for a given episode. For
example, NM has the has the highest accuracy in episode 3
and EC(4) has the lowest SM value in episode 4. We also
highlight the best overall averages for each episode.

The EC approaches present a much lower SM than all
classifiers. Namely, EC(4)’s SM is 7 times lower than
NHM’s, the best performing individual classifier. EC(4) also
has an average SM lower than Baseline and a much higher
accuracy. As suggested by our analysis, EC with a larger
set of classifiers is expected to change the emotion less of-
ten, potentially further reducing the value of SM . EC(2)
and EC(4) have the same average classification accuracy, but
EC(4)’s SM is nearly half of the SM value of EC(2).

The SM reduction performed by EC(4) can be observed
in Figure 1, which shows the EC(4) classifications in green
in an excerpt of episode 6. EC(4) has a SM of 3 in the
excerpt shown in Figure 1: there are 8 true emotion transi-
tions shown in red while EC performs 5 transitions. The SM
value of EC(4) is zero if one considers the entire episode
(Episode 6 in Table 1). As anticipated in our theoretical
analysis, EC’s misclassifications are not sparsely distributed,
they usually happen at the beginning of a scene. For exam-
ple, there is a change from Calm to Suspenseful around sen-
tence 500 (see red lines in Figure 1) and EC only detects
such a transition after approximately 20 sentences. Also, EC
misses entirely some of the short scenes in the episode (e.g.,
the transitions in between sentences 400 and 500). The pres-
ence of short scenes justify the individual classifiers being
more accurate than EC in this episode (see Table 1), as sug-
gested by Theorem 1.

User Study
The results presented so far show that EC is able to change
the error distribution of its base classifiers. Instead of erring
sparsely throughout an episode, EC tends to concentrate its
errors in the beginning of the scenes, thus reducing the short
misclassifications. In this section we test with a user study
our hypothesis that the sparsely distributed errors can harm
how the user perceives their experience.

Our system for background music selection can target two
types of users: people playing the game (players) and peo-
ple watching the game session (spectators). A player would
need to commit a few hours to participate in our study. By
contrast, spectators need to commit only a few minutes to
watch video excerpts of game sessions. Since it is easier to
enlist spectators than players, our study focus on measuring
approximations of the spectator’s perceived experience. We
approximate the spectator’s perceived experience with a set
of pairwise preference comparisons of the background mu-
sic selected by EC and by NS, Bardo’s original classification
model, in video excerpts of people playing D&D.

Our study is designed such that the results obtained with
evaluations of short video excerpts are likely to general-
ize to longer game sessions. This is achieved by selecting
video excerpts with different accuracy and SM values so



that the excerpts cover a variety of scenarios that might arise
in longer game sessions. Also, we do not use the baseline
used in the previous experiment (play a song of the majority
class throughout the excerpt). This is because while such a
baseline might yield reasonable results in short excerpts, the
results are unlikely to generalize to longer game sessions
as playing the same type of song will likely bore the users
and harm their perceived experience. Moreover, Padovani,
Ferreira, and Lelis (2017) showed that NS is able to outper-
form in terms of user preference a much stronger baseline,
which is the background music selected by the authors of the
videos used in our user study.

We compare NS with EC(4) (henceforth referred as EC).
We selected five excerpts of the CotW. NS and EC are
trained with episodes different than the one from which the
excerpt is extracted (e.g., if an excerpt is extracted from
episode 7, then NS and EC are trained with all episodes but
7). Each excerpt is approximately 2 minutes long. In order
to test our hypothesis, we selected excerpts in which NS is
either as accurate or more accurate than EC and has a larger
SM value, thus giving NS an advantage in terms of system
accuracy. The accuracy and SM values of the video excerpts
(V1, V2, V3, V4, V5) are shown at the bottom of Table 2.

The video excerpts we use have no sentences of the Happy
emotion (Happy is a rare emotion in CotW), thus we use one
song for each of the other emotions in our study. We used the
song Call of the Raven by Jeremy Soule for Calm, Hurricane
Suite by Naruto Shippuden OST I for Suspenseful and Open
the Gates of Battle by Casey Martin for Agitated. V1 is an
excerpt starting at 3:22 and finishing at 5:20 of episode 2 of
CotW; V2 starts at 25:10 and finishes at 26:32 of episode
6; V3 starts at 23:26 and finishes at 24:55 of episode 4; V4
starts at 17:26 and finishes at 18:56 of episode 3; V5 starts
at 20:00 and finishes at 21:31 of episode 7.

Following Padovani et al.’s methodology, each participant
listened to excerpts of all three songs after answering our
consent form and before evaluating the video excerpts. We
reduce the chances of a participant evaluating the quality of
the songs instead of the song selection procedure by telling
the participant which songs will be used as background mu-
sic. After listening to the songs each participant watched two
versions of the same video excerpt, one with the background
music selected by NS and another by EC. The order in which
the videos appeared was random to avoid ordering biases.
We included a brief sentence providing context to the par-
ticipant, to ensure they would understand to story being told
in each excerpt. The participants could watch each video as
many times as they wanted before answering the question:
“Which video has the most appropriate background music
according to the context of the story?”. The participant could
choose one of the options: “Video 1”, “Video 2”, “The back-
ground music used in both videos are equally appropriate”,
and “The background music used in both videos are equally
inappropriate”. After marking their answer, the participants
evaluated another pair of excerpts. The order the video pairs
were presented was also random. The participants answered
a demographic questionnaire after evaluating all excerpts.

Our experiment was advertised in D&D communities in
the social media. We had 40 participants, 39 males and 1

Method Video Excerpts
V1 V2 V3 V4 V5

EC 57.5 57.5 35.0 35.0 47.5
NS 10.0 12.5 37.5 37.5 22.5

Tie+ 17.5 12.5 15.0 22.5 20.0
Tie- 15.0 17.5 12.5 5.0 10.0

Accuracy
EC 87.8 0.0 32.3 48.3 32.3
NS 85.7 20.0 41.9 69.0 38.7

SM
EC 0 0 0 1 1
NS 6 2 10 3 9

Table 2: User preference in emotion detected by EC and NS.

female, with average age of 25. All participants had some
experience playing D&D. We report the results of 200 an-
swers (5 pairs of videos for each participant).

User Study Results
The videos with background music selected by EC were pre-
ferred 93 times by the participants, while NS’s videos were
preferred 48 times, and the approaches tied 59 times. The
difference between EC and NS is significant according to a
two-sided binomial test (p < 0.001).

Table 2 shows the detailed results for all 5 excerpts used in
the study. The upper part of the table shows the percentage of
times the participants preferred the videos edited by EC, by
NS, and the percentage of times the participants thought the
videos to be equally appropriate (Tie+), and equally inap-
propriate (Tie-). For example, for the first two excerpts (V1
and V2), the participants preferred EC’s selection of back-
ground music in 57.5% of the cases. The highlighted cells
show the best performing approach (EC or NS) on a given
excerpt. The bottom part of the table shows EC and NS’s
accuracy and the SM value in each excerpt.

The results of our user study show a clear preference
for the music selected by EC. In particular, the participants
strongly preferred the selection performed by EC in V1,
V2, and V5. V1 is an excerpt with two scenes in which
both methods are accurate. While NS’s misclassifications
are sparsely distributed in V1, EC’s misclassifications oc-
cur in the beginning of one of the scenes due EC requiring a
few sentences to detect the emotion change.

EC classified all sentences in V2 as Agitated while the
sentences were of the Calm emotion. NS correctly selected
the Calm song for part of the excerpt but switched a few
times between Calm and Agitated. In this case, the partici-
pants preferred the selection that was inaccurate and decisive
over the selection that was more accurate but indecisive. EC
performs similar misclassification in V3, where it selects the
Agitated song for a Suspenseful scene. In contrast with V2,
EC’s misclassifications in V3 were not well perceived by the
participants. V3 depicts a scene in which one of the players



is sneaking in their enemy’s house. The use of an Agitated
song instead of a Suspenseful seems to be more harmful to
the user’s perceived experience than a large SM value in
this particular case. Note, however, that that the participants
only marginally prefer the selections made by NS in V3. A
similar result is observed in V4, where EC is less accurate
than NS but has a lower SM value and participants only
marginally prefer NS’s selections. The accuracy of EC and
NS are similar in V5, but the latter has a large SM value. In
this case the participants have a strong preference for EC’s
selections.

The study supports our hypothesis that sparsely dis-
tributed errors can be harmful to the user’s perceived expe-
rience. The study also showed that in some cases it might
be preferable to be inaccurate and decisive than accurate
and indecisive (e.g., V2). Naturally, depending on the scene,
the lack of accuracy can outweigh the system’s decisiveness
(e.g., V3). Video excerpts V1 and V5 are the most represen-
tative videos used in the study. This is because NS and EC
are equally accurate (accuracy of approximately 60% con-
sidering V1 and V5 altogether) and EC has a much smaller
SM value; Table 1 showed similar average accuracy results
for EC. The participants showed a strong preference for EC’s
selection in V1 and V5. Thus, overall, our results suggest
that EC is the ideal method to be used for selecting back-
ground music as it is able to reduce the SM value without
sacrificing the accuracy of its base models.

Conclusions and Future Work
In this paper we studied how the error distribution of a sys-
tem can affect the user perceived experience. We hypoth-
esized that a system whose errors are sparsely distributed
across a game session could harm the user perceived ex-
perience and that it would be preferred to be somewhat in-
accurate but decisive than accurate and indecisive. In order
to test our hypothesis, we introduced an ensemble approach
called EC that errs consistently in the beginning of scenes as
opposed to erring sparsely through the scenes. Theoretical
results showed that EC can reduce the sparsely distributed
errors by performing fewer transitions. We also showed that
if a scene S is long enough and a classifier c is not too ac-
curate, then EC is expected to be more accurate than c in S.
Empirical results showed that EC is able to reduce short mis-
classifications without sacrificing accuracy. A user study in
which people watched videos of D&D with the background
music selected by EC and by a classifier that does not ac-
count for the error distribution supported our hypothesis.

Although we evaluated our system with an ensemble of
classifiers in the domain of background music selection, our
results might generalize to other classifiers and application
domains. We expect future works to study how other clas-
sifiers can be modified to cope with short misclassifications
and how a system’s error distribution can affect user experi-
ence in other application domains. Also as future work, we
are interested in verifying if the findings of our study in-
deed generalize to longer sessions. Longer experiments will
also allow us to measure the impact of error distribution with
concrete metrics of user experience such as churn rate (in-
stead of the user preference metric used in our study).

Appendix: Proofs
Lemma 1 FY (q) can be written as follows,

p

(
(1− p− b)q+1 + p+ b− 1 + q(p+ b)

)
(p+ b)2

.

FX(q) can be written as follows,

−b(1− p− b)q+1 + p2q + pbq − pb− b2 + b

(p+ b)2
.

Proof. Our proof is by induction. Replacing q = 0 in the
equations above we obtain FY (0) = p(1−p−b+p+b−1) =
0 and FX(0) = −b+ bp+ b2 − pb− b2 + b = 0.

We assume as inductive hypothesis (IH) that FY (q−1) =
p
(
(1− p− b)q + p+ b− 1 + (q− 1)(p+ b)

)
(p+ b)−2 and

FX(q − 1) =
(
− b(1− p− b)q + p2(q − 1) + pb(q − 1)−

pb− b2 + b
)
(p+ b)−2.

By replacing FY (q−1) and FX(q−1) according to the IH
in the recursive version of Fy(q) we obtain its closed form,
as stated in the lemma. Similarly, one obtains the closed-
form version of FX(q) by replacing FY (q−1) and FX(q−1)
according to the IH in the recursive version of FX(q). �

Theorem 1 Let S be a scene of size q ≥ 0 and c a classifier
with accuracy k ∈ (0, 1] in S. Assuming that the probability
values p, b ∈ (0, 1] are fixed for all bag of words in S, EC is
more accurate than c if q > p2−p+pb

(p+b)2k−p2−pb and k < p
(p+b) .

Proof. EC is expected to be more accurate than C if

p
(
(1− p− b)q+1 + p+ b− 1 + q(p+ b)

)
(p+ b)2

> kq

(p+ b)2kq

p
− p− b+ 1− q(p+ b) < (1− p− b)q+1

Since (1− p− b)q+1 ≥ 0, the equation above holds if

(p+ b)2kq

p
− p− b+ 1− q(p+ b) < 0 (3)

q
(
(p+ b)2k − p2 − pb

)
< p2 − p+ pb (4)

q >
p2 − p+ pb

(p+ b)2k − p2 − pb
(5)

In Equation 5, p2 − p+ pb is negative as one needs b+ p >
1 for it to be positive, and b + p ≤ 1. Thus, Equation 5
holds if (p + b)2k − p2 − pb < 0, or k < p

(p+b) . Suppose
(p + b)2k − p2 − pb > 0, since p2 − p + pb < 0, then one
needs q < 0 for Equation 4 to hold, but q ≥ 0. �
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