Action Abstractions for Combinatorial Multi-Armed Bandit Tree Search

Rubens O. Moraes
Departamento de Informética
Universidade Federal de Vigosa
Vigosa, Minas Gerais, Brazil

Levi H. S. Lelis
Departamento de Informatica
Universidade Federal de Vigosa
Vigosa, Minas Gerais, Brazil

Abstract

Search algorithms based on combinatorial multi-armed ban-
dits (CMABs) are promising for dealing with state-space se-
quential decision problems. However, current CMAB-based
algorithms do not scale to problem domains with very large
actions spaces, such as real-time strategy games played in
large maps. In this paper we introduce CMAB-based search
algorithms that use action abstraction schemes to reduce the
action space considered during search. One of the approaches
we introduce use regular action abstractions (A1N), while
the other two use asymmetric action abstractions (A2N and
A3N). Empirical results on ¢RTS show that AIN, A2N, and
A3N are able to outperform an existing CMAB-based algo-
rithm in matches played in large maps, and A3N is able to
outperform all state-of-the-art search algorithms tested.

Introduction

Real-time strategy (RTS) games are challenging for plan-
ning systems because they present large action spaces and
the time allowed for planning is very limited, typically in the
order of milliseconds. Ontafién (2013; 2017a) proposed the
use of combinatorial multi-armed bandits (CMAB) (Gai, K-
ishnamachari, and Jain 2010; Chen, Wang, and Yuan 2013;
Combes et al. 2015) as a method for allowing Monte Carlo
tree search (MCTS) algorithms (Browne et al. 2012) to fo-
cus their search on a set of promising actions; Ontafidn’s
search algorithm was named NaiveMCTS. Although the
CMAB approach helps the MCTS search to focus on a sub-
set of actions, the number of actions to be evaluated during
search grows quickly with the size of the map. As a result,
NaiveMCTS does not scale to matches played in large maps.

In this paper we introduce three CMAB-based MCTS al-
gorithms that leverage on the concept of action abstractions
to further reduce the number of promising actions one has to
consider during search. Action abstractions were originally
introduced in the context of RTS combats by Churchill and
Buro (2013), who used hard-coded scripts to induce action
abstractions. A script is a function that, given a game state
and a unit, returns which action the unit should perform in
that state. Given a set of scripts, instead of searching over all
possible actions, Churchill and Buro’s search algorithm con-
siders only the actions returned by the scripts. Moraes and

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Julian R. H. Marino

Instituto de Ciéncias Matematicas e Computagdo

Universidade de Sao Paulo
Sdo Carlos, Sao Paulo, Brazil

Mario A. Nascimento
Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada

Lelis (2018) introduced, also in the context of RTS combats,
the concept of asymmetric actions abstractions. In contrast
to Churchill and Buro’s action abstractions, asymmetric ab-
stractions restrict the number of actions available to a sub-
set of units, while the search algorithm considers all avail-
able actions for the remaining units. Search algorithms using
asymmetric abstractions can deliver a “finer control” to units
deemed as more important at a given moment of the game
by considering a greater number of actions for those units.

One of the CMAB-based algorithms we introduce uses
regular actions abstractions. We call this algorithm A1N,
where “A” stands for abstraction and “N” for naive, since
A1N is based on NaiveMCTS. We also introduce other two
algorithms, which we call A2N and A3N, that use asym-
metric action abstractions. A2N and A3N differ in the way
that their abstractions are defined. A2N uses two sets of
scripts to define its abstractions, one set is composed of
economy-based scripts and is used to reduce the set of ac-
tions of economy-based units, and the other set is composed
of combat-based scripts and is used to reduce the set of ac-
tions of military units. A3N uses Moraes and Lelis (2018)’s
approach, i.e., it uses a single set of scripts to reduce the set
of actions available during search for a subset of units; all
actions of the remaining units are considered during search.

We evaluate our CMAB-based search algorithms that use
action abstractions with an extensive set of experiments on
uRTS. uRTS is a great testbed for our research because it
offers an efficient forward model of the game, which is re-
quired by search-based approaches. Moreover, the game is
much simpler than commercial video games, which allows
us to quickly test different approaches. Finally, uRTS code-
base! contains most of the current state-of-the-art search-
based methods, thus facilitating our empirical evaluation.

The results of our experiments show that AIN, A2N, and
A3N are all able to outperform NaiveMCTS. Our results
also show that A3N is able to outperform all state-of-the-
art algorithms tested, including those that competed in the
latest uRTS competition (Ontafién et al. 2018).

Related Work

In an RTS combat each player controls a set of units that
battles until one of the players is able to eliminate all the

'https://github.com/santiontanon/microrts

other player’s units. Previous works proved action abstrac-
tion schemes to be effective in such scenarios (Churchill
and Buro 2013; Justesen et al. 2014; Wang et al. 2016;
Lelis 2017; Moraes and Lelis 2018). In this work we show
that such abstractions can also be effective in the context
of complete RTS matches. Also, previous works used sim-
plified versions of the game in which features such as unit
collision were disregarded. This distinction is important be-
cause scripts used to generate action abstractions are compu-
tationally more expensive in yRTS due to the need of run-
ning path-finding algorithms such as A* (Hart, Nilsson, and
Raphael 1968). The time required to run the scripts subtracts
from the very limited amount of time available for planning.
We show that action abstractions can be valuable in the con-
text of complete RTS matches despite their computational
cost, as our experiments show that algorithms that use ac-
tion abstractions are able to outperform un-abstracted ones.

Other methods for RTS games include non-CMAB MCTS
approaches (Chung, Buro, and Schaeffer 2005; Sailer, Buro,
and Lanctot 2007; Balla and Fern 2009) and Alpha-Beta
pruning (Churchill, Saffidine, and Buro 2012). Similarly to
NaiveMCTS, these methods do not scale to large maps due
to the large number of actions available during search.

Scripts have also been used to guide the search by means
other than action abstractions. Puppet Search (PS) (Barriga,
Stanescu, and Buro 2017b) defines a search space over the
parameter values of scripts. Strategy Tactics (STT) (Bar-
riga, Stanescu, and Buro 2017a) combines PS’s search in
the script-parameter space with a NaiveMCTS search in the
original state space for the combat units. Strategy Creation
via Voting (SCV) generates scripts via voting (Silva et al.
2018), which are then used to play the game, showing the
potential behind the scripts and how they can be combined
to generated new and potentially powerful variations. In con-
trast with PS, STT, and SCV that generate novel scripts dur-
ing the game, the algorithms we introduce in this paper use
a set of scripts to generate action abstractions.

Although we tested our action abstraction schemes by in-
troducing variants of NaiveMCTS, in principle, our schemes
could be used to reduce the action space of other CMAB-
based algorithms such as 2-Phase-CMAB approaches (Sh-
leyfman, Komenda, and Domshlak 2014) and of search al-
gorithms that use enhancements such as Hierarchical Expan-
sion (Roelofs 2015).

Definitions and Notations
Following the notation of Ontafién (2017a), an RTS
match can be described as a finite zero-sum two-
player game with simultaneous-move and be denoted as
(P,S, A, 7, L, W, Sinit), Where:
e P = {max, min} is the set of players.

e S is the match’s set of states. A state s € .S describes the
match at a given moment. A state contains the position on
the map of each unit controlled by the players as well as
properties for these units, i.e., the current amount of hit
points and if the units are currently performing an action.

o A= A, .. X Anin is a set of joint player-actions, where
Apnaz and A, denote the player-actions of max and

man, respectively. A player-action is represented by a
vector of unit-actions, with one unit-action for each unit
controlled by the player that is ready to act; a unit is not
ready if it is already performing a unit-action.

e 7:85 X Apnar X Amin — S is a deterministic transition
function that, given a state in .S and a set of joint player-
actions, returns a resulting state in .S.

e L:S x Ax P — {true, false} is a function that given
a state s, a player-action a and a player p, determines
whether it is legal for p to execute a in s.

e W : S — PU/{draw,ongoing} is a function that de-
termines whether one of the players won the match, if the
match finished in a draw, or if the match is still ongoing.

® S, 1S the initial state of the match.

A decision point of player p is a state s in which p has at
least one ready unit. A pure strategy is a function for player
p mapping a state s to a player-action a. Although in gen-
eral one might have to play a mixed strategy to optimize the
player’s payoffs in simultaneous move games (Gintis 2000),
we follow the current state-of-the-art RTS methods (Bar-
riga, Stanescu, and Buro 2017b; Lelis 2017; Churchill and
Buro 2013; Churchill, Saffidine, and Buro 2012) and con-
sider only pure strategies in this paper. In fact, we use state-
space search algorithms to derive pure strategies in real time.

CMAB:s for RTS Games

Ontafién (2017a) modeled the search problem of deriving
strategies for a player in an RTS match as a combinatorial
multi-armed bandits (CMAB) problem. A CMAB problem
can be defined by a tuple (X, 11). Here,

o X ={Xy, -+, X,}, where each X is a variable that can
assume K; different values X; = {v},---, v/}, with
X ={(v1, - ,v,) € Xy X+ X X, } being the possible

combinations of value assignments for the variables in X;
a value assignment V' € &’ is called a macro-arm.

e 1 : X — Ris areward function, that receives a macro-
arm and returns a reward value for that macro-arm.

The goal in a CMAB problem is to find a macro-arm that
maximizes the expected reward. This can be achieved by
balancing exploration and exploitation until converging to
an optimal macro-arm. In the context of RTS games, each
decision point s can be cast as a CMAB problem in which
X contains one variable for each ready unit of a player
in s, thus a macro-arm V' € X represents a player-action
and each value v € V represents a unit-action. The set

X = {v}, - ,viK"} represents the set of K; legal actions
for the ¢-th unit in X at s. Naturally, the goal is to find a
macro-arm (player-action) that maximizes the player’s re-

ward. The reward is defined by a game-specific function.

Naive Sampling

Since the number of macro-arms in X is often too large for
decision points in RTS matches, Ontafiéon (2017a) derived a
sampling procedure called Naive Sampling (NS) to help de-
ciding which macro-arms should be evaluated during search.

NS divides a CMAB problem with n variables in n + 1
multi-armed bandit (MAB) problems.

e n local MABs, one for each variable X; € X. That is, for
variable X; representing a unit, the arms of the MAB are
the K; values (unit-actions) in X;.

e 1 global MAB, denoted MAB,, that treats each macro-
arm V evaluated thus far in search as an arm in MAB,.
Naturally, MAB, has no arms in the beginning of search.

At each iteration, NS uses a policy my to determine
whether it adds an arm to MABy; through the local MABs
(explore) or evaluates an existing arm in MAB,, (exploit).

1. If explore is chosen, then a macro-arm V is added to
MAB, by using a policy m; to independently choose a
value for each variable in X. Here, NS assumes that the
reward of a macro-arm V' can be approximated by the sum
of the rewards of the individual values v; € V, denoted

' (vi). Thatis, p(V) = 2, oyt (i)
2. If exploit is chosen, then a policy 7, is used to select an
existing macro-arm in MAB,.

In this paper we use e-greedy for policies 7, 7;, and 7.

Ontaidn (2017a) showed that NS can be used in the con-
text of a MCTS algorithm to choose a subset of player-
actions to be considered during search; the resulting algo-
rithm was named NaiveMCTS. NaiveMCTS differs from
other instantiations of MCTS algorithms in that it uses NS
to decide which player-action to explore next. Instead of
uniformly sampling which player-action to evaluate next as
a vanilla MCTS algorithm would do, NaiveMCTS focuses
through NS its search effort on player-actions composed of
unit-actions that tend to yield good reward values. While
NS allows NaiveMCTS to focus its search on a subset of
promising player-actions, NaiveMCTS is still outperformed
by search algorithms that rely on the guidance of scripts in
matches played in large maps (Silva et al. 2018). Next, we
describe how NaiveMCTS can leverage the domain knowl-
edge encoded scripts through action abstractions.

Action-Abstracted NaiveMCTS (A1IN)

An action abstraction for player p is a function mapping the
set of legal actions A, at a decision point s to a subset A;, of
Ap. Similarly to previous works (Churchill and Buro 2013;
Wang et al. 2016; Lelis 2017; Moraes and Lelis 2018), we
use a set of scripts P to define an abstraction. A script & is
a function that receives a decision point s and a unit u as
input, and returns a legal unit-action m for u to perform at
s. In an action abstraction, M (s,u, P) = {7 (s,u)|d € P}
is the set of unit-actions a unit can perform at s, and,

A; = {(m1,~- ,mn) S M(S,Ul,P)X'"XM($7U7L5P)}'

We call AIN a version of NaiveMCTS that uses an ac-
tion abstraction induced by a set of scripts P. The difference
between NaiveMCTS and AN is in the unit-actions sam-
pled by NS while adding macro-arms to MAB,,. Instead of
being able to sample from all legal unit-actions, AIN’s NS
is allowed to sample only from unit-actions in M (s, u, P)
for each unit u. As a consequence, the macro-arms (player-
actions) added to MAB, are restricted to those in A;).

Asymmetrically Action-Abstracted
NaiveMCTS (A2N and A3N)

Regular action abstractions use the same set of scripts P to
reduce the unit-actions available during search for all units
controlled by the player. Moraes and Lelis (2018) introduced
an abstraction scheme they called asymmetric action ab-
straction to allow a larger set of unit-actions to be available
to a subset of key units (e.g., units that are engaged in com-
bat). Moraes and Lelis’s asymmetric abstractions are defined
by selecting a subset of the player’s units, called unrestricted
units, for which all legal unit-actions would be accounted
for during search, while all the other units (restricted ones)
would have access only to the actions returned by the set P.
In addition to Moraes and Lelis’s asymmetrical scheme,
we also consider the asymmetry produced by two sets of
scripts P, and Py, where P, contains scripts for economy-
related units (i.e., barracks, base, and workers) and P
contains scripts for combat units (i.e., military units)—see
Ontafién et al. (2018) for information about ¢RTS’s units.
We call A2N the version of NaiveMCTS that searches in
an asymmetrically-abstracted action space defined by two
sets of scripts, one for economy units and one for combat
units. We call A3N the version of NaiveMCTS that allows
all legal unit-actions to the set of unrestricted units and only
the actions returned by a set of scripts for all the other units.

A3N’s Unrestricted Units

By changing the number of unrestricted units, which we de-
note by NV, one can make A3N more similar or less similar to
NaiveMCTS and A1IN. That is, if all units are unrestricted,
then A3N becomes NaiveMCTS; if no units are unrestricted,
then A3C becomes A1C. In addition to the number of un-
restricted units, one needs to define which units compose
the unrestricted set. We test empirically several unrestricted
set sizes and 7 strategies for selecting the unrestricted units,
which are described below. The first four strategies are intro-
duced in this paper (CE, FE, HP-, HP+), while the last three
(AV+, AV-, R) were introduced by Moraes and Lelis (2018).

1. Closest to an enemy (CE). CE selects the N units that
are closest to an enemy unit at every decision point. The
intuition behind CE is to allow a finer control for the units
that are likely to be more threatened by enemy units.

2. Farthest from an enemy (FE). FE selects the /N units

that are the farthest of an enemy unit at every decision
point. The intuition is that by providing a finer control to
units that are far of the enemy, one might allow a better
overall positioning of the units.

3. Less life (HP-). HP- selects the N units with the low-

est hit points at every decision point. The intuition of this
strategy is to provide a finer control to units that are about
to be eliminated, hoping that a finer control will keep
these units longer in the match.

4. More life (HP+). HP+ selects the units with more hit

points at a given decision point. We expect this strategy
to be outperformed by HP- as we believe that providing
a finer control to units with smaller rather than larger hit
points yield better strategies, as explained above.

Unrestricted Set Size N
Str. 1 2 3 4 5 6 7 8 9 10

CE 769 715 65.6 57.6 53.2 40.1 36.9 30.7 27.8 24.4
FE 524 52.6 429 32.6 289 22.6 229 21.5 189 174
HP- 41.8 53.1 54.6 48.1 46.5 44.0 38.9 33.5 34.7 319
HP+ 199 14.6 14.0 17.1 18.6 183 19.7 20.0 18.3 20.6
AV- 182 22.6 263 23.8 21.8 233 239 21.5 22.1 204
AV+ 424 565 533 48.8 42.6 43.8 39.3 35.7 33.8 32.6
R 55.3 52.1 44.4 357 30.7 29.9 24.0 25.0 22.1 19.9

Table 1: Winning rate of variants of A3N against AIN in 40
matches played in 7 maps. The rows depict different strate-
gies (Str.) and the columns different unrestricted set sizes
(N). If a variant had won all 40 matches in all 7 maps, then
it would have a winning rate of 100.0.

5. More attack value (AV+). Let av(u) = d,f’ If((u“)), where

dpf(u) is the amount of damage per game cycle a unit can
inflict to an enemy unit and hp(u) is w’s current amount
of hit points. AV+ selects the /V units with the largest av-
values at every decision point. AV+ is similar than HP-
as they both provide a finer control to units with low
hp-value, however AV+ selects units with low hp-value
and/or large dp f-value, while HP- only accounts for hp.
Moraes and Lelis (2018) showed that AV+ yields the best
results for combat scenarios that arise in RTS matches.

6. Less attack value (AV-). AV- selects the units with
smaller av-values. We expect this strategy to be outper-
formed by AV+, as we believe that is better to provide a
finer control to units with smaller hp and larger dpf, in-
stead of the opposite, as explained above.

7. Random (R). R randomly selects [V units in the begin-
ning of the match to be the unrestricted units. R replaces
an unrestricted unit that has its hp-value reduced to zero
by a randomly selecting a restricted unit. The R strategy
serves as a baseline.

Empirical Evaluation

Our empirical evaluation of AIN, A2N and A3N is divided
into two parts. In the first set of experiments we test A3N
with unrestricted sets of size N varying from 1 to 10 for
each of the 7 strategies for selecting the unrestricted units
described above. The goal of the first experiment is to find
which combination of set sizes and selection strategies work
well in the context of uRTS. We test A3N against AIN,
which is a special case of A3N and thus a natural competi-
tor. In this experiment we use 7 maps, including maps of size
8% 8,9x 8,16 x 16,24 x 24, 32 x 32 and 64 x 64.

In the second set of experiments we test AIN, A2N and
A3N against state-of-the-art search methods for RTS games.
Namely, we test the following algorithms: Adversarial Hier-
archical Task Network (AHT) (Ontafién and Buro 2015), an
algorithm that uses Monte Carlo tree search and HTN plan-
ning; NaiveMCTS (Ontaién 2017b) (henceforth referred as
NAV); the MCTS version of Puppet Search (PS) (Barriga,
Stanescu, and Buro 2017b), Strategy Tactics (STT) (Bar-
riga, Stanescu, and Buro 2017a), and two hard-coded scripts

focused in rush, called Light rush (LR), and Worker Rush
(WR) (Stanescu et al. 2016). In all experiments the algo-
rithms are allowed 100 milliseconds of planning time for
each decision point. In addition to the 7 maps used in the first
experiment, in this experiment we added 11 other maps: one
of size 24 x 24 and another of size 32 x 32, the remaining 9
maps are from Blizzard’s StarCraft, with four being of size
64 x 64, one of size 96 x 128, and four of size 128 x 128.

Every match of both experiments is limited by a number
of game cycles and the match is considered a draw once the
limit is reached. The maximum number of game cycles is
dependent on the map. We use the limits defined by Bar-
riga et al. (Barriga, Stanescu, and Buro 2017b): 3000, 3000,
4000, 5000, 6000, 8000, 12000 and 12000 game cycles for
maps of width 8, 9, 16, 24, 32, 64, 96 and 128 respectively.
Each tested algorithm plays against every other algorithm
40 times in each map tested. To ensure fairness, the players
switch their starting location on the map an even number of
times. For example, if Algorithm 1 starts in location X with
Algorithm 2 starting in location Y for 20 matches; we switch
the starting positions for the remaining 20 matches.

The evaluation function used with A1IN, A2N and A3N
was a random play-out of 100 game cycles of length (ap-
proximately 10 actions for each player in the game). The
play-out evaluates a state s by simulating the game forward
from s for 100 game cycles with both players choosing ac-
tions randomly, until reaching a state s’. Then, the evalua-
tion of s is given by ®(s’), where ® is a function introduced
by Ontafién (2017b). ¢ computes a score for each player—
score(max) and score(min)—Dby summing up the cost in
resources required to train each unit controlled by the player
weighted by the square root of the unit’s hit points. The ®
value of a state is given by player max’s score minus player

min’s score. ® is then normalized to a value in [—1,1]

through the following formula score?:nii;))r—igzztj"izmax) -1

The set of scripts used by AIN and A3N was com-
posed by light rush (LR), heavy rush (HR), and ranged
rush (RR) (Stanescu et al. 2016; Silva et al. 2018). These
scripts train units which are immediately sent to attack
the enemy. The difference among them is the type of unit
trained, LR trains light units, HR trains heavy units, and
RR trains ranged units. A2N uses LR, HR, and RR as its
economy-based set of scripts, and NOKAYV, Kiter (Churchill
and Buro 2013), and Cluster (Lelis 2017), as its combat
scripts. NOKAV is a strategy that chooses an attack action
that will not cause more damage than that required to elim-
inate the enemy unit from the match; Kiter allows the units
to move away from the enemy, and Cluster groups the units
together. All experiments were run on 2.1 GHz CPUs.

First Experiment: A3N vs AIN

Table 1 shows the winning rate of each A3N variant against
AIN in 40 matches played in each of the 7 maps. The win-
ning rate is computed by summing the total number of vic-
tories and half of the number of draws of a variant of A3N
and then dividing this sum by the total number of matches
played; the result of the division is then multiplied by 100.
For example, if a variant had won all 40 matches in all 7

A3N SCV

PS STT LR A2N WR AIN AHT NAV

Total 1,125 1,044 931

860 729

686 680 661 311 198

Table 2: Total number of victories by each method in 18 maps (possible maximum of 1,620); draws are disregarded.

maps, then it would have a winning rate of 100.0. The rows
show the strategies used for selecting the unrestricted set
while the columns show the size of the set. We highlight
the cells in which A3N had a winning rate larger than 50.0.

A3N tends to perform better with smaller unrestricted
set sizes (N < 5). This is because the number of macro-
arms that can be sampled by A3N grows quickly as one
increases N, making it harder for the search procedure to
encounter macro-actions that result in strong gameplay. As
anticipated, the strategies HP+ and AV- were outperformed
by their counterparts HP- and AV+. In contrast with the re-
sults of Moraes and Lelis (2018) for combat scenarios, the
best performing strategy for playing full RTS matches is CE
with N = 1, which had a winning rate of 76.9, and not AV+,
which with its best /N-value had a winning rate of 56.5. We
hypothesize that this result is related to the characteristics
of the game. Compared to commercial games such as Star-
Craft, all units in ¢RTS have low hit point values, thus not
lasting long in the match. If preserving units longer in the
match is a good strategy, then one should probably provide
a fine control to the units closest to the enemy, rather than the
units with largest AV+ value as the former are more likely to
be eliminated than the latter.

Second Experiment: State-of-the-Art Comparisons

Table 2 shows the total number of matches won by each ap-
proach tested in all 18 maps; matches finishing in draws are
not included in these results. The maximum achievable num-
ber of victories is 18 x 9 x 10 = 1,620 (18 maps, 9 oppo-
nents, and 10 matches played against each opponent). Over-
all, A3N wins more matches than any approach tested, sug-
gesting that if a large diversity of maps are considered, then
A3N is the current state-of-the-art in yRTS matches. It is
also interesting to observe how the NaiveMCTS approaches
perform with respect to each other methods. NaiveMCTS
(denoted as NAV) wins a total of 231 matches, being the
method that wins the least amount of matches. A1N, which
uses an action abstraction scheme, is already substantially
better than NAV. The employment of an asymmetric abstrac-
tion through two sets of scripts further improves the results
as A2N has more victories than A1N, but they are still be-
hind some of the state-of-the-art approaches. The advantage
of A2N over AIN is that the former allows a finer control
over the combat units with the scripts NOKAYV, Kiter, and
Cluster. The best results are achieved when NaiveMCTS is
combined with an asymmetric action abstraction that allows
the unit closest to an enemy unit to consider all its legal
moves in a given decision point. These results show that
NaiveMCTS is able to leverage the knowledge encoded in
scripts through abstraction schemes.

It is interesting to note how A3N’s search procedure re-
lates to how humans play RTS games. Professional players

often control one unit at a time when optimizing for battles,
and they often switch which unit will receive a finer con-
trol. A3N acts similarly as it provides a coarse abstraction
to all units but the unit closest to an enemy unit, for which
all actions are accounted for during search. Moreover, the
strategy of selecting the unit that is closest to an enemy unit
also allows A3N to quickly switch, depending on the game
scenario, which unit will receive a finer control.

Table 3 shows the winning rate of the row method against
the column method in maps of different sizes. The numbers
shown in the table are truncated to one decimal place. We
highlight the background of a cell of AIN, A2N, and A3N if
they have a winning rate greater or equal to 50.0 against an
opponent. We also highlight the cell with the highest entry in
the “Avg” column, which shows the average winning rate of
the row method in a given map size. This table allows ones to
understand the circumstances in which a method is stronger
than another. For example, NAV is one of the strongest meth-
ods in maps of size 8 x 8 because the number of macro-arms
available to be sampled by NAV is much smaller in matches
played in smaller maps, which allows NAV to effectively
find good player-actions within the game’s time constraint.
However, as one increases the size of the maps, the perfor-
mance of NAV drops quickly. For example, it drops from
77.2 in the smallest maps to 27.8 in maps of size 16 x 16.

In contrast with NAV, the action-abstracted approaches,
specially A3N, present similar performance across differ-
ent maps. The worst performances of A3N are in matches
played on maps of size 8 x 8 and 32 x 32. The reason of
A3N’s lower performance on these maps is related to their
“actual size”. Although maps 32 x 32 are comparatively
larger than maps of size 16, 24, one of the maps of size 32
has the players starting the game close to each other, simi-
larly to what happens in a map of size 8, which favors the
LR strategy. A3N wins almost all the other matches played
on the other map of size 32, where the players start far apart.
The difference between NAV and A3N suggests a direction
of future research, which is to develop adaptive methods for
creating asymmetric abstractions. Ideally, A3N would detect
that it can play more similarly to NAV in smaller maps.

Another interesting point is the poor performance of A3N
against STT and SCV in the largest maps. AIN, A2N, and
A3N are restricted to the high-level strategies encoded in
their set of scripts (e.g., the number of barracks to be built,
whether or not to expand). By contrast, STT and SCV try
to expand through search and voting, respectively, the high-
level strategies encoded in the scripts. Note that one could
also use the high-level strategies generated by STT and SCV
to define the action abstractions used with A1N, A2N, and
A3N, possibly further improving their results.

Although A3N is the best average performing method
only in maps of size 9 x 8 and 24 x 24, it is close to the

Maps 8 x 8 Maps 9 x 8

NAV AHT WR LR STT SCV PS AIN N2S A3N Avg. NAV AHT WR LR STT SCV PS AIN N2S A3N Avg.
NAV - 100 200 100 650 30.0 100 100 100 80.0 772 NAV - 100 100 40.0 500 100 0.0 100 00 0.0 444
AHT 0.0 - 100 100 200 0.0 100 100 100 30.0 51.I AHT 0.0 - 500 250 400 500 00 00 00 00 183
WR 80.0 90.0 - 100 850 100 100 100 100 90.0 939 WR 0.0 50.0 - 250 500 500 00 00 00 00 194
LR 0.0 00 0.0 - 100 00 500 600 900 100 244 LR 600 750 75.0 - 350 500 650 100 0.0 00 41.1
STT 350 80.0 150 90.0 - 400 100 100 100 80.0 71.1 STT 50.0 60.0 50.0 650 - 550 200 00 00 100 344
SCV 700 100 0.0 100 60.0 - 100 100 100 90.0 80.0 SCV 0.0 50.0 500 50.0 450 - 00 00 00 50 222
PS 0.0 00 0.0 500 00 00 - 100 700 00 244 PS 100 100 100 35.0 80.0 100 - 100 200 100 617
AIN 0.0 00 00 400 00 00 0.0 -1600 00 11.1 AIN 90.0 100 100 900 100 100 90.0 -1 60.0 350 850
A2N 0.0 00 00 100 00 0.0 30.0 400 - 00 89 A2N 100 100 100 100 100 100 80.0 40.0 - 400 844
A3N 200 70.0 10.0 '90.0 200 10.0 100 100 100 - 578 A3N 100 100 100 100 90.0 950 90.0 650 60.0 - 889

Maps 16 x 16 Maps 24 x 24
NAV AHT WR LR STT SCV PS AIN N2S A3N Avg. NAV AHT WR LR STT SCV PS AIN N2S A3N Avg.
NAV - 100 400 00 75 525 450 50 00 00 278 NAV - 100 450 00 100 25 00 75 50 00 189
AHT 0.0 - 225 500 250 750 750 550 500 30.0 425 AHT 00 - 00 350 00 250 475 550 375 25 225
WR 600 775 - 500 250 100 750 50.0 500 275 572 WR 550 100 - 500 650 625 300 600 800 600 625
LR 100 50.0 50.0 - 725 500 950 750 90.0 650 719 LR 100 65.0 50.0 - 700 50.0 350 500 400 275 542
STT 925 75.0 750 275 - 750 80.0 500 550 550 650 STT 90.0 100 35.0 30.0 - 575 475 250 275 125 472
SCV 475 250 0.0 50.0 250 - 750 500 500 400 403 SCV 975 750 375 500 425 - 20.0 70.0 90.0 425 583
PS 550 250 250 50 200 250 - 600 425 350 325 PS 100 525 70.0 650 525 80.0 - 525 30.0 10.0 569
AIN 700 50.0 400 250 250 40.0 425 - 150 100 353 AIN | 925 450 40.0 1500 75.0 300 475 - 300 125 469
A2N 100 450 1500 50 350 500 550 350 - 400 46.1 A2N 950 625 200 600 725 10.0 '70.0 70.0 - 150 528
A3N 100 70.0 725 40.0 700 60.0 725 550 500 - 656 A3N 100 975 40.0 725 875 575 90.0 875 85.0 - 1197

Maps 32 x 32 Maps 64 x 64
NAV AHT WR LR STT SCV PS AIN N2S A3N Avg. NAV AHT WR LR STT SCV PS AIN N2S A3N Avg.
NAV - 500 225 00 00 00 00 00 00 00 81 NAV - 38 00 00 00 25 00 00 00 00 07
AHT 50.0 - 100 00 00 00 400 500 450 400 26.1 AHT 963 - 50 613 00 125 150 450 388 150 321
WR 775 90.0 - 250 325 250 500 500 500 400 489 WR 100 95.0 - 625 325 125 325 500 413 488 528
LR 100 100 75.0 - 100 500 750 750 450 750 772 LR 100 38.8 375 - 150 125 0.0 625 450 150 363
STT 100 100 67.5 0.0 - 100 80.0 300 350 600 536 STT 100 100 67.5 85.0 - 563 400 863 675 363 710
SCV 100 100 75.0 50.0 90.0 - 950 575 450 600 747 SCV 975 875 815 875 438 - 13.8 900 813 288 68.6
PS 100 60.0 50.0 25.0 200 5.0 - 300 200 325 381 PS 100 85.0 67.5 100 60.0 86.3 - 100 938 325 80.6
AIN = 100 500 50.0 250 70.0 425 70.0 - 200 550 536 AIN 100 550 50.0 375 138 100 0.0 - 300 125 343
A2N 100 550 500 550 650 550 800 80.0 - 550 661 A2N 100 613 88 550 325 188 63 70.0 - 00 447
A3N 100 60.0 60.0 250 40.0 40.0 67.5 450 450 - 536 A3N 100 850 513 850 638 713 675 875 100 - 790

Maps 96 x 128 Maps 128 x 128
NAV AHT WR LR STT SCV PS AIN N2S A3N Avg. NAV AHT WR LR STT SCV PS AIN N2S A3N Avg.
NAV - 5.0 00 00 00 00 00 00 250 00 83 NAV - 231 00 00 13 1.3 00 00 175 00 438
AHT 50.0 - 00 00 00 00 00 00 00 00 56 AHT 769 - 25 306 75 63 75 225 244 75 206
WR 100 100 - 00 500 00 00 00 00 00 278 WR 100 975 - 313 375 63 163 250 206 244 399
LR 100 100 100 - 300 00 00 500 250 00 450 LR 100 69.4 688 - 288 63 25 588 369 100 424
STT 100 100 50.0 70.0 - 00 8.0 100 100 800 756 STT 988 925 625 713 - 294 225 819 763 33.1 631
SCv. 100 100 100 100 100 - 100 100 100 70.0 96.7 SCV 988 93.8 93.8 938 70.6 - 40.6 888 90.6 619 814
PS 100 100 100 100 20.0 0.0 - 100 900 200 700 PS 100 925 838 975 715 594 - 100 963 350 824
AIN = 100 100 100 500 00 00 0.0 - 450 00 439 AIN 100 775 750 413 181 113 0.0 - 388 69 410
A2N 750 100 100 750 00 0.0 10.0 ' 550 - 00 461 A2N 825 756 794 631 238 94 38 613 - 00 443
A3N 100 100 100 100 20.0 30.0 /80.0 100 100 - 811 A3N 100 925 75.6 90.0 669 38.1 650 931 100 - 80.1

Table 3: Winning rate of the row player against the column player. The winning rate is computed by summing the total number
of victories and half of the number of draws of the row player against a column player, and then dividing this sum by the total
number of matches played; the result of the division is then multiplied by 100. If a method wins all matches, then it has a
winning rate of 100. We highlight the cells in which AIN, A2N or A3N has a winning rate greater or equal to 50.0.

best performing method in most of the other maps. Thus,
overall, A3N has the largest number of wins, as shown in
Table 2.

Conclusions and Future Work

In this paper we have introduced three CMAB-based search
algorithms that use action abstraction schemes for RTS
games, AIN, A2N, and A3N. Our algorithms combine the
guidance provided by scripts through action abstractions,
the sampling procedure given by a CMAB approach, and
MCTS search. An extensive set of experiments on uRTS, a
simple and yet complete RTS game, shows that AIN, A2N,
and A3N are able to outperform NaiveMCTS, the CMAB-
based algorithm that inspired us to do our research. Our ex-
periments also show that A3N, which uses an asymmetric
action abstraction scheme, is able to outperform all state-of-

the-art approaches tested in our experiment, which includes
the algorithms that competed in the latest yRTS competi-
tion (Ontafién et al. 2018). Our algorithms and results sug-
gest several directions of future research to further improve
the current state of the art, which includes the development
of stronger scripts for inducing better action abstractions as
well as asymmetric action abstraction schemes that automat-
ically adjust the size of the unrestricted set.

Acknowledgements

This research was partially supported by FAPEMIG, CNPq
and CAPES, Brazil and NSERC, Canada, and done while
R.O. Moraes and L.H.S. Lelis were visiting the University
of Alberta. The authors thank the great suggestions provided
by the anonymous reviewers.

References

Balla, R.-K., and Fern, A. 2009. UCT for tactical assault
planning in real-time strategy games. In Proceedings of
the 21st International Joint Conference on Artificial Intel-
ligence, 40-45.

Barriga, N. A.; Stanescu, M.; and Buro, M. 2017a. Combin-
ing strategic learning and tactical search in real-time strategy
games. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence and Interactive Digital Entertainment, 9—
15. AAAL

Barriga, N. A.; Stanescu, M.; and Buro, M. 2017b. Game
tree search based on non-deterministic action scripts in real-
time strategy games. IEEE Transactions on Computational
Intelligence and Al in Games.

Browne, C.; Powley, E. J.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Liebana, D. P.;
Samothrakis, S.; and Colton, S. 2012. A survey of monte
carlo tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI 4(1):1-43.

Chen, W.; Wang, Y.; and Yuan, Y. 2013. Combinatorial
multi-armed bandit: General framework and applications. In
International Conference on Machine Learning, 151-159.

Chung, M.; Buro, M.; and Schaeffer, J. 2005. Monte Carlo
planning in RTS games. In Proceedings of the IEEE Sympo-
sium on Computational Intelligence and Games. IEEE.

Churchill, D., and Buro, M. 2013. Portfolio greedy search
and simulation for large-scale combat in StarCraft. In Pro-
ceedings of the Conference on Computational Intelligence
in Games, 1-8. IEEE.

Churchill, D.; Saffidine, A.; and Buro, M. 2012. Fast heuris-
tic search for RTS game combat scenarios. In Proceedings
of the AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment. AAAIL

Combes, R.; Shahi, M. S. T. M.; Proutiere, A.; et al. 2015.
Combinatorial bandits revisited. In Advances in Neural In-
formation Processing Systems, 2116-2124.

Gai, Y.; Krishnamachari, B.; and Jain, R. 2010. Learning
multiuser channel allocations in cognitive radio networks:
A combinatorial multi-armed bandit formulation. In New
Frontiers in Dynamic Spectrum, 2010 IEEE Symposium on,
1-9. IEEE.

Gintis, H. 2000. Game Theory Evolving: A Problem-
centered Introduction to Modeling Strategic Behavior. Eco-
nomics / Princeton University Press. Princeton University
Press.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2):100-107.

Justesen, N.; Tillman, B.; Togelius, J.; and Risi, S. 2014.
Script- and cluster-based UCT for StarCraft. In IEEE Con-
ference on Computational Intelligence and Games, 1-8.
IEEE.

Lelis, L. H. S. 2017. Stratified strategy selection for unit
control in real-time strategy games. In International Joint
Conference on Artificial Intelligence, 3735-3741.

Moraes, R. O., and Lelis, L. H. S. 2018. Asymmetric action
abstractions for multi-unit control in adversarial real-time
games. In Proceedings of the Thirty-Second AAAI Confer-
ence on Artificial Intelligence, 876-883. AAAL

Ontafion, S., and Buro, M. 2015. Adversarial hierarchical-
task network planning for complex real-time games. In Pro-
ceedings of the International Joint Conference on Artificial
Intelligence, 1652—-1658.

Ontafién, S.; Barriga, N. A.; Silva, C. R.; Moraes, R. O.; and
Lelis, L. H. S. 2018. The first microrts artificial intelligence
competition. Al Magazine 39(1):75-83.

Ontafiéon, S. 2013. The combinatorial multi-armed ban-
dit problem and its application to real-time strategy games.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment, 58—64. AAAI.

Ontafion, S. 2017a. Combinatorial multi-armed bandits for
real-time strategy games. Journal of Artificial Intelligence
Research 58:665-702.

Ontafién, S. 2017b. Combinatorial multi-armed bandits for
real-time strategy games. Journal of Artificial Intelligence
Research 58:665-702.

Roelofs, G.-J. 2015. Action Space Representation in Com-
binatorial Multi-Armed Bandits. Master’s thesis, Maastricht
University, The Netherlands.

Sailer, F.; Buro, M.; and Lanctot, M. 2007. Adversar-
ial planning through strategy simulation. In Proceedings
of the IEEE Symposium on Computational Intelligence and
Games, 80-87. IEEE.

Shleyfman, A.; Komenda, A.; and Domshlak, C. 2014. On
combinatorial actions and cmabs with linear side informa-
tion. In European Conference on Artificial Intelligence,
825-830.

Silva, C. R.; Moraes, R. O.; Lelis, L. H. S.; and Gal, Y. 2018.
Strategy generation for multi-unit real-time games via vot-
ing. IEEE Transactions on Games.

Stanescu, M.; Barriga, N. A.; Hess, A.; and Buro, M. 2016.
Evaluating real-time strategy game states using convolu-
tional neural networks. In Proceedings of the IEEE Confer-
ence on Computational Intelligence and Games, 1-7. IEEE.
Wang, C.; Chen, P; Li, Y.; Holmgéard, C.; and Togelius, J.
2016. Portfolio online evolution in StarCraft. In Proceedings

of the Conference on Artificial Intelligence and Interactive
Digital Entertainment, 114-120. AAAL

