
Asymmetric Action Abstractions
for Multi-Unit Control in Adversarial Real-Time Games

Rubens O. Moraes and Levi H. S. Lelis
Departamento de Informática, Universidade Federal de Viçosa, Brazil

{rubens.moraes, levi.lelis}@ufv.br

Abstract

Action abstractions restrict the number of legal actions avail-
able during search in multi-unit real-time adversarial games,
thus allowing algorithms to focus their search on a set
of promising actions. Optimal strategies derived from un-
abstracted spaces are guaranteed to be no worse than optimal
strategies derived from action-abstracted spaces. In practice,
however, due to real-time constraints and the state space size,
one is only able to derive good strategies in un-abstracted
spaces in small-scale games. In this paper we introduce
search algorithms that use an action abstraction scheme we
call asymmetric abstraction. Asymmetric abstractions retain
the un-abstracted spaces’ theoretical advantage over regularly
abstracted spaces while still allowing the search algorithms to
derive effective strategies, even in large-scale games. Empir-
ical results on combat scenarios that arise in a real-time strat-
egy game show that our search algorithms are able to substan-
tially outperform state-of-the-art approaches.

Introduction
In real-time strategy (RTS) games the player controls dozens
of units to collect resources, build structures, and battle the
opponent. RTS games are excellent testbeds for Artificial
Intelligence methods because they offer fast-paced environ-
ments, where players act simultaneously, and the number of
legal actions grows exponentially with the number of units
the player controls. Also, the time allowed for planning is on
the order of milliseconds. In this paper we focus on the com-
bat scenarios that arise in RTS games. A simplified version
of RTS combats in which the units cannot move was shown
to be PSPACE-hard in general (Furtak and Buro 2010).

A successful family of algorithms for controlling com-
bat units uses what we call action abstractions to reduce
the number of legal actions available during the game. In
RTS games, player actions are represented as a vector of unit
moves, where each entry in the vector represents a move for
a unit controlled by the player. Action abstractions reduce
the number of legal actions a player can perform by reduc-
ing the number of legal moves each unit can perform.

Churchill and Buro (2013) introduced a method for build-
ing action abstractions through scripts. A script σ̄ is a func-
tion mapping a game state s and a unit u to a move m for u.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A set of scripts P induces an action abstraction by restrict-
ing the set of legal moves of all units to moves returned by
the scripts in P . We call an action abstraction created with
Churchill and Buro’s scheme a uniform abstraction.

In theory, players searching in un-abstracted spaces are
guaranteed to derive optimal strategies that are no worse
than the optimal strategies derived from action-abstracted
spaces. This is because the former has access to actions that
are not available in action-abstracted spaces. Despite its the-
oretical disadvantage, uniform abstractions are successful in
large-scale combats (Churchill and Buro 2013). This hap-
pens because the state space of RTS combats can be very
large, and the problem’s real-time constraints often allow
search algorithms to explore only a small fraction of all legal
actions before deciding on which action to perform next—
uniform abstractions allow algorithms to focus their search
on actions deemed as promising by the set of scripts P .

In this paper we introduce search algorithms that use what
we call asymmetric action abstractions (asymmetric abstrac-
tions for short) for multi-unit adversarial games. In contrast
with uniform abstractions that restrict the number of moves
of all units, asymmetric abstractions restrict the number of
moves of only a subset of units. We show that asymmet-
ric abstractions retain the un-abstracted spaces’ theoretical
advantage over uniformly abstracted ones while still allow-
ing algorithms to derive effective strategies in practice, even
in large-scale games. Another advantage of asymmetric ab-
stractions is that they allow the search effort to be distributed
unevenly amongst the units. This is important because some
units might benefit more from finer strategies (i.e., strategies
computed while accounting for a larger set of moves) than
others (e.g., in RTS games it is advantageous to provide finer
control to units with low hit points so they survive longer).

The algorithms we introduce for searching in asymmetri-
cally abstracted spaces are based on Portfolio Greedy Search
(PGS) (Churchill and Buro 2013) and Stratified Strategy Se-
lection (SSS) (Lelis 2017), two state-of-the-art approaches.
Empirical results on RTS combats show that our algorithms
are able to substantially outperform PGS and SSS.

Related Work
Justesen et al. (2014) proposed two variations of UCT (Koc-
sis and Szepesvári 2006) for searching in uniformly ab-
stracted spaces: script-based and cluster-based UCT. Wang

et al. (2016) introduced Portfolio Online Evolution (POE)
a local search algorithm also designed for uniformly ab-
stracted spaces. Wang et al. showed that POE is able to out-
perform Justesen’s algorithms, and Lelis (2017) showed that
PGS and SSS are able to outperform POE. Justesen et al.’s
and Wang et al.’s algorithms can also be modified to search
in asymmetrically abstracted spaces. We use PGS and SSS
in this paper as they are the current state-of-the-art search-
based algorithms for RTS combat scenarios (Lelis 2017).

Before the invention of action abstractions induced by
scripts, state-of-the-art algorithms included search methods
for un-abstracted spaces such as Monte Carlo (Chung, Buro,
and Schaeffer 2005; Sailer, Buro, and Lanctot 2007; Balla
and Fern 2009; Ontañón 2013) and Alpha-Beta (Churchill,
Saffidine, and Buro 2012). Due to the large number of ac-
tions available during search, Alpha-Beta and Monte Carlo
methods perform well only when controlling a small num-
ber of units. Some search algorithms cited are more general
than the algorithms we consider in this paper, e.g., (Ontañón
2013; Ontañón and Buro 2015). This is because such algo-
rithms can be used to control a playing agent throughout a
complete RTS game. By contrast, the algorithms we con-
sider in this paper are specialized for combat scenarios.

Another line of research uses learning to control combat
units in RTS games. Search algorithms need an efficient for-
ward model of the game to plan. By contrast, learning ap-
proaches do not necessarily require such a model. Examples
of learning approaches to unit control include the work by
Usunier et al. (2016) and Liu et al. (2016). Likely due to the
use of an efficient forward model, search algorithms tend
to scale more easily to large-scale combat scenarios than
learning-based methods. While the former can effectively
handle battles with more than 100 units, the latter are usually
tested on battles with no more than 50 units.

Preliminaries
Combat scenarios that arise in RTS games, which we also
call matches, can be described as finite zero-sum two-player
games with simultaneous and durative moves. We assume
matches with deterministic actions in which all units are
visible to both players. Matches can be defined by a tuple
(N ,S, sinit,A,R, T), where,

• N = {i,−i} is the set of players (i is the player we
control and −i is our opponent).

• S = D ∪ F is the set of states, where D denotes the set
of non-terminal states and F the set of terminal states.
Every state s ∈ S defines a grid map containing a joint
set of units U = Ui ∪ U−i, for players i and −i. Every
unit u ∈ U has properties such as u’s x and y coordinates
on the map, attack range (r(u)), attack damage (d(u)),
hit points (hp(u)), and weapon cool-down time, i.e., the
time the unit has to wait before repeating an attack action
(cd(u)). sinit ∈ D is the start state and defines the initial
position of the units U on the map.

• A = Ai × A−i is the set of joint actions. Ai(s) is the
set of legal actions player i can perform at state s. Each
action a ∈ Ai(s) is denoted by a vector of n unit moves

(m1, · · · ,mn), where mk ∈ a is the move of the k-th
ready unit of player i. A unit u is not ready at s if u is
busy performing a move. We denote the set of ready units
of players i and −i as Uri and Ur−i. For k ∈ N+ we write
a[k] to denote the move of the k-th ready unit. Also, for
unit u, we write a[u] to denote the move of u in a.

• We denote the set of unit moves as M, which includes
moving up (U), left (L), right (R) and down (D), waiting
(W), and attacking an enemy unit. The effect of moves
U,L,R,D is to change the unit x and y coordinates on the
map; the effect of an attack move is the reduction of the
target unit’s hp value by the d-value of the unit performing
the attack. We write M(s, u) to denote the set of legal
moves of unit u at s.

• Ri : F → R is a utility function with Ri(s) =
−R−i(s), for any s ∈ F . We use the LTD2 formula in-
troduced by Kovarsky and Buro (2005) as utility function.
LTD2 evaluates a state s with U = Ui ∪ U−i as follows.∑

u∈Ui

√
hp(u) · dpf(u)−

∑
u∈U−i

√
hp(u) · dpf(u) .

Here, dpf is the amount of damage u can cause per frame
of the game and is defined as dpf(u) = d(u)/(cd(u)+1)
(we use cd(u) + 1 to ensure a valid operation if cd = 0).

• The transition function T : S × Ai × A−i → S deter-
mines the sucessor state for a state s and the set of joint
actions taken at s.

A decision point of player i is a state s in which i has at
least one ready unit. In the framework we consider in this
paper, a search algorithm is invoked at every decision point
to decide on the player’s next action.

The game tree of a match is a tree rooted at sinit whose
nodes represent states in S and every edge represents a joint
action in A. For states sk, sj ∈ S , there exists an outgoing
edge from sk to sj if and only if there exists ai ∈ Ai and
a−i ∈ A−i such that T (sk, ai, a−i) = sj . Nodes represent-
ing states in F are leaf nodes. We assume all matches to be
finite, i.e., that the tree is bounded. We denote as Ψ the eval-
uation function used by search algorithms while traversing
the game tree. Ψ receives as input a state s and returns an
estimate of the end-game value of s for player i.

A player strategy is a function σi : S × Ai → [0, 1] for
player i, which maps a state s and an action a to a proba-
bility value, indicating the chance of taking action a at s. A
strategy profile σ = (σi, σ−i) defines the strategy of both
players. The optimal value of the game rooted s for player
i is denoted as Vi(s) and can be computed by finding a Nash
Equilibrium profile. Due to the problem’s size and real-time
constraints, it is impractical to find optimal profiles for most
RTS combats. State-of-the-art approaches use abstractions
to reduce the game tree size and then derive player strate-
gies from the abstracted trees.

Uniform Action Abstractions
We define a uniform abstraction for player i as a function
mapping the set of legal actions Ai to a subset A′i of Ai.
In RTS games, action abstractions are constructed from a

Algorithm 1 Portfolio Greedy Search
Require: state s, available units Uri = {ui1, · · · , uini

} and
Ur−i = {u−i1 , · · · , u−in−i

} in s, unit strategies P , time
limit t, and evaluation function Ψ.

Ensure: action a for player i’s units.
1: σ̄i ← choose a script from P //see text for details
2: σ̄−i ← choose a script from P //see text for details
3: ai ← {σ̄i(ui1), · · · , σ̄i(uini

)}
4: a−i ← {σ̄−i(u−i1), · · · , σ̄−i(u−in−i

)}
5: while time elapsed is not larger than t do
6: for k ← 1 to |Uri | do
7: for each σ̄ ∈ P do
8: a′i ← ai; a′i[k]← σ̄(s, uik)
9: if Ψ(T (s, a′i, a−i)) > Ψ(T (s, ai, a−i)) then

10: ai ← a′i
11: if time elapsed is larger than t then
12: return ai
13: return ai

collection of scripts. A script σ̄ is a function mapping a state
s and a unit u in s to a legal move m for u. A script σ̄ can
be used to define a player strategy σi by applying σ̄ to every
unit in the state. We write σ̄ instead of σ̄(s, u) whenever the
state and the unit are clear from the context.

Let the action-abstracted legal moves of u at state s be
the moves for u that is returned by a script in P , defined as,

M(s, u,P) = {σ̄(s, u)|σ̄ ∈ P} .
Definition 1 A uniform abstraction Φ is a function receiv-
ing as input a state s, a player i, and a set of scripts P . Φ
returns a subset ofAi(s) denotedA′i(s).A′i(s) is defined by
the Cartesian product of moves in M(s, u,P) for all u in
Uri , where Uri is the set of ready units of i in s.

Algorithms using a uniform abstraction search in a game
tree for which player i’s legal actions are limited to A′i(s)
for all s. This way, algorithms focus their search on actions
deemed as promising by the scripts in P , as the actions in
A′i(s) are composed of moves returned by the scripts in P .

NOKAV and Kiter are scripts commonly used for in-
ducing uniform abstractions (Churchill and Buro 2013).
NOKAV assigns a move to u so that u does not cause more
damage than that required to set an enemy’s unit hp to zero.
Kiter allows u to attack and then move away from its target.

Searching in Uniformly Abstracted Spaces
Churchill and Buro (2013) introduced PGS, a method
for searching in uniformly abstracted spaces. Algorithm 1
presents PGS, which receives as input a state s, player i’s
and−i’s set of ready units for s (Uri and Ur−i), a set of scripts
P , a time limit t, and an evaluation function Ψ. PGS returns
an action a for player i to be executed in s. PGS selects the
script σ̄i (resp. σ̄−i) from P (lines 1 and 2) that yields the
largest Ψ-value assuming player i executes an action com-
posed of moves computed with σ̄i for all units in Uri (resp.
Ur−i), assuming −i (resp. i) executes an action selected by
the NOKAV script. Action vectors ai and a−i are initialized
with the moves computed from σ̄i and σ̄−i.

Once ai and a−i have been initialized, PGS iterates
through all units uik in Uri and tries to greedily improve the
move assigned to uik in ai, denoted by ai[k]. Since PGS only
assigns moves to units given by scripts in P , it considers
only actions in the space induced by a uniform abstraction.
PGS evaluates ai for each possible move σ̄(s, uik) for unit
uik. PGS keeps in ai the action found during search with the
largest Ψ-value. This process is repeated until PGS reaches
time limit t. PGS then returns ai.

The action a−i does not change after its initialization
(see line 4). Although in PGS’s original formulation one al-
ternates between improving player i’s and player −i’s ac-
tions (Churchill and Buro 2013), Churchill and Buro sug-
gested to keep player −i’s action fixed after initialization as
that leads to better results in practice.

Lelis (2017) introduced Stratified Strategy Selection
(SSS), a hill-climbing algorithm for uniformly abstracted
spaces similar to PGS. The main difference between PGS
and SSS is that the latter searches in the space induced by
a partition of units called a type system. SSS assigns moves
returned by the same script to units of the same type. For ex-
ample, all units with low hp-value (type) move away from
the battle (strategy encoded in a script). In terms of pseu-
docode, SSS initializes σ̄i and σ̄−i with the NOKAV script
(lines 1 and 2). Instead of iterating through all units as PGS
does, SSS iterates through all types q of units in line 6 of
Algorithm 1 and assigns the move provided by σ̄ to all units
of type q before evaluating the resulting state with Ψ. SSS
uses a meta-reasoning method to select the type system to
be used. We call SSS what Lelis (2017) called SSS+.

Asymmetric Action Abstractions
Uniform abstractions are restrictive in the sense that all units
have their legal moves reduced to those specified by scripts.
In this section we introduce an abstraction scheme we call
asymmetric abstraction that is not as restrictive as uniform
abstractions but still uses the guidance of the scripts for se-
lecting a subset of promising actions. The key idea behind
asymmetric abstractions is to reduce the number of legal
moves of only a subset of the units controlled by player i;
the sets of legal moves of the other units remain unchanged.
We call the subset of units that do not have their set of legal
moves reduced the unrestricted units; the complement of
the unrestricted units are referred as the restricted units.
Definition 2 An asymmetric abstraction Ω is a function re-
ceiving as input a state s, a player i, a set of unrestricted
units U ′i ⊆ Uri , and a set of scripts P . Ω returns a subset of
actions of Ai(s), denoted A′′i (s), defined by the Cartesian
product of the moves inM(s, u,P) for all u in Uri \ U ′i and
of movesM(s, u′) for all u′ in U ′i .

Algorithms using an asymmetric abstraction Ω search in
a game tree for which player i’s legal actions are limited to
A′′i (s) for all s. If the set of unrestricted units is equal to the
set of units controlled by the player, then the asymmetric ab-
straction is equivalent to the un-abstracted space, and if the
set of unrestricted units is empty, the asymmetric abstraction
is equivalent to the uniform abstraction induced by the same
set of scripts. Asymmetric abstractions allow us to explore

the action abstractions in the large spectrum of possibilities
between the uniformly abstracted and un-abstracted spaces.

The following theorem shows that an optimal strategy de-
rived from the space induced by an asymmetric abstraction
is at least as good as the optimal strategy derived from the
space induced by a uniform abstraction as long as both ab-
stractions are defined by the same set of scripts.

Theorem 1 Let Φ be a uniform abstraction and Ω be an
asymmetric abstraction, both defined with the same set of
scripts P . For a finite match with start state s, let V Φ

i (s)
be the optimal value of the game computed by considering
the space induced by Φ; define V Ω

i (s) analogously. We have
that V Ω

i (s) ≥ V Φ
i (s).

The proof for Theorem 1 (provided in the Appendix)
hinges on the fact that a player searching with Ω has ac-
cess to more actions than a player searching with Φ. This
guarantee can also be achieved by enlarging the set P used
to induce Φ. The problem of enlarging P is that new scripts
might not be readily available as they need to be either hand-
crafted or learned. By contrast, one can easily create a wide
range of asymmetric abstractions by modifying the set of
unrestricted units. Also, depending on the combat scenario,
some units might be more important than others and asym-
metric abstractions allow one to assign finer strategies to
these units. Similarly to what human players do, asymmetric
abstractions allow algorithms to focus on a subset of units at
a given time of the match. This is achieved by considering
all legal moves of the unrestricted units during search.

Searching with Asymmetric Abstractions
We introduce Greedy Alpha-Beta Search (GAB) and Strati-
fied Alpha-Beta Search (SAB), two algorithms for searching
in asymmetrically abstracted spaces. GAB and SAB hinge
on a property of PGS and SSS that has hitherto been over-
looked. Namely, both PGS and SSS may come to an early
termination if they encounter a local maximum. PGS and
SSS reach a local maximum when they complete all iter-
ations of the outer for loop in Algorithm 1 (line 6) with-
out altering ai (line 10). Once a local maximum is reached,
PGS and SSS are unable to further improve the move assign-
ments, even if the time limit t was not reached.

GAB and SAB take advantage of PGS’s and SSS’s early
termination by operating in two steps. In the first step GAB
and SAB search for an action in the uniformly abstracted
space with PGS and SSS, respectively. The first step fin-
ishes either when (i) the time limit is reached or (ii) a local
maximum is encountered. In the second step, which is run
only if the first step finishes by encountering a local max-
imum, GAB and SAB fix the moves of all restricted units
according to the moves found in the first step, and search in
the asymmetrically abstracted space for moves for all unre-
stricted units. If the first step finishes by reaching the time
limit, GAB and SAB return the action determined in the first
step. GAB and SAB behave exactly like PGS and SSS in de-
cision points in which the first step uses all time allowed for
planning. We explain GAB and SAB in more detail below.

We also implemented a variant of PGS for searching in
asymmetric spaces that is simpler than the algorithms we

present in this section. In this PGS variant, during the hill-
climbing search, for a given state s, instead of limiting the
number of legal moves of all units u toM(s, u,P), as PGS
does, we consider all legal movesM(s, u) for unrestricted
units, and the movesM(s, u,P) for restricted units. We call
this PGS variant Greedy Asymmetric Search (GAS).

Greedy Alpha-Beta Search (GAB) In its first step GAB
uses PGS to search in a uniformly abstracted space induced
by P for deriving an action a that is used to fix the moves
of the restricted units during the second search. In its second
step, GAB uses a variant of Alpha-Beta that accounts for du-
rative moves (Churchill, Saffidine, and Buro 2012) (ABCD).
Although we use ABCD, one could also use other algo-
rithms such as UCTCD (Churchill and Buro 2013). ABCD
is used to search in a tree we call Move-Fixed Tree (MFT).
The following example illustrates how the MFT is defined;
MFT ’s definition follows the example.

Example 1 Let Uri = {u1, u2, u3} be i’s ready units in s,
P = {σ̄1, σ̄2} be a set of scripts, and {u1, u3} be the unre-
stricted units. Also, let a = (W,L,R) be the action returned
by PGS while searching in the uniformly abstracted space
induced by P . GAB’s second step searches in the MFT .

The MFT is rooted at s, and the set of abstracted legal
actions in s is obtained by fixing a[u2] = L and considering
all legal moves of u1 and u3. That is, ifM(s, u1) = {W,U}
andM(s, u3) = {R,D}, then the set of abstracted legal ac-
tions in s is: {(W,L,R), (W,L,D), (U,L,R), (U,L,D)}.
For all descendants states s′ of s in the MFT , if
M(s′, u1) = {W,U} and M(s′, u3) = {R,D}, then the
set of abstracted legal actions in s′ is:

{(W, σ̄1(s′, u2), R), (W, σ̄1(s′, u2), D),

(U, σ̄1(s′, u2), R), (U, σ̄1(s′, u2), D)} .

Here, σ̄1 ∈ P is what we call the default script of the MFT .

Definition 3 (Move-Fixed Tree) For a given state s, a sub-
set of unrestricted units of Ui in s, a set of scriptsP , a default
script σ̄ ∈ P , and an action a returned by the search algo-
rithm’s first step, a Move-Fixed Tree (MFT) is a tree rooted
at s with the following properties.

1. The set of abstracted legal actions for player i at the root
s of the MFT is limited to actions a′ that have moves
a′[u] fixed to a[u], for all restricted units u;

2. The set of abstracted legal actions for player i at states s′
descendants of s is limited to actions a′ that have moves
a′[u] fixed to σ̄(s′, u), for all restricted units u;

3. The only abstracted legal action for player−i at any state
in the MFT is defined by fixing the move returned by σ̄ to
all units in U−i.
By searching in the MFT , ABCD searches for moves for

the unrestricted units while the moves of all other units,
including the opponent’s units, are fixed. We fix the op-
ponent’s moves to the NOKAV (our default script) as was
done in previous work (Churchill and Buro 2013; Wang et
al. 2016; Lelis 2017). By fixing the opponent’s moves to
NOKAV we are computing a best response to NOKAV, and
in theory, this could make our player exploitable. However,

likely due to the real-time constraints, in practice one tends
to derive more effective strategies by fixing the opponent to
NOKAV, as mentioned in previous works (Lelis 2017). The
development of action abstraction schemes different than us-
ing NOKAV for the opponent is an open research question.

Let s1 and s2 be the states returned by the transition
function T after applying action a1 returned by GAB’s
first step (PGS) and action a2 returned by GAB’s second
step (ABCD), respectively, from the state s representing the
game’s current decision point. GAB returns a1 if Ψ(s1) >
Ψ(s2), and a2 otherwise.

Stratified Alpha-Beta Search (SAB) The difference be-
tween SAB and GAB is the search algorithm used in their
first step: while GAB uses PGS, SAB uses SSS. The second
step of SAB follows exactly the second step of GAB.

GAB and SAB for Uniform Abstractions For any state
s, the value of Ψ(T (s, ai, a−i)) for the action ai returned by
PGS is a lower bound for the Ψ-value of the action returned
by GAB. Similarly, SAB has the same guarantee over SSS.
This is because the second step of GAB and SAB are per-
formed only after a local maximum is reached. If the second
step is unable to find an action with larger Ψ than the first
step, both GAB and SAB return the action encountered in
the first step. We introduce variants of GAB and SAB called
GABP and SABP that search in uniformly abstracted spaces
to compare asymmetric with uniform abstractions.

The difference between GAB and SAB and their variants
GABP and SABP is that the latter only account for unit
moves inM(s, u,P) for all s and u in their ABCD search.
That is, in their second step search, GABP and SABP only
consider actions a′ for which the moves a′[u] for restricted
units u are fixed (as in GAB’s and SAB’s MFT) and the
moves a′[u′] for unrestricted units u′ that are inM(s, u′,P).

GABP and SABP focus their search on a subset of units
U ′ by searching deeper into the game tree with ABCD for
U ′. In addition to searching deeper with ABCD, GAB and
SAB focus their search on a subset of units U ′ by account-
ing for all legal moves of units in U ′ during search. If
granted enough computation time, optimal algorithms using
Ω derive stronger strategies than optimal algorithms using Φ
(Theorem 1). In practice, due to the real-time constraints, al-
gorithms are unable to compute optimal strategies for most
of the decision points. We analyze empirically, by compar-
ing GABP to GAB and SABP to SAB, which abstraction
scheme allows one to derive stronger strategies.

Strategies for Selecting Unrestricted Units
In this section we describe three strategies for selecting the
unrestricted units. A selection strategy receives a state s and
a set size N and returns a subset of size N of player i’s
units. The selection of unrestricted units is dynamic as the
strategies can choose different unrestricted units at different
states. Ties are broken randomly in our strategies.

1. More attack value (AV+). Let av(u) = dpf(u)
hp(u) . AV+

selects the N units with the largest av-values, which al-
lows search algorithms to provide finer control to units
with low hp-value and/or large dpf -value. This strategy

is expected to perform well as it might be able to preserve
longer in the match the units which are about the be elim-
inated from the match and have good attack power.

2. Less attack value (AV-). AV- selects the N units with the
smallest av-values. We expect this strategy to be outper-
formed by AV+, as explained above.

3. Random (R). R randomly selects N units at sinit to be
the unrestricted units. R replaces an unrestricted unit that
has its hp-value reduced to zero by randomly selecting a
restricted unit. This is a domain-independent strategy that
in principle could be applied to other multi-unit domains.

Empirical Methodology
We use SparCraft1 as our testbed, which is a simulation envi-
ronment of Blizzard’s StarCraft. In SparCraft the unit prop-
erties such as hit points are exactly the same as StarCraft.
However, SparCraft does not implement fog of war, colli-
sions, and unit acceleration (Churchill and Buro 2013). We
use SparCraft because it offers an efficient forward model of
the game, which is required by search-based methods. All
experiments are run on 2.66 GHz CPUs.

Combat Configurations
We experiment with units with different hp, d, and r-values.
We use ↑ to denote large and ↓ to denote small values. Also,
we call u a melee unit if u’s attack range equals zero (r = 0),
and we call u a ranged unit if u is able to attack from far (r >
0). Namely, we use the following unit kinds: Zealots (Zl,
↑hp, ↑d, melee), Dragoons (Dg, ↑hp, ↑d, ranged), Zerglings
(Lg, ↓hp, ↓d, melee), Marines (Mr, ↓hp, ↓d, ranged).

We consider the combat scenarios where each player con-
trols units of the following kinds: (i) Zl; (ii) Dg; (iii) Zl and
Dg; (iv) Zl, Dg, and Lg; and (v) Zl, Dg, Lg, and Mr. We ex-
periment with matches with as few as 6 units and as many
as 56 units on each side. The largest number of units con-
trolled by a player in a typical StarCraft combat is around
50 (Churchill and Buro 2013). The first two columns of Ta-
ble 2 show the 20 combat configurations used in the exper-
iments. The number of units is distributed equally amongst
all kinds of units. For example, the scenario Zl+Dg+Lg+Mr
with a total number of 56 units has 14 units of each kind.

The units are placed in a walled arena with no obstacles
of size 1280 × 780 pixels; the largest unit (Dragoon) is ap-
proximately 40 × 50 pixels large. The walls ensure finite
matches by preventing units from indefinitely moving away
from the enemy. Player i’s units are placed at a random co-
ordinate to the right of the center of the arena (with distance
varying from 0 and 128 pixels). Player −i’s units are placed
at a symmetric position to the left of the center. Then, we add
220 pixels to the x-coordinate of player i’s units, and sub-
tract 220 pixels from the x-coordinate player−i’s units, thus
increasing the distance between enemy units by 440 pixels.
We use P = {NOKAV, Kiter} and a time limit of 40 mil-
liseconds for planning in all experiments.

We use the Ψ function described by Churchill et
al. (2012). Instead of evaluating state s directly with LTD2,

1github.com/davechurchill/ualbertabot/tree/master/SparCraft

GAB vs. PGS

Strategy Unrestricted Set Size N Avg.2 4 6 8 10
AV+ 0.88 0.92 0.89 0.87 0.86 0.88
AV- 0.69 0.76 0.78 0.82 0.82 0.77
R 0.78 0.86 0.87 0.88 0.88 0.85

SAB vs. SSS

Strategy Unrestricted Set Size N Avg.2 4 6 8 10
AV+ 0.89 0.92 0.90 0.88 0.90 0.87
AV- 0.69 0.76 0.78 0.70 0.82 0.75
R 0.75 0.80 0.83 0.84 0.85 0.81

Table 1: Winning rate of GAB against PGS and of SAB
against SSS for different strategies and set sizes.

our Ψ simulates the game forward from s for 100 state tran-
sition steps until reaching a state s′; we then use the LTD2-
value of s′ as the Ψ-value of s. The game is simulated from
s according to the NOKAV script for both players.

Testing Selection Strategies and Values of N
First, we test different strategies for selecting unrestricted
units as well as different values of N . We test GAB against
PGS and SAB against SSS (the algorithms used in the first
step of GAB and SAB) with AV+, AV-, and R, with N vary-
ing from 1 to 10. Table 1 shows the average winning rates
of GAB and SAB in 100 matches for each of the 20 combat
configurations. Since the winning rate does not vary much
with N , we show the winning rate of only even values of N .
The “Avg.” column shows the average across allN (1 to 10).

Both GAB and SAB outperform their base algorithms for
all selection strategies and N values tested, even with the
domain-independent R. The strategy that performs best is
AV+, which obtains a winning rate of 0.92 with N of 4 for
both GAB and SAB. The winning rate can vary consider-
ably depending on the selection strategy for a fixed N . For
example, for N of 2, PGS and SAB with AV+ obtain a win-
ning rate of 0.88 and 0.89, respectively, while they obtain a
winning rate of only 0.69 with AV-. These results demon-
strate the importance of carefully selecting the set of units
for which the algorithm will focus its search on.

Although GABP and SABP do not search in asymmetri-
cally abstracted spaces, their performance also depends on
the set of units controlled in the algorithms’ ABCD search.
Thus, we tested GABP and SABP with AV+, AV-, and R for
selecting the units to be controlled in the algorithms’ ABCD
search. We also tested different number of units controlled in
such searches: we tested set sizes from 1 to 10. Similar to the
GAB and SAB experiments, we tested GABP against PGS
and SABP against SSS; the detailed results are also omit-
ted for space. The highest winning rate obtained by GABP
against PGS was 0.74 while using the AV+ strategy to con-
trol 9 units in its ABCD search. The highest winning rate
obtained by SABP against SSS+ was 0.78 while using the R
strategy to control 9 units in its ABCD search.

GAB and SAB tend to perform best while controlling
a smaller set of units (4 units in our experiment) in their

#Units GABP GAB GAB SABP SAB SAB
PGS PGS GABP SSS SSS SABP

Z
l

(8) 0.73 0.72 0.52 0.65 0.95 0.93
(16) 0.78 0.79 0.57 0.70 0.96 0.94
(32) 0.77 0.81 0.54 0.72 0.93 0.81
(50) 0.80 0.78 0.50 0.69 0.90 0.76

D
g

(8) 0.69 0.94 0.88 0.60 0.91 0.88
(16) 0.71 0.85 0.84 0.62 0.93 0.88
(32) 0.68 0.81 0.82 0.65 0.88 0.81
(50) 0.64 0.78 0.78 0.67 0.87 0.79

Z
l+

D
g (8) 0.64 0.76 0.68 0.59 0.93 0.90

(16) 0.66 0.82 0.78 0.66 0.93 0.86
(32) 0.66 0.79 0.79 0.64 0.91 0.81
(50) 0.65 0.74 0.71 0.63 0.90 0.77

Z
l+

D
g

+L
g

(6) 0.58 0.94 0.91 0.59 0.94 0.94
(18) 0.66 0.93 0.90 0.67 0.94 0.89
(42) 0.66 0.89 0.89 0.65 0.92 0.83
(54) 0.64 0.86 0.89 0.63 0.89 0.79

Z
l+

D
g

L
g+

M
r (8) 0.60 0.92 0.88 0.58 0.95 0.94

(16) 0.64 0.94 0.91 0.59 0.95 0.91
(40) 0.65 0.92 0.90 0.61 0.91 0.82
(56) 0.66 0.92 0.90 0.60 0.85 0.75

Table 2: Top player’s winning rate against bottom player.

ABCD search than GABP and SABP (9 units). This is be-
cause GAB and SAB’s ABCD search does not restrict the
moves of the units, while GABP and SABP ’s ABCD search
does. GABP and SABP are able to effectively search deeper
for a larger set of units than GAB and SAB. On the other
hand, GAB and SAB are able to encounter finer strategies to
the unrestricted units. Next, we directly compare these ap-
proaches with a detailed empirical study.

Asymmetric versus Uniform Abstractions
We test GAB, GABP and PGS (G-Experiment); and SAB,
SABP , SSS (S-Experiment). GAB, GABP , SAB, and
SABP use the best performing unrestricted set size N and
selection strategies as described above.

The winning rates in 1,000 matches of the algorithms in
the G-Experiment are shown on the lefthand side of Table 2.
The first two columns of the table specify the kind and the to-
tal number of units controlled by each player. The remaining
columns show the winning rate of the top algorithm, shown
in the first row of the table, against the bottom algorithm.
For example, in matches with 16 Zealots and 16 Dragoons
(total of 32 units) GAB defeats PGS in 79% of the matches.
The winning rates of the algorithms in the S-Experiment are
shown on the righthand side of the table.

We observe in the third and fourth columns of the table
that both GABP and GAB outperform PGS in all configu-
rations tested. However, these results do not allow us to ver-
ify the effectiveness of asymmetric abstractions if analyzed
individually. This is because both GABP and PGS search
in uniformly abstracted spaces, and GAB’s advantage over
PGS could be due to the use of a different search strategy,
and not due to the use of a different abstraction scheme. By

comparing the numbers across the two columns we observe
that GAB, which uses asymmetric abstractions, obtains sub-
stantially larger winning rates over PGS than GABP , which
uses uniform abstractions. For example, in matches with 8
Zealots and 8 Dragoons (16 units in total), GABP ’s winning
rate is 0.66 against PGS, while GAB’s is 0.82.

The column GAB vs GABP of the table allows a direct
comparison between uniform and asymmetric abstractions.
GAB substantially outperforms GABP in almost all config-
urations, and its winning rate is never below 0.50. These re-
sults highlight the importance of focusing the search effort
on a subset of units through an asymmetric abstraction.

The results for the S-Experiment are similar to those of
the G-Experiment: SAB has a higher winning rate over SSS
than SABP and SAB substantially outperforms SABP .

SAB’s winning rate over SSS is often larger than GAB’s
over PGS. For example, in combat scenarios with Zealots
only (Zl), GAB’s largest winning rate over PGS is 0.81 (with
32 units), which is smaller than the smallest winning of
SAB over SSS (0.90 with 50 units). This is likely because
SAB’s first step (SSS) tends to finish much more quickly
than GAB’s (PGS). SSS searches for actions for types of
units, while PGS searches for actions for units directly, and
the number of types tend to be much smaller than the num-
ber of units (Lelis 2017). As a result, SAB performs its sec-
ond step more often than GAB, which allows SAB to de-
rive finer strategies to its unrestricted units in more decision
points than GAB. In addition to executing the second step
more often, SAB usually allows more computation time for
its second step. SAB allowed 32.6 milliseconds of computa-
tion time on average for its second step, while GAB allowed
21.8 milliseconds on average for its second step.

Comparison of GAS with GAB and PGS We also ran
experiments comparing GAS with GAB and PGS in com-
bat scenarios containing (i) Zl, (ii) Dg, and (iii) Zl and
Dg; we used the same number of units shown in Table 2
for these scenarios. For each combat scenario we ran 1,000
matches. GAS won 55% of the matches against PGS and
only 14% against GAB. These results highlight the signifi-
cance of combining novel search algorithms with asymmet-
ric abstractions. GAS is able to only marginally outperform
PGS. By contrast, the two-step scheme used with GAB sub-
stantially outperforms both PGS and GAS.

Conclusions and Future Work
We introduced GAB and SAB, two search algorithms that
use an abstraction scheme we call asymmetric action ab-
straction. For not being too restrictive while filtering actions
and for assigning finer strategies to a particular subset of
units, GAB and SAB are able to substantially outperform
the state-of-the-art search-based algorithms for RTS com-
bats. As future work we intend to apply GAB and SAB to
complete RTS games and to compare them to other search-
based approaches designed to play complete games such
as NaiveMCTS (Ontañón 2013) and PuppetSearch (Barriga,
Stanescu, and Buro 2017). We are also interested in devel-
oping algorithms that learn how to select the unrestricted set
of units in scenarios that appear in complete RTS games.

Appendix: Proofs
The proof of Theorem 1 hinges on the fact that one has ac-
cess to more actions with Ω than with Φ. This idea is for-
malized in Lemma 1.

Lemma 1 Let Φ be a uniform abstraction and Ω be an
asymmetric abstraction, both defined with the same set of
scripts P . Also, let A′i(s) be the set of actions available at
state s according to Φ andA′′i (s) the set of actions available
at s according to Ω. A′i(s) ⊆ A′′i (s) for any s.

Proof. By definition, the actions in A′i(s) are generated by
the Cartesian product ofM(s, u,P) for all u in Ui in s. The
actions in A′i(s) are generated by the Cartesian product of
M(s, u,P) for all u in Ui \ U ′i and ofM(s, u) for all u in
U ′i . Since, also by definition, M(s, u,P) ⊆ M(s, u), we
have that A′i(s) ⊆ A′′i (s). �

Let Σ′i and Σ′′i be the set of player i’s strategies whose
supports contain only actions in A′i and A′′i , respectively.
Also, let Σ−i be the set of all player −i’s strategies.
Lemma 1 allows us to write the following corollary.

Corollary 1 For abstractions Φ and Ω defined from the
same set of scripts P we have that Σ′i ⊆ Σ′′i .

Theorem 1 Let Φ be a uniform abstraction and Ω be an
asymmetric abstraction, both defined with the same set of
scripts P . For a finite match with start state s, let V Φ

i (s)
be the optimal value of the game computed by considering
the space induced by Φ; define V Ω

i (s) analogously. We have
that V Ω

i (s) ≥ V Φ
i (s).

Proof. We prove the theorem by induction on the level of
the game tree. The base case is given by leaf nodes sl. Since
V Ω
i (sl) = V Φ

i (sl) = Ri(sl), the theorem holds. The induc-
tive hypothesis is that V Ω

i (s′) ≥ V Φ
i (s′) for any state s′ at

level j+ 1 of the tree. For any state s at level j we have that,

V Ω
i (s) = max

σi∈Σ′′i

min
σ−i∈Σ−i

∑
ai∈A(s)

∑
a−i∈A−i(s)

σi(s, ai)·

σ−i(s, a−i) · V Ω
i (T (s, ai, a−i))

≥ max
σi∈Σ′i

min
σ−i∈Σ−i

∑
ai∈A(s)

∑
a−i∈A−i(s)

σi(s, ai)·

σ−i(s, a−i) · V Φ
i (T (s, ai, a−i)) = V Φ

i (s) .

The first equality is the definition of the value of a
zero-sum simultaneous move game. The inequality is be-
cause Σ′i ⊆ Σ′′i (Corollary 1) and V Ω

i (T (s, ai, a−i)) ≥
V Φ
i (T (s, ai, a−i)), as T (s, ai, a−i) returns a state at level
j + 1 of the tree (inductive hypothesis). The inequality also
holds if the transition T (s, ai, a−i) returns a terminal state z
at level j+1 as V Ω

i (z) = V Φ
i (z) = Ri(z). The last equality

is analogous to the first one. �

Acknowledgements
The authors gratefully thank FAPEMIG, CNPq, and CAPES
for financial support, the anonymous reviewers for several
great suggestions, and Rob Holte for fruitful discussions and
suggestions on an earlier draft of this paper.

References
Balla, R.-K., and Fern, A. 2009. UCT for tactical assault
planning in real-time strategy games. In Proceedings of
the International Joint Conference on Artificial Intelligence,
40–45.
Barriga, N. A.; Stanescu, M.; and Buro, M. 2017. Game
tree search based on non-deterministic action scripts in real-
time strategy games. IEEE Transactions on Computational
Intelligence and AI in Games.
Chung, M.; Buro, M.; and Schaeffer, J. 2005. Monte Carlo
planning in RTS games. In Proceedings of the IEEE Sympo-
sium on Computational Intelligence and Games.
Churchill, D., and Buro, M. 2013. Portfolio greedy search
and simulation for large-scale combat in StarCraft. In Pro-
ceedings of the Conference on Computational Intelligence
in Games, 1–8. IEEE.
Churchill, D.; Saffidine, A.; and Buro, M. 2012. Fast heuris-
tic search for RTS game combat scenarios. In Proceedings
of the AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment.
Furtak, T., and Buro, M. 2010. On the complexity of two-
player attrition games played on graphs. In Proceedings of
the AAAI Conference on Artificial Intelligence and Interac-
tive Digital Entertainment, 113–119.
Justesen, N.; Tillman, B.; Togelius, J.; and Risi, S. 2014.
Script- and cluster-based UCT for StarCraft. In IEEE Con-
ference on Computational Intelligence and Games, 1–8.
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In Proceedings of the European Conference
on Machine Learning, 282–293. Springer-Verlag.
Kovarsky, A., and Buro, M. 2005. Heuristic search applied
to abstract combat games. In Advances in Artificial Intel-
ligence: Conference of the Canadian Society for Computa-
tional Studies of Intelligence, 66–78. Springer.
Lelis, L. H. S. 2017. Stratified strategy selection for unit
control in real-time strategy games. In International Joint
Conference on Artificial Intelligence, 3735–3741.
Liu, S.; Louis, S. J.; and Ballinger, C. A. 2016. Evolv-
ing effective microbehaviors in real-time strategy games.
IEEE Transactions on Computational Intelligence and AI in
Games 8(4):351–362.
Ontañón, S., and Buro, M. 2015. Adversarial hierarchical-
task network planning for complex real-time games. In Pro-
ceedings of the International Joint Conference on Artificial
Intelligence, 1652–1658.
Ontañón, S. 2013. The combinatorial multi-armed ban-
dit problem and its application to real-time strategy games.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment, 58–64.
Sailer, F.; Buro, M.; and Lanctot, M. 2007. Adversar-
ial planning through strategy simulation. In Proceedings
of the IEEE Symposium on Computational Intelligence and
Games, 80–87.
Usunier, N.; Synnaeve, G.; Lin, Z.; and Chintala, S. 2016.
Episodic exploration for deep deterministic policies: An

application to StarCraft micromanagement tasks. CoRR
abs/1609.02993.
Wang, C.; Chen, P.; Li, Y.; Holmgård, C.; and Togelius, J.
2016. Portfolio online evolution in StarCraft. In Proceedings
of the Conference on Artificial Intelligence and Interactive
Digital Entertainment, 114–120.

