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Abstract—A key challenge in procedural content generation is
to automatically evaluate whether the generated content has good
quality. In this paper we describe an approach that uses non-
expert workers to evaluate small portions of levels generated
by an off-the-shelf generation system for the game of Infinite
Mario Bros. Several such evaluated portions are then combined
to form full levels of the game using a mathematical progression
arc model. The composition of the small portions into full levels
is done by accounting for the human-annotated information. We
evaluated the approach using computational metrics as well as
surveying human subjects playing the levels. The results show
that the human computation approach is able to generate levels
that are perceived by people to have better visual aesthetics and
to be more enjoyable to play than existing approaches. Another
contribution of our work is a dataset of the small annotated
levels that can be used in future research for learning models for
evaluating machine generated content.

Index Terms—Procedural Content Generation, Platform
Games, Human Computation

I. INTRODUCTION

PROCEDURAL Content Generation (PCG) is an approach
for automatically generating content for specific problem

domains. For example, when applied to computer games, PCG
systems automatically produce levels, rules, textures, and other
contents that are traditionally created by human professional
designers [1]. The PCG approach has great potential as it
can be used to generate content that is tailored to the styles
of individual people [2], [3]; it may increase engagement by
providing a new experience for players every time they play
a game [4]. On the other hand, it is difficult to evaluate
the quality of the generated content. Specifically, PCG can
generate a large number of candidate game components such
as levels and textures, and using game designers to evaluate
such components can be time consuming and expensive.

The contribution of this work is a novel PCG approach
that addresses the challenge above by combining a human-
in-the-loop approach with a mathematical model of difficulty
progression. In our human-in-the-loop approach we rely on
non-expert human workers to measure whether particular
content is of good or bad quality. Human evaluations can
be quickly obtained from crowdsourcing environments such
as Amazon Mechanical Turk [5] (AMT) and from students
or volunteers. Our approach uses an existing PCG system to
generate thousands of small units of play called “segments”.
We use human computation [6] to evaluate these segments for
their enjoyment, visual aesthetics, and difficulty. We combine
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the individual segments to a complete level by accounting for
the human-annotated information and a simple mathematical
model of difficulty progression [7].

We applied this approach to Infinite Mario Bros (IMB) [8],
a clone of Super Mario Bros. Non-expert human workers
annotated over one thousand segments of the IMB game with
respect to the workers’ perceived enjoyment, visual aesthetics,
and difficulty. These annotated segments were subsequently
combined to form complete levels of the game. We conducted
two user studies to evaluate our approach. In the first study,
we established that people preferred playing a level composed
of segments of increasing difficulty to a level composed of
segments of random difficulty. In the second study, users
reported that the levels generated by the human computation
approach were perceived to be more enjoyable to play and to
exhibit better visual aesthetics than the levels generated by the
other approaches. We have made the database of annotated
segments publicly available.1 Our results demonstrate that
intelligently combining opinions from non-experts can provide
a novel PCG approach that is able to generate visually pleasing
and enjoyable levels of a platform game.

This work extends a preliminary publication [9]. First, we
analyze how the number of segments each worker evaluates
in a single session of play influences the rating values (see
Section V-D). Second, we analyze how our approach changes
the expressive range [10] of the evaluated segments after
combining them with a mathematical model of difficulty
progression (see Section VIII). Third, we increase from 37 to
53 the number of subjects who participated in the user study
that compares our PCG approach with previous methods.

The paper is organized as follows. In Section II we review
the relevant literature. In Section III we present relevant
background material. In Section IV through VI we explain
our human-computation approach. In Section VII we present
the results of a detailed user study we conducted to evaluate
our system. In Section VIII we present the expressive range
study of our approach.

II. RELATED WORK

Our work relates to the research encountered in two separate
areas: procedural content generation and human computation.
In this section we review relevant works in each of these areas.

A. Procedural Content Generation

PCG algorithms have been applied to different game genres,
such as dungeon crawlers [11], real-time strategy games [12],

1http://www.dpi.ufv.br/∼lelis/downloads/Mario-Dataset.zip



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

physics-based puzzles [13], racing [14] and arcade games [15],
platform games [16], and other genres.

Smith et al. [17] presented Tanagra, a system for developing
levels for 2D platform games such as IMB. Tanagra allows
the game designer to specify parts of the level and the system
completes the level while respecting the designer’s decisions.
Sorenson et al. [18] presented a system which uses the idea
of rhythm groups introduced by Smith et al. [10] to define a
computational model of player enjoyment to evolve levels of
IMB. Sorenson et al.’s system is similar to our approach in
that it uses a mathematical model to generate content, but it
does not incorporate human input in the process.

Shaker et al. [2] describe a system for generating player-
specific content for IMB which directly asks each player to
evaluate the generated content during his or her interaction.
This approach disrupts the user’s play, which is time consum-
ing and may deter the player’s enjoyment. By contrast, our
system uses human workers as a pre-processing step without
disrupting individual players during their play.

Many have used computational models to procedurally
generate content for games, but without involving non-expert
workers in the loop (e.g., [19], [20]). Two formidable examples
include Shaker et al. [21], who showed how to extract features
to learn predictive models of the player’s experience in IMB;
Snodgrass and Ontañón [22] introduced a PCG system that
learns Markov chains from SMB levels created by professional
designers, which are then used to generate novel game levels.

We describe work on automatically evaluating the gen-
erated content in computer games for players’ enjoyment.
For example, Togelius et al. [23] use a player’s behavior to
generate race tracks which are more fun to the player; Liapis
et al., [24] introduce general evaluation functions which are
applicable to different games; Sorenson et al. [18] learn a
model of enjoyment based on levels generated by professional
designers. Such works are usually motivated by the fact that it
is not possible to have humans evaluating content produced by
machines. For example, Shaker et al. [25] stated that “because
of the large amount of content that can be generated, it is not
feasible to humanly judge the results, and automatic evaluation
becomes a necessity”. Our work shows that by using people to
evaluate smaller segments and combining them intelligently,
we are able to construct full-sized levels that are enjoyable to
play without having to manually annotate the entire game.

Another line of research within PCG is concerned with the
development of mixed-initiative systems. In such systems the
game designer “takes turns” with the system in the creation
process. For example, Sketchbook Sentient is a computer-
aided design tool for creating game maps that operates on
high-level sketches instead of detailed maps. A genetic algo-
rithm based tool presents suggestions in real time, allowing the
user to replace parts of the map being created [26]. Ropossum
is also a mixed-initiative system that creates complete and
playable levels of Cut the Rope and allows the game designer
to fine adjust the content created [27]. Butler et al. also
introduced a mixed-initiative system to generate levels for
the educational game of Refraction [28], which allows the
designer to define a progression plan which is subsequently
satisfied by the computer. Campos et al. [29] presented a

mixed-initiative system that allow the designer to sketch the
level of a physics-based game with a drawing tool and the
system creates the level’s structure from the sketch. These
systems differ from our approach because they were built to
assist game designers. By contrast, our system aggregates the
feedback of non-professional workers to build game levels.

B. Human Computation

Research on human computation investigates methods for
using human intelligence to solve problems that computers
cannot solve alone [30]. Examples abound, from labeling
pictures on the internet [31] and classifying images from the
Sloan Digital Sky Survey [32] to human-guided genetic algo-
rithms [33]. Obtaining services and information by soliciting
contributions from individual people is not a new idea, but
the growth of online communities has made crowdsourcing
platforms an easy way to obtain access to human intelligence
on demand in a scalable way. These platforms include work-
for-pay services such as Amazon Mechanical Turk, as well as
volunteer-based and citizen science services [32].

More recently, there has been growing work in artificial in-
telligence that focuses on devising innovative ways to harness
human intelligence efficiently. For example, the CrowdSynth
effort [34] combines machine learning and decision-theoretic
optimization techniques to manage hiring decisions and task
allocation in crowdsourcing. They show how learned prob-
abilistic models can be used to fuse human and machine
contributions to predict the behaviors of workers. Other works
have used AI methods to increase engagement in citizen
science [35] or used decision theoretic planning and execution
for managing workflow as an optimziation problem [36].

There are few works using the crowd to design and evaluate
textual content that was automatically generated. Sina et
al. [37] used planning algorithms to generate stories about
daily activities from a pre-defined database and used the crowd
to rate the resulting content for how believable and consistent
they were. The work of Li et al. [38] generates a corpus of
narrative examples using the crowd. They infer a graphical
representation over story events that is subsequently sampled
to create narratives using a fitness function. We are the first
to use the crowd to generate game levels.

III. BACKGROUND

A. The Infinite Mario Bros Domain

The game of IMB is a popular level-based game which also
serves as a testbed for evaluating PCG systems in the literature.
The advantage of using IMB in our study is that we are able
to compare the quality of the content generated by our system
with that of the state-of-the-art.

Three screenshots of IMB are shown in Figure 2. The player
controls Mario (on the center of screen). Mario’s goal is to
reach the rightmost spot of the level. In order to succeed,
Mario has to avoid enemies and other challenges. The IMB
levels are grid spaces containing a set of objects such as
mountains (the grass-topped boxes in the figure) and enemies
taking the form of shooting cannons, turtles, and others. The
number of these objects and their distribution on the grid
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Fig. 1: Overview of our human-in-the-loop approach to PCG.

determines the difficulty of the level. Every object is associated
with an (x, y) location on the grid and some of the objects such
as mountains and pits can have different heights and widths—
boxes, a few enemies, and the small version of Mario himself
occupy a single cell on the grid. In this paper all full levels
are represented as a grid of size 160× 15.

IV. THE HUMAN COMPUTATION APPROACH TO PCG

In this section we describe our Human-Computation PGC
System, which we refer as HCS. A high-level description of
this approach, shown in Figure 1, is as follows.

1) A PCG system generates a large library of small levels
of IMB called “segments”, that people can play and
evaluate quickly.

2) Workers annotate each of the segments in the library
with respect to three subjective measures: enjoyment,
visual aesthetics, and difficulty.

3) The segments are combined using a mathematical dif-
ficulty progression model that accounts for the human-
annotated values of the subjective metrics.

There are two main advantages to using the HCS approach:
First, human workers employed by our system do not have
to be knowledgeable in the craft of game design—workers
evaluate the segments according to their perception as game
players. A large number of annotated segments can be quickly
obtained using volunteers or workers on crowdsourcing plat-
forms. Second, we do not disrupt the player’s gameplay as our
approach only asks questions to human workers solving small
portions of the game as a preprocessing step.

V. SEGMENT GENERATION AND HUMAN ANNOTATION

The first question to consider is the size of the segments
workers will evaluate. Small segments allow for a quicker
evaluation. However, the segments may be too short for people
to reach definite conclusions about our subjective criteria. On
the other hand, large segments may take too long to play and
require considerable effort to generate a repository that is large
and diverse enough for our approach. We decided on a grid
size of 20×15, which, as we established in a pilot study, takes
an average of 20 seconds for people to play. This allowed us
to generate a library of approximately 2,000 segments without
compromising the quality of evaluations, as we show in the
empirical analysis.

The system we use for generating the library of segments,
which we denote as Γ, was created by the game designer
Markus “Notch” Persson [39] and is publicly available—
Notch’s system is often called Notch level generator (NLG).
This system is a black box that follows a set of hardcoded
rules to stochastically create segments of IMB. NLG receives

as input a difficulty value d for stochastically determining
the number of enemies in the segment. Higher values of d
correspond to more challenging segments. NLG starts with an
empty segment—an empty grid of size 20×15—and iteratively
adds objects to the grid according to the value of d and to a
set of design heuristics.

We used NLG to generate more than 2,000 segments of
size 20 × 15 with values of d selected uniformly at random
to ensure a collection of segments Γ with varying difficulty.
The disadvantage to NLG is that due to the stochasticity of
the generator, it may also produce segments which are not
visually appealing and are not necessarily enjoyable to play.
For example, the objects in the segment shown in Figure 2a
are oddly placed on the screen: the block and pipe in the
upper part of the screen has no purpose since they are not
reachable by Mario. In addition, sometimes a segment l has
a large number of enemies and challenges (determined by a
large value of d) but l is not a difficult segment to play due
to an alternative path that Mario can safely take in the game.

To address these challenges we enlisted human workers to
play the segments in Γ and annotate each of the segments
with respect to three measures: enjoyment, visual aesthetics,
and difficulty. We made our system available for download
and invited undergraduate and graduate students in the Depar-
tamento de Informática, at Universidade Federal de Viçosa,
in Brazil, to play the segments. The students voluntarily
and anonymously played the segments. Before playing the
segments the volunteers were provided with a simple tutorial.
The tutorial consisted of a set of instructions of the game
control, and after reading the instructions, the volunteers
played a sample segment. The volunteers were informed that
the segments played would be much smaller and shorter than
regular levels of the game of IMB. If some of the volunteers
had played the game of Mario before, we did not want them
to be disappointed by the reduced size of the segments.

Prior to evaluation, we preambled to the beginning of each
segment a small grid of size 5× 15 containing no objects but
the ground level. Mario starts in this preamble, which allows
the player to integrate naturally into the segment.

After playing each segment the volunteers were asked how
much they agreed with the following statement: “I enjoyed
playing the game”, “I found the game to be visually pleasing”,
and “I found the game to be difficult”. For each of these
statements, the volunteers provided a score representing how
much they agreed with each statement. The scores were
provided in a Likert scale, i.e., they ranged from 1 (strongly
agree) through 9 (strongly disagree). For example, a score of
1 for enjoyment, visual aesthetics, and difficulty means that
the segment was perceived to be very enjoyable, very visually
appealing, and very difficult.

The volunteers were presented segments in Γ in random
order. This approach ensured that volunteers annotated most
of the segments in Γ, and some of the segments were annotated
more than once by different volunteers, in which case we
consider the median scores. We removed from Γ the segments
that were not annotated by any of the volunteers.

Since a segment is small enough to be played in a few
seconds, a single volunteer could produce several annotated
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(a) enjoyment:8, aesthetics:9, difficulty:7 (b) enjoyment:4, aesthetics:3, difficulty:5 (c) enjoyment:1, aesthetics:1, difficulty:4

Fig. 2: Three representative human evaluations for segments in Γ. These evaluations do not represent the authors’ opinions,
but show representative segments labelled by the volunteers who participated in our study.

segments in just a few minutes. In total the volunteers pro-
vided 2,715 evaluations of 1,437 distinct segments. These
evaluations were obtained in 125 different sessions of play. A
session of play is defined by a volunteer entering the system,
annotating a collection of segments, and exiting the system.
Note that the same volunteer could have multiple sessions of
play. Since we wanted to maximize the number of annotated
segments, in order to simplify the annotation process, we did
not ask the volunteers for their identity and did not require
the creation of a user account in our system. As a result,
we do not know exactly how many volunteers participated
in the experiment. However, we believe that the number of
sessions of play offers a good upper bound on the number of
distinct volunteers. We provide more details about the number
of segments annotated in each session of play in Section V-D.

A. Representative Annotated Segments

Figure 2 shows three representative human annotated seg-
ments. The numbers in parenthesis show the value in a Likert
scale, ranging from 1 to 9, for enjoyment, visual aesthetics,
and difficulty, respectively. The segment shown in Figure 2a
offers no challenge to the player and some of the objects are
not even reachable, which might explain the segments’ poor
scores for enjoyment (score of 8) and visual aesthetics (score
of 9); the segment was considered an easy one (score of 7).

The segment shown in Figure 2b was deemed as easy by a
human worker (difficult of 5), despite the segment containing
challenging enemies such as a flying enemy coming from
above. The worker found the segment easy probably because
they had enough time to reach the center part of the segment,
when the flying enemy would cause no harm to the player. This
example demonstrates that counting the number of enemies
(the approach used by NLG to determine difficulty) may not
always agree with the player’s perceived difficulty.

The segment shown in Figure 2c poses an interesting and
possibly enjoyable dilemma the player will face. In order to
collect the power-up item the player becomes vulnerable to
the bullets being shot by the cannon on the left-hand side of
the segment. Alternatively to collecting the power-up item,
the player could choose to quickly jump on top of the yellow
blocks and safely advance to the next segment in the level.

B. Correlation Results of the Annotated Segments

We found a high positive correlation (coefficient 0.72)
between enjoyment and visual aesthetics in the annotated
segments. Similar results have been documented in other
works. For example, in a study of web site aesthetics, Lavie
and Tractinsky [40] reported high positive correlation (coeffi-
cient 0.68) between user reported aesthetics and pleasure. The
strong correlation between visual aesthetics and enjoyment we
observed in our experiment suggests that, in future works, one
might wish to annotate the segments only with respect to the
workers’ enjoyment, as much of their perceived visual aesthet-
ics might already be encoded in their reported enjoyment.

We also found a highly positive correlation (coefficient of
0.67) between difficulty and enjoyment. The Yerkes-Dodson
law [41] states that enjoyment increases with difficulty up to
some point, where the level gets too difficult to be enjoyable.
The strong correlation between enjoyment and difficulty in-
dicates that our volunteers tended to be skilled players who
enjoyed playing the difficult levels of our library.

The correlation coefficient between visual aesthetics and
difficulty was of 0.47, which is much smaller than the coeffi-
cient between enjoyment and visual aesthetics (0.72), and the
coefficient between difficulty and enjoyment (0.67). This result
makes sense, since one can easily imagine segments which are
too difficult to play due to a large number of enemies and are
visually unpleasing due to the poor placement of objects.

C. Inter-Annotator Agreement

Two independent volunteers agreed to contribute non-
anonymously to our data collection. The 453 level segments
these two volunteers evaluated in common allow us to perform
an inter-annotator study by measuring the correlation of their
annotations. The Spearman correlation values of these two
annotators for difficulty, enjoyment, and visual aesthetics were
0.80, 0.45, and 0.38, respectively. Although with the caveat
of only accounting for the annotations of two volunteers,
these correlation values suggest that the difficulty annotations
of a worker might be used to reliably predict the perceived
difficulty of other people. The lower correlation values for
enjoyment and visual aesthetics confirm the more subjective
nature of these metrics. Yet, correlation values of 0.45 and 0.38
demonstrate a good level of agreement between the annotators,
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Fig. 3: Histogram of annotations per session of play.

suggesting that the enjoyment and visual aesthetics annotations
of a volunteer might be used to approximate the enjoyment and
perceived visual aesthetics of other players.

D. Analysis of Number of Evaluations Per Session of Play

In this section we analyze the volunteer segment ratings
based on the number of segments that were evaluated. Figure 3
shows the histogram of the number of segments that were
evaluated in a given session of play. As shown by the figure,
volunteer contribution follows a long-tail distribution that has
also been documented in other self-motivated domains such as
citizen science [35]. Most volunteers evaluated fewer than 10
segments. The volunteer who evaluated the largest number of
segments in a single session of play annotated 201 segments
(not shown in the histogram, which capped the number of
segments at 160 for readability purposes).

To study the differences between the ratings of “heavy” vol-
unteers who evaluated many segments and “light” volunteers
who evaluated few segments, we divided the evaluations into
two groups, L (for light) and H (for heavy). Group L contains
annotation sessions with at most 45 segments, and H contains
annotations with more than 45 segments. The threshold of 45
segments was chosen such that L and H have nearly the same
number of annotations: L has 1,377 while H 1,338.

Figure 4 shows the frequency of evaluations for each
Likert value for enjoyment, visual aesthetics, and difficulty,
respectively. We now discuss each figure in turn.

The rating distributions of L and H for enjoyment and
visual aesthetics are similar in that they both express a uni-
modal distribution. In particular, volunteers in group L were
more likely to rate segments as highly enjoyable and visually
pleasing (values 1-3 on the Likert scale) than volunteers in
group H . There are two possible reasons that can explain this.
First, volunteers in H evaluated more segments than volunteers
in L, making them more selective about which segments to
attribute high scores. By contrast, volunteers in L tended to
attribute the scores 1 and 2 to a larger number of segments.
Another possible explanation is that volunteers in H may have
reached a state of fatigue and boredom, thus reducing the
number of segments they classified as enjoyable and visually
pleasing. It may be that both factors contributed to volunteers
in L assigning higher scores to a larger number of segments.

Algorithm 1 Progression-Arc Concatenation

Require: Set of segments Γ = {Γ1,Γ2, · · · ,Γ9}, progression
arc T = {d1, d2, · · · , dM}, integer k.

Ensure: Totally ordered set ∇ = {l1, l2, · · · , lM}
1: ∇ ← {}
2: for i = 1 to M do
3: Ek,di ← k most enjoyable segments from Γdi

4: Vk,di
← k most visually pleasing segments from Γdi

5: l← a random segment from Ek,di
∩ Vk,di

6: ∇ ← ∇∪ l

As for the rating distributions of difficulty, we observe in
Figure 4c that volunteers in H classify the segments as easy
(scores of 8 and 9) much more often than they classify the
segments as difficult (scores of 1 and 2). We conjecture that
volunteers increase their skills as they annotate the segments.
Since the volunteers in H played more segments, they likely
achieved a level of skill not achieved by volunteers in L. Thus,
a level that is easy for a volunteer in H might be considered
more difficult for a volunteer in L.

VI. COMBINING SEGMENTS WITH A MODEL OF
DIFFICULTY PROGRESSION

The human computation procedure described above outputs
a collection of annotated segments. In this section we describe
how HCS combines these segments into a full IMB level with
grid size 160× 15. A common approach in level design is to
place the hardest challenges of a level toward its end [7]. In
HCS we use a similar approach in which we create IMB levels
by concatenating segments while following a progression arc
that places the hardest segments toward the end of the level.

Let a ∇ = {l1, l2, · · · , lM} be a sequence of segments with
∇ ⊆ Γ and each segment l ∈ ∇ with size x×y. ∇ represents a
complete level of size (x ·M)×y formed by the concatenation
of the segments l ∈ ∇ according to some ordering O. The final
output of HCS process is ∇. In HCS a difficulty progression
arc T defines the ordering O of segments. T is a sequence of
difficulty values {d1, d2, · · · , dM} where d1 is the difficulty
of the first segment composing ∇, d2 is the difficulty of
the second segment, and so on. Figure 5 shows one of the
progression arcs used in our study, which we call a parabolic
progression arc. The x axis represents the segment index in
∇, as defined by the ordering O. The y axis represents the
human-annotated difficulty value. This progression arc follows
a common design choice of having the difficulty of the level
increase as the player goes through the level (see, for example,
[7]). However, as explained before, aiming at preventing the
creation of very challenging levels, after reaching the largest
difficulty value (segments 5 and 6 in ∇), HCS concatenates
segments of smaller difficulty (segments 7 and 8 in ∇).

HCS, shown in Algorithm 1, receives as input a collection of
annotated level segments Γ, a progression arc T , and a thresh-
old k. We divide Γ into disjoint subsets {Γ1,Γ2, · · · ,Γ9},
where Γj contains all segments with difficulty value of j.
Let Ek,j ⊆ Γj be the set of k-best segments in Γi with
respect to the workers’ reported enjoyment. Similarly, let
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(a) Histogram of User Enjoyment. (b) Histogram of Visual Aesthetics. (c) Histogram of Difficulty.

Fig. 4: Frequency of evaluations for each Likert value for enjoyment, visual aesthetics, and difficulty.
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Fig. 5: Parabolic progression arc used in our experiments. The
difficulty values are obtained with human computation, and the
values on the x-axis denote the arc’s ordering.

Vk,j ⊆ Γj be the set of k-best segments with respect to the
workers’ perceived visual aesthetics. The level ∇ is composed
by segments in Ek,j ∩ Vk,j of subsets Γj (see lines 3–5
of Algorithm 1). We constrain the composition process to
segments that are rated highly with respect to both enjoyment
and visual aesthetics by workers.

The value of k might have a large effect on the way the
segments combine to form a full-size level. Larger values of
k allow for a larger set of segments to choose from, but
can result in choosing individual segments of low quality
which may also affect the quality of the full level. Small
values of k tend to provide higher quality segments, but there
may be few segments to choose from, which can lead to
repetition of segments in the full-size level and harm the
player’s enjoyment. In our experiments we use k = 50 which
was tuned according to a pilot study.

After creating a full level we perform a post-processing
step to deal with possible adjacent segments whose ground
heights do not match. This is done by applying the “green
topping” where height mismatches occur. Figure 6 shows a
level generated by HCS using the parabolic progression arc
shown in Figure 5. The challenges the player faces increase
toward the end of the level, as described by the arc.

VII. EMPIRICAL EVALUATION

In this section we describe the user study we conducted
to evaluate the HCS system. We evaluate four systems: HCS
with the progression arc shown in Figure 5 (denoted HCS-P,

where the P stands for “parabolic”, the shape of the arc), HCS
with a random arc (denoted HCS-R and explained below), the
Occupancy-Regulated Extension generator (ORE) [42] which
was the winner of the 2011 Mario AI Competition, and NLG.

The progression arc implemented for the HCS-R approach
returns a random integer in the interval [5, 9], which is the
same difficulty range used by HCS-P (cf. Figure 5), for each
segment composing the full-sized level. We use HCS-R as a
baseline method for testing if the commonly used level design
approach of increasing the segments’ difficulty indeed results
in more enjoyable levels than a simple random baseline.

We carried out two user studies. In the first we compare
HCS-P with HCS-R (Experiment 1), in the second we compare
HCS-P with NLG, and ORE (Experiment 2); as we show
below, HCS-P performed better than HCS-R in terms of
enjoyment, and that is why we use it in Experiment 2.

A. Hypotheses

We are interested in evaluating if HCS is able to generate
levels that are perceived to be visually pleasing and enjoyable
to play. Specifically, we test the following hypotheses:

• H1 HCS-P generates levels that are perceived to be more
enjoyable to play than the levels generated by HCS-R.

• H2 HCS-P generates levels that are perceived to be
equally visually pleasing as those generated by HCS-R.

• H3 HCS-P generates levels that are perceived to be more
enjoyable to play than those generated by NLG and ORE.

• H4 HCS-P generates levels that are perceived to be more
visually pleasing than those generated by NLG and ORE.

B. Methodology

1) Evaluated Metrics: The systems were evaluated accord-
ing to the following criteria: enjoyment, visual aesthetics,
and difficulty. Each participant was asked to answer how
much they agreed or disagreed, in a 7-Likert scale,2 with the
following affirmatives: (1) this level is enjoyable to play; (2)
this level has good visual aesthetics; (3) this level is difficult.

2A few workers were confused by the 9-Likert scale used in the data
collection experiment and attributed for difficulty a score of 1 for a segment
that was clearly a 9. We decided to use a 7-Likert scale in the evaluation of
the systems hoping that with fewer options there would be less confusion.
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Fig. 6: A representative full-sized level generated by HCS using the parabolic progression arc.

A score of 1 for enjoyment and visual aesthetics mean that
the participant strongly agrees that a level l is enjoyable and
has good visual aesthetics; a score of 1 for difficulty means
that the participant strongly agrees that l is difficult.

An alternative design for elicitating users’ satisfaction
would be to ask to play the level in all systems and then to rank
them (e.g., l1 is more enjoyable than l2). We preferred a rating
approach to a ranking approach for the following reasons.
First, because each full-sized level took several minutes to
play, we wanted participants to rate each level immediately
after playing them. Waiting to play all systems before rating
them requires considerable cognitive effort and may result in
memory bias. Second, it is easier to train machine learning
models to predict the satisfaction of users when they are
measured as values, rather than a complete ranking. As an
example, Guzdial et al. [43] have used part of our data to
train a convolutional neural network. Lastly, we note that it
is possible to convert our ratings data into ranking data as
suggested by Yannakakis and Hallam [44].

One disadvantage of using rating, as demonstrated by the
experiments of Yannakakis and Hallam [44], is that the results
might suffer from ordering effects. To counteract such effects
we employ a balanced Latin square design to try to ensure
that the systems are tested the same number of times for each
possible “playing position”. For example, if we test 3 systems
with n participants, and every participant sequentially plays
one level of each system, a balanced Latin square ensures that
every system is tested n/3 times as the first system played
by the participant, n/3 as the second, and n/3 as the third.
Naturally, depending on the number of participants the division
of tests might not be perfectly balanced.

2) Participants: We used a within-subject study design
for both experiments. Experiment 1 had 37 participants: 32
males and 5 females with an average age of 23.95 and
standard deviation of 4.48. Each participant played one level
generated by each system (HCS-P and HCS-R), resulting in
the evaluation of 37 levels of each PCG system. Experiment 2
had 53 participants: 43 males and 10 females with an average
age of 25.18 and standard deviation of 5.51. Each participant
played one level generated by each system (HCS-P, NLG,
and ORE), resulting in the evaluation of 53 levels of each
PCG system. The number of participants reported in both
experiments reflects all those who completed all of the levels.

3) Experimental Design: Our system was made available
in the Internet and our experiment advertised in different
mailing lists from the Universidade Federal de Viçosa, in
Brazil. Participation was anonymous and volunteered.

In the beginning of the experiments the subjects were
instructed about the controls of the game before playing
a practice level. The practice level was the same for all
participants and generated by the NLG system. Only after

TABLE I: Empirical comparison of HCS-P and HCS-R. Lower
values of enjoyment and visual aesthetics indicate levels that
are perceived to be more enjoyable to play and have better
visual aesthetics. Each entry of the table shows the average,
standard deviation, and median value of the evaluations.

HCS-P HCS-R
Enjoyment [2.24±1.75, 1]a [2.70±1.91, 2]b

Visual Aesthetics [2.32±1.65, 2]a [2.38±1.64, 2]a
Difficulty [3.46±1.76, 3]a [3.38±1.72, 3]a

playing the practice level the participants evaluated the levels
generated by the PCG systems. After playing each level the
participants gave scores according to the criteria described
above. In the end of the experiment the subjects filled a
questionnaire informing their age, and their reported skills in
the game of Mario (i.e., how much Mario they played before).

Since we noticed a strong positive correlation between en-
joyment and difficulty during the annotation of the segments,
in order to test the above hypothesis we needed to have the lev-
els’ difficulty as a scientific constant across all systems. This
way the difficulty of the levels generated by each system would
not bias the results. We manually tuned the PCG systems so
that they would generate levels of similar difficulty. This was
done in the HCS approaches by bounding the difficulty value
used in the tension arcs to 5, and in the NLG approach by
choosing a difficulty value d at random from the following
options: {3, 4, 5}. We tried several different bounding values
for the HCS approach and NLG, until we believed all systems
were generating levels with similar difficulty. We asked the
participants to report their perceived difficulty mainly to ensure
that we indeed managed to control the difficulty of the levels
generated by the systems tested.

Also aiming at standardizing as much as possible the
conditions under which the subjects evaluated the systems,
we ensured that all systems generated levels of size 160× 15.

C. Results Experiment 1

The average, standard deviation, and median results of
Experiment 1 are shown in Table I. The small difference in
the difficulty scores is an evidence that difficulty was indeed
controlled in our experiment, allowing a fair comparison of the
HCS approaches. Within each row, we use different superscript
letters to indicate that the results are statistically significant
according to Wilcoxon signed-rank tests (Shapiro-Wilk tests
show that our data is unlikely to be normally distributed:
p<0.05 for all criteria).

Enjoyment is the only criterion in which we observed a
significant difference between HCS-P and HCS-R. HCS-P
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TABLE II: Empirical evaluation of PCG systems. Lower
values of enjoyment and visual aesthetics indicate levels that
are perceived to be more enjoyable to play and have better
visual aesthetics. Each entry of the table shows the average,
standard deviation, and median value of the evaluations.

HCS-P NLG ORE
Enjoyment [2.41±1.70, 2]a [2.83±1.94, 2]a [3.56±1.91, 4]b

Aesthetics [2.41±1.57, 2]a [3.00±1.78, 3]b [3.32±1.98, 3]b
Difficulty [3.45±1.79, 3]a [3.62±2.14, 3]a [3.09±1.97, 2]a

generates levels which are significantly more enjoyable to play
than those HCS-R generates (p<0.05, r=0.36).

1) Testing H1: In general the participants enjoyed playing
the levels generated by both HCS-P and HCS-R systems. For
example, a score of two and three for enjoyment means that
the participant agrees and somewhat agrees, respectively, that
the level is enjoyable to play. However, participants enjoyed
playing levels generated by the HCS-P systems significantly
more than those generated by the HCS-R system (p<0.05).
Moreover, the difference in enjoyment between the levels
generated by HCS-P and HCS-R is substantial, as the effect
size is around the medium mark (r=0.36). These results
support H1, as the people reported the levels generated by
HCS-P to be more enjoyable than those generated by HCS-R.

2) Testing H2: In general the participants liked the visual
aesthetics of the levels generated by both systems. Moreover,
there is virtually no difference between the scores obtained by
HCS-R and HCS-P: 2.42 and 2.48, respectively. This result
is interesting because it suggests that visual aesthetics might
be evaluated locally (i.e., by evaluating level segments). By
contrast, according to the H1 results, enjoyment might have
to be evaluated globally (i.e., by evaluating the entire level).

D. Results Experiment 2

The average, standard deviation, and median results for
Experiment 2 are presented in Table II. Similar to Exper-
iment 1, numbers with different letters in a given row of
Table II indicate statistically significant results. Shapiro-Wilk
tests showed the data obtained in Experiment 2 is unlikely
to be normally distributed (p<0.05 for all criteria). Since now
we are testing multiple systems we first run the non-parametric
Friedman’s test for each criterion. The results on enjoyment
are statistically significant (χ2(2)=13.9, p<0.05) as well as
on visual aesthetics (χ2(2)=6.13, p<0.05) across the systems;
there was no statistical significance for difficulty.

We now turn to post-hoc tests (Wilcoxon signed-rank)
to make pairwise comparisons of the different systems on
enjoyment and visual aesthetics. In addition to the p-values,
we also show the effect size r of each comparison.

There was no statistical difference in enjoyment between
HCS-P and NLG (p=0.082). The differences between HCS-
P and ORE (p<0.05, r=0.53) and between NLG and ORE
(p<0.05, r=0.36) are significant. Although there was no statis-
tical difference between HCS-P and NLG, the numbers suggest
a preference for HCS-P. The difference in aesthetics between
HCS-P and NLG (p<0.05, r=0.36) and between HCS-P and

ORE (p<0.05, r=0.33) are significant. There was no statistical
difference between NLG and ORE (p=0.51).

1) Testing H3: Our results partially support the hypothesis
that HCS is able to generate levels which are perceived to
be more enjoyable to play than the other systems tested.
This is because HCS-P had the best score for enjoyment
(2.41) but the difference between HCS-P and NLG is not
statistically significant. Nevertheless, there is a clear trend
showing a preference for the levels generated by HCS-P over
those generated by NLG. Moreover, the difference between
HCS-P and ORE is statistically significant and substantial as
the effect size was large (r=0.53). The difference between
NLG and ORE had a medium effect size (r=0.36).

2) Testing H4: Our results fully support the hypothesis that
HCS-P generates levels with better visual aesthetics than NLG
and ORE. The medium effect sizes shown in the comparisons
between HCS-P and the other systems (r=0.36 for NLG and
r=0.33 for ORE) demonstrate that the difference between
HCS-P and the other systems is substantial.

E. Discussion

The results of Experiment 1 confirmed the conventional
wisdom in level design. That is, people tend to find more
enjoyable the levels whose most difficult challenges happen
toward the end of the level [7]. The results of Experiment 1
also suggest that the participants’ perceived visual aesthetics
depends only on the state of the screen at a given time,
rather than on the dynamics of their interactions (i.e., on the
progression arc used to control the segments’ difficulty).

The results of Experiment 2 show that HCS had better aver-
age scores for both enjoyment and visual aesthetics than NLG
and ORE. The success of HCS is likely due to the synergy
of its components. That is, the evaluation of the segments by
human workers allows HCS to only use segments that are
deemed as visually pleasing and enjoyable by people, such
as the segment shown in Figure 2c. By the same argument,
HCS is unlikely to use segments whose objects do not play
a role in the challenges of the level, such as the segment
shown in Figure 2a. Another important component of HCS
is its progression arc, that implements the idea of placing the
hardest challenges of a level l toward the end of l. In addition
to being a common level design approach, we verified the
effectiveness of this progression arc in Experiment 1.

VIII. COMPUTATIONAL METRIC STUDY

In this section we study how the levels generated by HCS
differ from the segments in the library Γ in terms of expressive
range [45], which is defined as the range of linearity and
leniency values of levels generated by a given system. We
use density in addition to linearity and leniency in this study.

Linearity was introduced by Smith and Whitehead [45] and
is defined as the average distance between objects in the game
and their predicted location according to a linear regression
model. In IMB, this notion is adapted to platforms and
mountain objects in the grid. Specifically, linearity measures
the average distance between the center point of an object in
each column in the level’s grid and the predicted y coordinate
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(a) segments (b) HCS-P (c) segments (d) HCS-P

Fig. 7: Expressive Range of HCS-P and of the segments composing HCS levels, which were generated by NLG.

for the object. The linearity values are first multiplied by (−1)
and then normalized to a value in [0, 1] such that higher values
in the [0, 1] range correspond to higher linearity.

Leniency approximates the difficulty of play of a level, and
is computed as a weighted average of leniency terms over all
objects in the level. Shaker et al. [25] suggested the following
weights for IMB, which we adopt in this work: power-up items
are assigned a weight of 1, cannons, flower tubes, and gaps
are assigned a weight of −0.5, and enemies are assigned a
weight −1. Values are normalized between [0, 1] such that
higher values of leniency imply a more challenging level.

Density measures the fraction of space in a level that
is occupied by objects. Similar to other implementations of
density (e.g., [25]), we measure the density of level l as the
percentage of grid cells of l which are occupied by mountains.
That is, the density value of level l is computed as ml

S , where
ml is the number of grid cells occupied by mountains in l and
S is the total number of grid cells in l. For the full-sized levels
S = 2, 400 (160× 15) and for segments, S = 300 (20× 15).
Density values are also normalized to a value in [0, 1] such
that higher values indicate denser levels.

We use linearity, leniency, and density because we are
interested in metrics that might complement our user study,
which is in contrast with metrics that correlate with the scores
of a user study, such as Summerville et al.’s metrics [46].

Figure 7 shows the expressive range of HCS-P (Figures 7b
and 7d), and of the segments in Γ (Figures 7a and 7c). Each
plot shown in Figure 7 considers exactly 1,437 levels, the size
of Γ. Lighter colors indicate more levels being generated for a
given pair of metric values; the number of levels for different
shades of gray is shown on the right-hand side of each plot.

We observe in Figure 7 that the metric-value variability of
the segments constrains the variability of the levels HCS-P
generates. For example, there are few segments with leniency
value as low as 0.2. As a consequence, HCS-P is unable to
generate levels with such a low leniency. Similarly, there are
no segments with density values as high 0.9, and that explains
why HCS-P is unable to generate levels with such a high
density. This analysis is important because it shows that the
expressive range of HCS-P is constrained by the expressive
range of its segments. Thus, for example, if one is interested
in creating non-lenient HCS-P levels, then the method has to
be provided with a collection of non-lenient segments.

We also observe that the variance over the metrics is larger
for the set of segments than for the levels generated by HCS.

For example, see Figure 7a where we observe a large number
of segments with low density (around 0.3) and high leniency
(around 0.9), but no HCS levels with similar density and
leniency values. However, the levels generated by HCS-P are
likely to include at least one segment with low density and
high leniency in its initial parts. This is because HCS-P’s
progression arc requires a segment that is deemed as easy by
human workers, and often a segment that is considered easy by
humans has low density and high leniency [47]. The HCS plots
do not show levels with low density and high leniency because
the low density and high leniency values of the initial segments
composing a level generated by HCS average out with high
density and low leniency values of other segments of the level.
Similar effect is observed with respect to linearity, i.e., there
are many segments with large linearity values (around 0.9) and
no HCS levels with such large linearity values.

IX. CONCLUSIONS

In this paper we introduced HCS, a PCG system for IMB
that uses human computation in its generation process. HCS
uses an existing PCG system to generate a large number of
segments which are subsequently evaluated by human workers.
Then, HCS uses a progression arc to combine a number of
annotated segments into a full-sized level of the game. The
results of a systematic user study showed that (i) the levels
generated by the HCS were perceived to be more visually
pleasing than the levels generated by the original PCG system
as well as other PCG approaches; (ii) the levels generated by
the HCS approach were perceived to be more enjoyable to
play than an alternative system. Our results demonstrate the
potential of the human-in-the-loop approach for PCG tasks.
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