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ABSTRACT
Evaluating the output of content generators is still one of the key
open research challenges in Procedural Content Generation (PCG).
�is paper presents a collection of metrics for evaluating the quality
of platform game levels, and analyzes how well these metrics are
able to capture the human-perceived di�culty, visual aesthetics
and enjoyment of these levels. We show empirically, in the context
of In�nite Mario Bros (IMB), that some of the proposed metrics
yield correlation values with human ratings that are near empirical
upper bounds derived from a human inter-rater agreement study.
We also show that a simple linear regression model using a subset
of our metrics as input features is able to substantially outperform a
previous approach that uses a neural network for predicting human-
perceived di�culty, visual aesthetics, and enjoyment in IMB levels.

CCS CONCEPTS
•General and reference→Metrics; Design; •Human-centered
computing→User studies; •Applied computing→Computer
games;
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1 INTRODUCTION
Evaluation is one of the key open research challenges in the �eld of
procedural content generation (PCG). �e amount of work on com-
putational metrics to evaluate platform game maps [2, 20] signi�-
cantly lags behind the amount of work concerning map generation
[4, 5, 10, 15–17, 21–23], to name a few examples of PCG systems
for generating levels of platform games.

Content evaluation schemes are necessary not only to verify the
quality of the content generated by PCG systems, but also to guide
search algorithms during the PCG process. Reis et al. [15] showed
that a PCG system can employ human computation to evaluate con-
tent during the PCG process. However, such an approach becomes
impractical if the number of evaluations required is large.

Mariño et al. [9] showed that computational metrics o�en used
to evaluate the content generated by PCG systems are unable to
capture the player’s perceived visual aesthetics, di�culty, and en-
joyment. In this paper we introduce and examine metrics based on
simple rules that aim at be�er capturing the player’s perceptions.

We evaluate the metrics introduced in this paper with levels of
In�nite Mario Bros (IMB), a clone of Super Mario Bros. �e IMB levels
we use were rated by humans according to their perceived visual
aesthetics, di�culty, and enjoyment. We compute the correlation
coe�cient between our metrics and the human ratings. One of the
metrics introduced in this paper strongly correlates with di�culty
(an impressive correlation of 0.72) and with enjoyment (0.42), while
the best performing metric for visual aesthetics obtained a corre-
lation of 0.23. �ese correlation values are near empirical upper
bounds derived by an inter-user study with humans, which shows
similar trends, i.e., independent humans tend to agree in terms of
di�culty and enjoyment, but not in terms of visual aesthetics.

Guzdial et al. [6] presented a deep convolutional neural network
(CNN) approach to automatically predict player ratings using the
same dataset as we use in this paper. As a way of demonstrating
the quality of the metrics we introduce, we also show that a simple
linear regression model using a subset of our metrics as input
features is able to substantially outperform the CNN approach
introduced by Guzdial et al. in terms of predicting human-perceived
visual aesthetics, di�culty, and enjoyment in IMB levels.
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2 PROBLEM FORMULATION
�e main research question addressed in this paper is whether it is
possible to de�ne computational metrics that can accurately predict
the player’s perceptions of game maps (e.g., whether a game map is
di�cult or not). �us, given a level M which was rated by humans,
we seek to de�ne metrics that can predict the human ratings of
di�culty, visual aesthetics, and enjoyment of M . We verify the
prediction accuracy of the metrics introduced in this paper in terms
of correlation between the metric values and human ratings, and
in terms of the mean absolute error computed from our model’s
predicted values and human ratings.

Our goal in this paper is not to develop computational metrics
that will replace user studies in the evaluation of content generated
by PCG algorithms, but to develop metrics that could be used as
evaluation heuristics or �tness functions of PCG algorithms.

3 NOTATIONS AND DEFINITIONS
In this section we introduce the notation used to describe the com-
putational metrics presented in this paper.

• We use the words level and map interchangeably.
• �e game map is de�ned as a grid space M with width, w ,

and height, h, where M[x][y] is the grid cell in coordinates
x and y of M . We de�ne the bo�om-le� grid cell of M as
the origin of the grid (i.e., x = 1 and y = 1).

• Objects in the game map occupy grid cells. We de�ne
empty(M[x][y]) = 1 if grid cell M[x][y] is empty (i.e., no
objects occupy grid cell M[x][y]) and 0 otherwise.

• G is the set of objects (e.g., blocks and enemies) in M .
• E is the set of enemies in M .
• We also use the word tile to refer to a grid cell. We de�ne

the type of a tile t according to the object occupying t . We
consider 13 di�erent types for Super Mario Bros. (SMB)
in this paper: Solid, Enemy, Destructible Block, �estion
Mark Block With Coin, �estion Mark Block With Power-
up, Coin, Bullet Bill Shooter Top, Bullet Bill Shooter Col-
umn, Le� Pipe, Right Pipe, Top Le� Pipe, Top Right Pipe,
and Empty.

Although most of the proposed metrics are generic, we use Super
Mario Bros. as the testbed for our metrics in this paper.

4 RELATEDWORK
Applying metrics to generated levels has been a common practice
since Smith and Whitehead [19] introduced linearity and leniency.
�ey used these metrics to describe the “expressive range” of their
generator, i.e., what areas of the metric space did the generated
levels cover. Horn et al. [8] extended these metrics with density
[18] and pa�ern density [3] (the number of times certain meso-
pa�erns appear in the level). Canossa and Smith [2] extended these
metrics with a proposal for many more that a�empt to address
the complexities of properties of interest, such as aesthetics and
di�culty.

�ere has been less work on mapping these metrics back to
actual human a�ective responses. Pedersen et al. [13] predicted
human responses using mostly features of the players’ playtraces
in addition to metrics related to the gaps in the levels (number of,
width of, etc.). Summerville et al. [24] used playtrace metrics in

addition to metrics related to the frequency of gaps, enemies, and
rewards to predict players’ responses. Most importantly for this
work, we utilize the dataset used by Mariño et al. [9] who used
some of the metrics used by Horn et al. [8] to predict the perceived
di�culty, enjoyment, and visual aesthetics of generated levels.

4.1 Previous Computational Metrics
Here we describe some of the metrics introduced by previous work
that are used in our experiments.

Linearity: �e linearity of a level is computed by performing a lin-
ear regression on the center points of the platforms and mountains
contained in the level [20]. �e linearity is the average distance be-
tween the center point of platforms and mountains in each column
of M and the linear regression’s line. �e linearity values are �rst
multiplied by −1 (so higher values indicate more linear levels) and
then normalized into the range of [0, 1].

Leniency: Leniency approximates how much challenge the player
experiences while playing a level [20]. �e leniency of a level is
the sum of the lenience value w(o) of all objects o in G:

∑
o∈G w(o),

normalized by the width of M . We use the lenience values speci�ed
in previous works [9, 18]. �at is, power-up items have a weight of
1, cannons, �ower tubes, and gaps of −0.5, and enemies of −1. We
subtract the average gap width of the level from the resulting sum as
de�ned by Shaker et al [18]. �e leniency values are �rst multiplied
by −1 (so larger leniency values indicate more challenging levels)
and then normalized into the range of [0, 1].

Density: Some objects can occupy the same x-coordinate in M
(e.g., mountains in SMB can be ‘stacked-up” together). �e density
of a level is the average number of mountains occupying the same
x-coordinate in M [18]. Density values are also normalized into the
range of [0, 1], where values closer to one indicate denser levels.

Negative Space: Negative Space is the percentage of the empty
space that is reachable by the player [2]. Jumping in platform games
such as SMB is the core way for players to navigate the vertical
space. A higher Negative Space metric o�en means more “�oating”
platforms and mountains which tend to be more enjoyable and
aesthetically pleasing than simply progressing along the ground.

Other Metrics: In addition to negative space, Canossa and Smith
[2] introduced 19 other metrics, which we did not use in our study.
�eir metrics are categorized into: aesthetic, di�culty, topology, and
strategic metrics. Aesthetic metrics cover aspects such as music
and the visual pale�e. Di�culty metrics expand on leniency by
categorizing the level’s source of di�culty. Topology metrics look
at the physical space of the level and measure relevant features.
Strategy metrics focus on how a player will/must react in a level.

5 NOVEL COMPUTATIONAL METRICS
In this section we describe several novel computational metrics for
evaluating game maps.

Symmetry (S). �e notion of symmetry has been empirically
shown to correlate with the visual aesthetics of graphical user
interfaces [11] and images [1]. �e model of symmetry we use is
based on the work of Ngo et al. [12] and Mariño and Lelis [10]. In
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Figure 1: Example of a symmetrical image.

contrast with previous work, we are the �rst to use symmetry as a
predictive metric of human annotated maps of a platform game.

�e symmetry of a level is computed by dividing M into four
equal regions by a vertical and a horizontal separation line. �e
resulting regions are named Upper Le� (UL), Upper Right (UR),
Lower Le� (LL), and Lower Right (LR). Let X (LL) be the sum of the
distances between the center of all objects in region LL and the
vertical line; Y (LL) be the sum of the distances between the center
of all objects in LL and the horizontal line; and A(LL) be the sum of
the areas of all objects in LL. We de�ne the symmetry value S of a
level M in terms of functions X (M), Y (M) and A(M), de�ne below:

X (M) = |X (UL) − X (UR)| + |X (LL) − X (LR)|
+ |X (UL) − X (LL)| + |X (UR) − X (LR)|
+ |X (UL) − X (LR)| + |X (UR) − X (LL)| .

�e value of X (M) accounts for the “symmetrical” distance across
the vertical line, across the horizontal line, and across the vertical
and horizontal lines. �e values of Y (M) and A(M) are de�ned
analogously by using Y and A-values instead of X -values. �e
S-value of a level is de�ned as as follows:

S(M) = X (M) + Y (M) +A(M) . (1)
S captures the intuitive notion of symmetry illustrated in Figure 1,
where the yellow rectangles represent objects in the map. �e map
shown in Figure 1 has an S-value of zero, which means that the
map is perfectly symmetrical according to S . �e S-value of the
map is zero because there are objects with exactly the same area
in each region. Also, the objects in regions UL and LL are at the
same distance from the vertical separation line as the objects in
regions UR and LR; and the objects in regions LL and LR are at the
same distance from the horizontal separation line as the objects in
regions UL and UR.

Balance (B). According to Ngo et al. [11], the metric of balance
measures whether the objects the player might �nd interesting, and
thus a�ract their eyes, are well distributed in M . Here we assume
that the “a�ractiveness” of an object is proportional to the object’s
distance to the horizontal separation line as well as the object’s
area. One could use richer schemes to de�ne a�ractiveness (e.g.,
object color), which we intend to investigate in future work.

Balance is computed by dividing M into two regions, Top (T) and
Bo�om (B), of equal size. In Figure 1 T is de�ned by the union of
regions UL and UR, and bo�om by the union of regions LL and LR.
We de�ne GT and GB as the set of objects in T and B, respectively.
�e Balance value of a map is computed in terms of functionW ,
which is de�ned for the objects in region T as follows:

W (GT ) =
∑
o∈GT

dy(o)A(o)

where dy(o) is the distance between the center of the object o and
the horizontal separation line, and A(o) is the area of o. W (GB ) is
de�ned analogously. �e balance value of a map M is then de�ned
as the absolute di�erence betweenW (GT ) andW (GB):

Balance(M) = |W (GT ) −W (GB)|

Reachability (R). Reachability measures the proportion of ele-
ments placed in M that are reachable by a player, i.e., that the player
can directly interact with. Our hypothesis is that players rate poorly
the visual aesthetics of maps that have fundamental �aws such as
unreachable objects. �e reachability is calculated as follows:

R(M) = nRC
n

where nRC is the number of unreachable elements, and n is the
total number of objects in M . �e value of nRC can be computed
by applying domain-speci�c rules (e.g., in SMB Mario is unable to
jump more than a given number of tiles).

Decoration Frequency. Levels are composed of many di�erent
objects, and the grid M tends to be sparse, with most of the grid
cells being empty. Some objects, such as the question-mark blocks,
pipes, or enemies bring more visual variety to the level (i.e., they
“decorate” the level), and as such we de�ne the decoration metric
as the number of decoration tiles over the size of the map:

DP(M) =
∑w
x=1

∑h
y=1 pre�y(M[x][y])

w × h
where pre�y(t) is de�ned as being equal to 1 when t is any of the
following tile types: Pipe, Enemy, Destructible Block, �estion
Mark Block, or Bullet Bill Shooter Column and 0 otherwise.

Tile Frequencies. �is metric is simply de�ned as the number of
tiles of that type divided by the size of the map,

EP(M) =
∑w
x=1

∑h
y=1 Type(M[x][y])
w × h ,

for each of 13 di�erent types: Solid, Enemy, Destructible Block,
�estion Mark Block With Coin, �estion Mark Block With Power-
up, Coin, Bullet Bill Shooter Top, Bullet Bill Shooter Column, Le�
Pipe, Right Pipe, Top Le� Pipe, Top Right Pipe, and Empty. We
include these as they represent a base-line. More complex metrics
tend to use these in di�erent combinations and scalings (e.g., Le-
niency incorporates the number of enemies), but we wanted to see
if the most simple metrics still held power.

Tile Position Summary Statistics. �e distribution of object types
in a level contains important information about the experience the
player will encounter. For example, levels with more variance in the
height of ground tiles will likely require the player to jump more.
Levels with low variance on the x-coordinate where the enemies
are placed will likely have a closely packed group of enemies. For
each of the 13 tile types we get:

• µx and σx - �e mean and standard deviation x position
of that tile type.

• µy and σy - �e mean and standard deviation y position of
that tile type.
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Enemy Sparsity (ES). In this metric we measure whether the
enemies are grouped together or spread in the map. �e enemy
sparsity of map M is computed as follows.

ES(M) =
∑
e ∈E |x(e) − x̄ |
|E| .

Where E is the set of enemies in M , x(e) is the x-position of enemy
e in M , x̄ is the average x-position of all enemies in E, and |E| is
the total number of enemies in M .

Enemy Sparsity is similar to the metric µx for enemy tiles as
they both measure the horizontal spread of enemies in the level.
�e di�erence between the two metrics is subtle: while the former
computes the spread with the standard deviation formula, the la�er
uses the absolute di�erences between enemies and x̄ . We further
discuss this subtle di�erence in Section 7.5.3.

Tile Indicator. Some of the above metrics only make sense if a
given tile type is present in a level. For each tile type, this metric is
de�ned as 1 if the tile type is present in the level and 0 if it is not.

(Normalized) Number of Enemies. In this metric we count the
number of enemies in the level, as above, but we then normalize
such that the highest number of enemies in a level (15 in our dataset)
is 1 and the lowest (0 in our dataset) is 0.

Path Length Percentage (Path %). �is metric is the proportion
of the level that is taken up by a path from beginning to end (i.e.,
a sequence of grid cells from Mario’s initial grid position to a grid
position a�er the �nish line of the level) found by an A* search [7].
We expect that the more obstacles that are in the level, the longer
the required path. �is is because the player will need to move
around the grid to avoid the obstacles. �e Path % metric of M is
computed by dividing the number of grid cells in the path found
by A* for M divided by the total number of tiles in M (w × h).

Jump Count. Using the same A* search we count the number
of jumps required to complete the level. If all actions a player can
issue (e.g., move, jump, etc.) have cost of one, an A* search will
minimize the number of actions required to �nish the level (i.e.,
for A* all actions are equally costly). However, for this metric we
want to know the number of jumps required to �nish the level,
not the number of possible jumps, which can be very large. In
fact, an A* search minimizing the number of actions could return
a sequence of actions that includes jumps that are easily replaced
by runs. In order to �nd a sequence of actions that includes jumps
only when necessary, we make the jump action cost more than all
other actions. In our A* implementation a jump action costs 2 while
all other actions cost 1. �is means that the sequence of actions
encountered by A* to �nish the level will run/walk if possible, and
only jump when a gap/enemy/hill requires it.

Summary of Metrics Introduced. In total we introduce 85 metrics:
Symmetry, Balance, Reachability, Decoration Frequency, Tile Fre-
quency (13 metrics), Tile Position Summary Statistics (52 metrics,
13 for each of the following: xµ , xσ , yµ , yσ ), Tile Indicator (13
metrics), Jump Count, Enemy Sparsity, and Path %.

6 DATASET
In our experiments we use the dataset described by Reis et al. [15].1
Reis et al. used the Notch Level Generator (NLG),2 to generate a
library of 2,000 levels of size 20×15 (a typical Super Mario Bros. map
is approximately 10 times longer than Reis et al.’s small levels). NLG
receives as input a di�culty value d for stochastically determining
the number of enemies to be included in the map. Reis et al. used
NLG to generate maps with di�erent values of d to ensure diversity
in the dataset produced. �ese maps were made available online
for evaluation, and volunteers played 1,437 distinct small levels and
then provided 2,715 evaluations. �e small levels were evaluated
according to the volunteers’ perceived visual aesthetics, enjoyment,
and di�culty on a 7-point Likert scale. We use the median rating of a
level if a level was evaluated by multiple volunteers. �e evaluations
were obtained in 125 di�erent sessions of play. A session of play is
de�ned by a volunteer entering the system, annotating a collection
of small maps, and exiting the system. Since Reis et al. wanted to
maximize the number of annotated small levels, in order to simplify
the annotation process, they did not ask for the volunteer’s identity
nor their demographic information. �e number of sessions of play
o�ers a reasonable approximation of the number of volunteers who
participated in their data collection.

Two independent volunteers agreed to contribute non-anony-
mously to Reis et al.’s data collection. �e ratings provided by these
two volunteers allow us to perform an inter-rater study in this
paper (the two volunteers evaluated 453 levels in common). We use
this subset of 453 evaluated levels to verify how well a volunteer
is able predict the ratings of another independent volunteer. Also,
one of these two volunteers evaluated 38 levels twice. We use these
ratings to evaluate how the evaluations of a single person correlate
with this person’s own evaluations.

7 EMPIRICAL RESULTS
We treat the problem of predicting human ratings as a classi�cation
task which we tackle with a multinomial LASSO regression [25].
We use the metric values of a given level as the input features and
the human ratings the values to be predicted. As a byproduct of its
regression, LASSO also selects a subset of discriminative metrics for
the multinomial regression task. �en, we compute the correlation
of each selected metric with the human ratings.

We chose to use a multinomial regression instead of the more
standard linear regression due to the nature of the ratings. While
the ratings are Likert-like (i.e., they have a number associated with
them and are not purely categorical responses such as “Poor” or
“Great”) we did not want to make any assumptions about the scaling
(i.e., the di�erence between 1 and 4 might not be the same as the
di�erence between 4 and 7).

7.1 Metrics Selection with LASSO
In this �rst experiment we perform a 10-fold cross-validation multi-
nomial LASSO regression for each criterion: di�culty, visual aes-
thetics, and enjoyment. We chose multinomial LASSO for two
reason (1) we believe the Likert style data should not be treated as
interval (multinomial) (2) we wanted a regularization technique
1Available at h�p://www.dpi.ufv.br/∼lelis/downloads/Mario-Dataset.zip
2�e system is named a�er Markus “Notch” Persson.

http://www.dpi.ufv.br/~lelis/downloads/Mario-Dataset.zip
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that encouraged sparsity for variable selection (LASSO as opposed
to ridge or elastic net regression). In addition to linearity, leniency,
density, and negative space, we use all 85 metrics introduced in this
paper in this experiment.

A multinomial LASSO regression minimizes the categorical cross
entropy while limiting the absolute sum of the regression coe�-
cients scaled by an input parameter λ. Many of the regression
coe�cients are set to zero due to the λ limitation—LASSO performs
feature selection during its regression procedure. A multinomial
regression predicts a class, k , from a set of K classes for each data
point, x , by taking the class with the highest probability.

Pr(k |x) = eβkx∑K
l=1 e

βl x
.

Our multinomial LASSO regression e�ectively predicts, for a given
level M , which of the 7 “Likert classes” M belongs to. Note that due
to the fact that there is disagreement among the human raters it is
impossible for the regression to achieve no error (e.g., Rater A gave
a level a 3 while Rater B gave it a 5 means that the regression can
get at most one of those correct).

Many of the metrics introduced in this paper encode similar
information. For example, the percentages for tile types Le� Pipe
and Right Pipe are expected to provide similar information. Our
goal with this experiment is to select a subset of discriminative
metrics for the task of predicting each of the evaluation criteria.

We perform one LASSO regression for each of the three criteria
and choose the maximal λ parameter that was within one standard
error of the minimal training error; the minimal training error is
achieved by including all metrics. LASSO reduced from 89 metrics
to only 12 metrics for di�culty, 16 metrics for visual aesthetics, and
14 metrics for enjoyment.

7.2 LASSO Prediction Results
�e performance of our multinomial regressions can be seen in
Table 1 in terms of accuracy and mean absolute error (MAE). �e
accuracy is computed as the percentage of levels classi�ed correctly
(assuming the ground truth for level M is the median rated value
for M), and MAE is the mean absolute di�erence between the pre-
dicted values and the ground truth values. Our model achieves
an accuracy of 37.6% in di�culty, 33.1% in visual aesthetics, and
35.2% in enjoyment. A random classi�er is expected to achieve an
accuracy of ≈14.3% as our problem has 7 distinct classes.

�e MAE values of our multinomial regression predictions vary
from 1.16 (di�culty) to 1.29 (visual aesthetics), which means that
our prediction model errs on average slightly more than one point
in the 7-Likert scale. �e 7-Likert scale is de�ned by the following
points: 1 (strongly disagree), 2 (mostly disagree), 3 (somewhat
disagree), 4 (neither agree nor disagree), 5 (somewhat agree), 6
(mostly agree), and 7 (strongly agree). By erring by slightly more
than one point, it means that on average the prediction model could,
for example, mostly agree that a given level is di�cult while the
human rater strongly agrees that the level is di�cult.

More details about the classi�cation results are provided in the
confusion matrices shown in Figure 2. If our predictions were
perfect, the squares in Figure 2 would be yellow across the diagonal.
By observing the light-colored squares across the diagonal, we

Criterion Accuracy MAE
Di�culty 37.6% 1.16
Visual Aesthetics 33.1% 1.29
Enjoyment 35.2% 1.18

Table 1: Percentage of correctly classi�ed levels (accuracy)
as well as the Mean Absolute Error (MAE) for the di�erent
metrics from the multinomial LASSO regressions. A more
detailed analysis can be seen in Figure 2.

Criterion LASSO MAE Convolutional NN MAE
Di�culty 0.66 0.92
Aesthetics 0.71 1.13
Enjoyment 0.68 1.04

Table 2: MAE results of our linear regression using the met-
rics selected by the LASSO multinomial regression as input
features (LASSO MAE) compared to the MAE results of Guz-
dial et al.’s [6] convolutional neural networks.

notice that di�culty is the easiest criterion to predict, followed by
enjoyment, and then visual aesthetics. Most of the prediction errors
for both visual aesthetics and enjoyment come from predicting a
score of 5 when the actual rating is a 3, 4, 6, or 7 (see the row for
score 5 in Figure 2 (a) and (c)). �is is because the score of 5 is the
most common score in the dataset, being approximately 50% more
common than the next most common rating. As for di�culty, the
most common prediction error comes from predicting a score of 7
when the actual rating is a 4, 5 or 6, and from predicting a score of
2 when the actual score is a 1, 3, and 4.

7.3 Previous Neural Network Model
We note that the results shown in Table 1 and Figure 2 are not
directly comparable to the results of Guzdial et al. [6]. �is is
because, even if the original data set is the same, they are comparing
to averaged ratings whereas we are comparing to the non-averaged
ratings (e.g., Rater A rates a level with 1, Rater B rates it with a
3—we compare to both those points, while they merge it to a single
rating of 2). As a point of comparison, we ran a linear regression
with the metrics selected by the multinomial LASSO regression,
the results of which can be see in Table 2.

We see that a small number of high quality metrics can sub-
stantially outperform more advanced neural network approaches
like those of Guzdial et al. by 50%. For example, when predicting
di�culty, our LASSO linear regression has a MAE of 0.66 (which
means that the predicted value is, in average 0.66 points o� the
average score provided by humans in a 7-point Likert scale), while
the error reported by Guzdial et al.’s approach was 0.92.

7.4 Metrics Selected by LASSO
�e metrics selected for each regression can be seen in Table 3.
Many of the metrics we introduce in this paper do not appear in
the table because they either do not provide relevant information
for the task of predicting human ratings in LASSO’s model, or
because the information they provide is made redundant by a more
informative metric. It is possible that metrics not selected by the
LASSO could be relevant to more complex models. Prior to the
regression all metrics are scaled to have a mean of 0 and variance
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(a) Aesthetics (b) Di�culty (c) Enjoyment

Figure 2: Confusion matrices for the multinomial LASSO predictor, normalized by the number of ratings per category. Per-
fect prediction would be yellow along the diagonal. Di�culty is the easiest to predict with most of the errors coming from
incorrectly predicting 2 and 7 too o�en. For both Aesthetics and Enjoyment the most common error source is predicting a 5.
�is comes from the fact that 5’s are the most prevalent rating, being roughly 50% more common than the next most common
rating, and over twice as most of the other ratings

Di�culty
Metric Weight ρ

Number of Enemies 1.00 0.72
Enemy σx −0.07 0.50
Enemy Indicator −0.02 0.38
Enemy σy 0.02 0.48
Jump Count −0.02 −0.20
Pipe Top µy −0.01 −0.20
Enemy Sparsity −0.01 0.27
Bullet Bill σy < 0.01 0.01
Path % < 0.01 −0.12
Pipe σx < 0.01 −0.20
Pipe Top % < 0.01 −0.22
Bullet % < 0.01 −0.02
Human Rater ρ

Same User 0.75
Independent Users 0.80

Aesthetics
Metric Weight ρ

Power up µx 1.00 0.23
Reachability −0.58 −0.20
Number of Enemies 0.54 0.22
Negative Space 0.29 0.20
Balance 0.28 0.20
Enemy µx 0.27 0.17
Enemy Sparsity 0.22 0.16
Power up µy 0.13 0.23
Enemy Indicator 0.09 0.18
Symmetry 0.07 0.19
Bullet Bill Column % 0.05 0.06
Pipe µx 0.04 −0.04
Enemy σy 0.02 0.17
Power up Indicator 0.02 0.23
Decoration % 0.02 0.16
Density 0.01 0.13
Human Rater ρ

Same User 0.55
Independent Users 0.38

Enjoyment
Metric Weight ρ

Number of Enemies 1.00 0.42
Enemy Sparsity 0.24 0.27
Power up Indicator 0.22 0.25
Power up µy 0.20 0.25
Power up µx 0.16 0.25
Negative Space 0.15 0.26
Symmetry 0.12 0.27
Enemy Indicator 0.06 0.29
Reachability −0.05 −0.12
Enemy µy 0.04 0.13
Enemy σy 0.04 0.32
Enemy µx 0.03 0.24
Coin µx 0.03 0.16
Bullet Column σy 0.01 0.06
Human Rater ρ

Same User 0.64
Independent Users 0.45

Table 3: �e metrics selected by the regressions. �e weights listed are scaled such that the maximum absolute value is 1.00.
For each of the metrics, the Spearman rank coe�cient is listed.

of 1, so as to guarantee that the weights are on a similar scale. �e
weights listed in the table are scaled such that the weight with
the highest absolute value is scaled to 1. Also listed are the non-
parametric Spearman correlation coe�cients, ρ, of each metric
selected as relevant by LASSO’s multinomial regression.

In addition to the correlation between the selected metrics and
the human ratings, we also present in Table 3 the correlation of two
independent volunteers (“Independent Users”), and the correlation

between the ratings of a given volunteer (“Same User”). �e cor-
relations of Independent Users can be seen as an empirical upper
bound on the expected correlation.

Figure 3 shows a closer look at the correlations between some of
the individual metrics and the rated feature. Each plot in Figure 3
shows the human ratings in the x-axis and the metric values in the
y-axis. Should a metric have a perfect positive correlation (ρ = 1)
with one of the evaluated criterion, we would observe dark squares
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(a) Di�culty - Enemy Frequency (b) Aesthetics - Power up µx (c) Enjoyment - Enemy Frequency

(d) Di�culty - Enemy σx (e) Aesthetics - Reachability Min (f) Enjoyment - Enemy Sparsity

(g) Di�culty - Enemy σy (h) Aesthetics - Enemy Frequency (i) Enjoyment - Power up µy

Figure 3: Sample density contours for the givenmetrics vs. the rated feature. �e clearest trend can be seen inDi�culty-Enemy
Frequency.

across the secondary diagonal. Similarly, should a metric have a
perfect negative correlation (ρ = −1) with one of the criterion, we
would observe dark squares across the main diagonal. �e clearest
trends can be seen between di�culty and Number of Enemies,
where a clear linear trend can be seen. Clear trends can also be seen
between enjoyment and Number of Enemies and between di�culty
and Enemy σx .

7.5 Discussion
�e empirical upper bounds de�ned by the correlations between
the ratings of two independent volunteers (“Independent Users”)
suggest that it is easier to predict di�culty, than enjoyment and
visual aesthetics: the correlation between the ratings of independent
users is 0.80 for di�culty, 0.45 for enjoyment, and 0.38 for visual
aesthetics. �is means that di�erent people tend to agree more

in terms of di�culty, than for enjoyment or visual aesthetics. A
similar trend is observed in the correlation values obtained by the
best performing metrics in each criterion: the best performing
metric for both di�culty and enjoyment is Number of Enemies,
with correlation values 0.72 and 0.42, respectively, and for visual
aesthetics it is a set of metrics related to power ups: Power up µx ,
µy , and Indicator all with correlation values of 0.23.

Overall, the best performing metrics in each criterion are near
the empirical upper bound given by the correlation of independent
volunteers. Namely, Number of Enemies yields a correlation value
nearly equal to the correlation value of the two independent users
for enjoyment (0.42 for the former and 0.45 for the la�er). �e same
Number of Enemies yields correlation value of 0.72 for di�culty,
which is near the correlation value of 0.80 presented by the two
independent users. Visual aesthetics is the only criterion for which
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the di�erence between the correlation of the best performing met-
rics and the correlation of the two independent users is larger; the
best performing metrics yield a correlation value of 0.23, while the
ratings of the two independent users have a correlation of 0.38.

We conjecture that the correlation values for visual aesthetics
tend to be smaller because visual aesthetics is perhaps the most
subjective of the three criteria. Our conjecture is supported by the
correlation value of only 0.55 for the visual aesthetics evaluations
provided by the same person (see Same User in Table 3).

It is interesting to note that, in contrast with the other criteria,
the correlation of the ratings of two independent volunteers is
slightly higher than the correlation of the ratings given by same
volunteer for di�culty—0.80 for the former and 0.75 for the la�er.
A possible explanation is that multiple scores given by the same
volunteer for a �xed level are subject to ordering e�ects. �at is, a
level will likely be easier the second time a person plays that level.

7.5.1 Di�iculty. �e metric that obtained the highest correlation
was Number Enemies, which simply counts the number of enemies
in the level. �e metric of leniency (not shown in Table 3 because it
was not selected by LASSO) obtained a correlation of 0.53, which is
much lower than the correlation obtained by the simpler Number
of Enemies. �us Number of Enemies is the current state-of-the-
art single metric for predicting human-perceived di�culty in the
dataset used in our experiments. However, this might just indicate
that di�culty in levels generated by the Notch Level Generator
used in our experiments comes primarily from adding enemies, and
not by other factors such as gaps or platform con�gurations.

�e number of enemies is the most important metric by over a
factor of 10 when considering the regression weight but is not the
only important metric. Moreover, notice that when interpreting
the results presented in Table 3, we must have in mind that the cor-
relation coe�cient ρ is calculated for each metric individually, but
the regression weight results from applying LASSO to all metrics at
the same time. So, a low regression weight might not mean that a
metric is not relevant, but could also mean that LASSO found other
metrics that represent similar information, and thus did not have
to assign a higher weight to a given metric.

We see that the horizontal spread of the enemies (Enemy σx )
has a negative impact on the di�culty (negative LASSO regression
weight), meaning that humans tend to �nd levels with a larger
spread of enemies to be easier than levels with a smaller spread
of enemies. �is is interesting because the horizontal spread has
a positive correlation with di�culty. It is possible that this sign
discrepancy between LASSO’s weight and correlation value for
Enemy σx happens because the metric acts as a proxy for number
of enemies when analyzed individually (correlation value). By con-
trast, when analyzed altogether with metrics that already account
for the number of enemies (e.g., LASSO regression also account-
ing for Number of Enemies), Enemy σx shows that humans tend
to �nd easier to play levels in which the enemies are spread out.
Intuitively, it makes sense that a larger spread is easier since the
enemies will be spaced out, while a dense cluster will present a
more di�cult obstacle. Conversely, we see that the enemy vertical
spread (metric Enemy σy ) has a positive e�ect on the di�culty.
Again, this makes sense as a large vertical spread of enemies tightly

clustered horizontally will present a wall of enemies that is hard to
navigate, whereas a tight cluster vertically can be avoided.

7.5.2 Visual Aesthetics. �e metric of Symmetry is amongst
the best performing metrics for visual aesthetics with respect to
correlation values (ρ = 0.19). Note, however, that one might have
expected a negative correlation between S-values and visual aes-
thetics. �at is, symmetrical levels (small S-values) to be rated as
visually pleasing by humans. However, we observed the opposite
in our study: the positive correlation for Symmetry and visual aes-
thetics means that levels with larger S-values (less symmetrical
levels) are rated as more visually pleasing. �is result contrasts
with the recent study performed by Mariño and Lelis [10], whose
system builds symmetrical small maps of IMB. Mariño and Lelis’
small maps were rated as visually pleasing by human subjects.

�e explanation for this discrepancy is rooted at the number of
objects in the levels: Symmetry might be working as a proxy for
Negative Space. Intuitively, levels with fewer objects tend to have
much smaller S-values than levels with a large number of objects.
�is is because with more objects the values of XM , YM , and AM
tend to be larger (see Equation 1 and the de�nitions of XM , YM ,
and AM ). As an example, the S-value of an empty map is trivially
zero. �e positive correlation for Symmetry is explained by the
fact that human subjects tend to a�ribute low visual aesthetics
scores to levels with very few objects, and high scores to levels
with more objects—in our study the symmetry metric is essentially
measuring how much of the grid is �lled with objects. �erefore,
it is not surprising that Negative Space and Symmetry yield sim-
ilar correlation values: 0.20 for the former and 0.19 for the la�er.
Mariño and Lelis [10] were able to create visually pleasing maps
by minimizing the symmetry metric because they always compare
S-values of levels with exactly the same set of objects.

Other metrics that show very strong correlations are related
to the presence of power ups (e.g., Power Up X µ and Power Up
Y µ), perhaps because power ups are usually scarce and could ap-
pear amongst other more elaborate decorative tiles. �e somewhat
strong correlations between Negative Space and Reachability with
visual aesthetics suggest that reachable vertical variety tends to be
appreciated by the player. Interestingly, LASSO a�ributed small
weights to both Power up Indicator (weight 0.02) and Power up
Frequency (weight of 0.00, as the metric does not appear in Table 3)
and much larger weights to Power up µx and Power up µy . �is
di�erence in the weight values suggest that it is not the mere pres-
ence of power ups (Power up indicator) or the amount of power
ups (Power up Frequency), but the positioning of the power ups
that is most important for the aesthetics. �e further to the right
and higher the power ups (i.e., large values of both Power up µx
and Power up µy ), the more aesthetically pleasing it was to the
players. Perhaps players �nd it aesthetically pleasing to have a
reward towards the end of the level that requires maneuvering to
reach and dislike being handed a power up at the beginning.

We also see Number of Enemies appears as a well performing
metric speaking to the fact that players enjoy the variety that ene-
mies bring. Interestingly, enemies are the only such type that have
this e�ect. As discussed above, players �nd the presence of power
ups pleasing, but the amount has a minimal e�ect. �e amount of
Bullet Bill Columns has an e�ect, but perhaps interestingly, not the
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(a)

(b)

Figure 4: Two levels with highmisclassi�cation error for the
Di�culty rating. Both were classi�ed as 1 by LASSO, but
both have ratings of 7. Given that the players who rated
them as 7’s had no di�culty completing the level, we believe
that it comes from a misunderstanding of the rating scale.

(a)

(b)

Figure 5: Two levels with highmisclassi�cation error for the
Di�culty rating. Level (a) was classi�ed as a 1 by LASSO
but was given a rating of 6 by a player, while Level (b) was
classi�ed as a 7 by LASSO but was given a rating of 2 by a
human.

amount of Bullet Bill cannons. �is means that the larger the col-
umn, the more visually pleasing, but that adding more cannons does
not necessarily improve the human-perceived visual aesthetics.

7.5.3 Enjoyment. �e metrics that correlated the most with
enjoyment tend to be metrics related to elements in the game that
the player can interact with (enemies, power ups, and coins). �is
is related to the Yerkes-Dodson law [27] demonstrated by Piselli
et al. [14] in the context of video games. According to the Yerkes-
Dodson law, enjoyment will be maximum for the right amount of
challenge. �e strong correlation between Number of Enemies and

enjoyment (ρ = 0.42) suggests that the right amount of challenge
for Reis et al.’s volunteers included a large number of enemies. As
mentioned above, a wide spread of enemies vertically indicates
more challenge for the player and the fact that it was one of the
highest correlations (ρ = 0.32) reinforces that this challenge is
enjoyable for players.

Interestingly, while the counting-based metric Number of Ene-
mies is the most important factor for enjoyment (LASSO weight of
1.00 and ρ of 0.42), positioning-based metrics also seem to be more
important. �e mean horizontal position for enemies (Enemy µx ),
power ups (Power up µx ), and coins (Coin µx ) all have a positive
impact on the players’ enjoyment. �is seems to indicate that play-
ers enjoy a brief amount of respite at the beginning and appreciate
higher complexity towards the end of the level, which is a common
level design tactic [26].

Additionally, metrics concerning the distribution of platforms
such as Symmetry and Negative Space also had a high correlation.
�ese metrics re�ect the type of movement that players can execute
through levels, again reinforcing that enjoyment is linked to how
the player interacts with the level. Furthermore, Reachability has
negative weight and ρ values, suggesting that the player �nds levels
containing objects that they cannot interact with less enjoyable.

�e metric with largest LASSO weight a�er Number of Enemies
is Enemy Sparsity (weight of 0.24). Similar to Enemy σx , Enemy
Sparsity also computes the spread of enemies in the level. �e posi-
tive weight and ρ values for Enemy Sparsity in enjoyment indicate
that people tend to �nd levels in which the enemies are spread
out to be more enjoyable. Although the di�erence between Enemy
σx and Enemy Sparsity is subtle (the former returns larger values
than the la�er for levels with enemies too far from the average
enemy position), our results suggest that this subtle di�erence is
important. �at is, if we remove Enemy Sparsity from our pool
of metrics, LASSO selects 24 instead of the 14 metrics shown in
Table 3. �is increase in the number of selected metrics suggests
that one needs approximately 10 other metrics to make up for the
lack of Enemy Sparsity.

7.6 Case Studies
We now turn our a�ention to a few of the level snippets that had the
highest misclassi�cation error for Di�culty. We look at di�culty
since (1) it has the highest inter-rater reliability so we are more
likely to able to make valid judgments and (2) the metrics and
regressions both have the best predictive power for di�culty so
disagreements are probably fundamental, and not a factor of noise.

In Figure 4 we see two levels that showcase the di�culty of
our prediction task. Both of these levels were predicted to be a 1
in di�culty by LASSO, i.e., the easiest levels possible. However,
human raters a�ributed a di�culty score of 7 to both of them, i.e.,
the hardest levels possible. At a glance, we can tell that these levels
are indeed easy, with either a single, easily dodged enemy (a) or no
possibility for death (b). In this case, we believe that there was a
misunderstanding of the rating scale, i.e., the volunteers thought
that 7 was easy and 1 was most di�cult, or that the raters were not
performing the task faithfully. In both cases, other raters rated the
levels as extremely easy, giving them 1’s or a 2, in the case of (a).
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In Figure 5 we see two levels that were incorrectly classi�ed for
legitimate, interesting reasons. In the level shown in Figure 5.(a), we
see two piranha plants in the middle of the screen. A patient player
can bide their time, wait for the plants to return to the pipes and
continue on their way. However, a novice player who is unaware
of how the piranha plants behave could easily be in mid-jump over
a pipe when the piranha plant emerges, catching them by surprise
and killing them. In fact, the player who rated the level as a 6 in
di�culty died on the level, so it is likely that they were caught
by surprise. While from a purely count based view, the level is
easy, hence why it was classi�ed to be a 1, but it o�ers enough
surprise that a novice player could �nd some di�culty with it.
Our classi�cation system incorporates no knowledge about player
familiarity or skill which may not be representative.

In the level shown in Figure 5.(b), we see a dense cluster of
enemies. At �rst glance, this appears to be an intimidating, skill
intensive block for players. However, the goomba is about to fall
o� of the higher platform, leaving a clear path for a patient player
who hops up to the bullet bill cannon and jumps over to the now
clear path over the enemies. While one of the raters did die on this
level, rating it a 5 instead of the 6 that we classi�ed it as, the other
passed it with no trouble bypassing the enemies altogether. Again,
a novice or intermediate player is likely to have di�culty either
through nervousness or a desire to kill all of the enemies (the player
who died killed 7 enemies in total) that gets them in trouble, while
the advanced player just ignores the enemies. �us, a count-based
metric can only �nd that a tight cluster of enemies is correlated
with di�culty, even if there are clear paths through the level.

8 FUTUREWORK AND CONCLUSIONS
�e strong correlation between several of the proposed metrics
and human ratings, encourages us to investigate the use of some of
these metrics to automatically adjust the di�culty of procedurally
generated levels to match the player’s skill, or to generate levels
that maximize enjoyment or visual aesthetics.

In this paper we introduced several computational metrics that
can potentially be used to guide the search process of PCG systems
for creating platform game maps. We performed an experiment
in which we treated the problem of predicting the player’s per-
ceived visual aesthetics, di�culty, and enjoyment as a classi�cation
task where our metrics were used as features and applied a feature
selection approach to discover a subset of discriminative metrics.
We then computed the correlation between the selected metrics
with each of the evaluation criteria. One of the metrics presented
an impressive correlation of 0.72 with di�culty and of 0.42 with
enjoyment. �e best performing metric for visual aesthetics ob-
tained a correlation of 0.23. We derived an empirical upper bound
for the correlation values by computing the correlation between
the ratings of two independent volunteers on a subset of the levels
tested. �is inter-user study showed that humans also tend to agree
more in terms of di�culty than in terms of enjoyment and visual
aesthetics. Finally, we observed that the best performing metrics
in each criterion were near the empirical upper bound (except for
aesthetics, where the di�erence is larger).

As part of our future work, and informed by our results, we would
like to consider a pool of level segments coming from di�erent

level generators, in order to have a more varied sample, as well as
investigate additional sets of metrics.
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