
Stratified Strategy Selection
for Unit Control in Real-Time Strategy Games

Levi H. S. Lelis
Departamento de Informática, Universidade Federal de Viçosa, Brazil

levi.lelis@ufv.br

Abstract
In this paper we introduce Stratified Strategy Se-
lection (SSS), a novel search algorithm for micro-
managing units in real-time strategy (RTS) games.
SSS uses a type system to partition the player’s
units into types and assumes that units of the same
type must follow the same strategy. SSS searches in
the state space induced by the type system to select,
from a pool of options, a strategy for each unit. Em-
pirical results on a simulator of an RTS game shows
that SSS employing either fixed or adaptive type
systems is able to substantially outperform state-
of-the-art search-based algorithms in combat sce-
narios with up to 100 units.

1 Introduction
Real-time strategy (RTS) games represent a major chal-
lenge to Artificial Intelligence (AI). In contrast with tradi-
tional games such as Chess and Go, players act simulta-
neously, actions are durative, and the branching factor can
be very large—for some RTS games it can be as large as
1050 [Ontañón et al., 2013]. Although some RTS games are
partially observable and non-deterministic, we assume deter-
ministic and perfect information RTS games in this paper.

In an RTS game, the player controls a set of units to gather
the resources needed to train and evolve an army. Eventually,
the player’s army is used to battle the opponent’s. One of
the challenges playing agents face in an RTS match is the
control of dozens of combat units during battles. Due to the
real-time constraints, agents have little time to plan before
acting—planning time is on the order of milliseconds.

Churchill and Buro [2013] launched a line of research for
dealing with large-scale RTS combat scenarios. Namely, they
assume the existence of a pool of scripts Σ. A script σ̄ is a
function mapping a game state s and a unit u to a legal action
m for u at s. In every game state s in which a unit u is ready
to perform an action, a search algorithm selects a script σ̄
from Σ for u. We call strategy selection algorithms the meth-
ods that search for a script assignment to every unit a player
controls. Since a script maps a unit to an action, by assign-
ing a script to a unit, strategy selection algorithms effectively
decide which action each unit will perform. Churchill and
Buro’s strategy selection algorithm, Portfolio Greedy Search

(PGS), substantially outperforms search algorithms such as
Alpha-Beta [Knuth and Moore, 1975] and UCT [Kocsis and
Szepesvári, 2006] in combat scenarios with dozens of units.

The strategy selection scheme allows search algorithms to
concentrate their efforts in parts of the game tree that are
deemed as promising by the scripts. That is, instead of con-
sidering all legal actions for unit u at game state s, a search
algorithm considers only the actions returned by scripts in Σ.
However, even then, depending on the number of units and
scripts considered, search algorithms often evaluate only a
small fraction of all possible actions within the time limit.

The main contribution of this paper is a search algorithm
that uses a partition of the player’s units, which we call a
type system, to further reduce the number of possible unit-
action assignments considered during search. This reduction
is achieved by assigning the same script to units of the same
type. For example, all wounded units (type) must move away
from the battle (strategy encoded in a script). We call our
algorithm Stratified Strategy Selection (SSS).

Another contribution of this paper is a meta-reasoning ap-
proach to automatically choose SSS’s type system. Our ap-
proach chooses, from a pool of options, the type system to
be used based on an estimate of SSS’s running time. We call
SSS+ this meta-reasoning-based variant of SSS.

Finally, with SSS and SSS+, we test the hypothesis that
one is able to find strong strategies by searching the space of
script assignments in which all units of the same type must
be assigned the same script. Our experiments are run in Spar-
Craft, a simplified combat simulation environment of Bliz-
zard’s StarCraft [Churchill and Buro, 2013]. Our results show
that SSS and SSS+ are able to substantially outperform state-
of-the-art approaches in combats with up to 100 units. We
also show empirically SSS+’s advantage over SSS.

As the first of their kind, SSS and SSS+ represent new re-
search directions, which include the development of novel
type systems and algorithms for searching in type-induced
state spaces for controlling units in RTS combats.

2 Related Work
Wang et al. [2016] also presents a strategy selection algorithm
to control RTS combat units. However, instead of performing
a hill-climbing search as is done by PGS, Wang et al. use
a genetic algorithm for searching in the space of script as-

signments. Wang et al. showed that their genetic algorithm,
Portfolio Online Evolution (POE), outperforms PGS.

The work of Justesen et al. [2014] also deals with the
script assignment problem. Their algorithm is similar to
ours because it also uses a partition of the units to guide
its search. However, their method differs from ours in fun-
damental ways. SSS’s partitions are defined by a type sys-
tem, while Justesen et al. use a clustering algorithm to define
their partitions. Our type systems use a diverse set of game-
state features, while Justesen et al. use only position-based
features. Also, one of our methods uses a meta-reasoning
approach for selecting the type system from a pool of op-
tions. These differences result in a major performance im-
provement. Wang et al. [2016] showed that Justesen et al.’s
approach is only competitive with PGS and is substantially
outperformed by POE. We show in this paper that our strati-
fied approaches substantially outperform both PGS and POE.

Before the invention of strategy selection approaches,
state-of-the-art search-based algorithms included Monte-
Carlo methods [Chung et al., 2005; Balla and Fern, 2009;
Ontañón, 2013] and Alpha-Beta variants [Churchill et al.,
2012]. Note that some of these methods are more general
than strategy selection approaches (e.g., [Ontañón and Buro,
2015]) in the sense that they can be used to control a play-
ing agent throughout a complete RTS game. By contrast, the
algorithms we consider in this paper are specialized for com-
bat scenarios. Sailer et al. [2007], Preuss et al. [2013], and
Tavares et al. [2016] present methods for selecting strategies
for players in RTS games. By contrast, our strategy selection
approaches assign strategies to units through scripts.

Another line of research uses learning to derive combat
strategies. Search algorithms require an efficient forward
model of the game to plan before acting. By contrast, learn-
ing approaches do not necessarily require an efficient forward
model of the game as they learn from past experiences. No-
table examples of this line include the work by Usunier et
al. [2016] and Liu et al. [2016]. Likely due to the use of
an efficient forward model, strategy selection algorithms tend
to scale more easily to large combat scenarios than learning-
based methods—while the former can effectively handle bat-
tles with more than 100 units, the latter are usually tested on
battles with around 50 units.

Others have used type systems as part of algorithms for
estimating the running time of search methods [Chen, 1992;
Korf et al., 2001; Zahavi et al., 2010; Lelis et al., 2013b;
2013a]. Type systems have also been used to enhance single-
agent search algorithms [Lelis et al., 2013c; Xie et al., 2014;
Betzalel et al., 2015] and as part of algorithms for predicting
the optimal cost of search problems [Lelis et al., 2016]. By
contrast, we use type systems as a means of enhancing search
algorithms for RTS combat scenarios.

3 RTS Combat Scenarios
Combat scenarios that arise in RTS games, which we also
call matches, can be described as finite zero-sum two-player
games with simultaneous and durative moves. These matches
can be defined by a tuple (N ,S, sinit,A,R, T), where,

• N = {i,−i} is the set of players (we assume to be

controlling i and −i to be our opponent);
• S = D ∪ F is the set of states, where D denotes the

set of non-terminal states and F the set of terminal
states. Every state s ∈ S includes the joint set of units
U = Ui ∪ U−i, for players i and −i, respectively;
• sinit ∈ D is the start state of the match;
• A = Ai × A−i is the set of joint player actions. Each

player action a is denoted by a tuple of n unit actions
(m1, · · · ,mn), where mk ∈ a is the action of the k-th
ready unit of player i. A unit u is not ready at a given
state s if u is currently performing an action. Whenever
clear from the context, we will write action instead of
player action and unit action;
• R : F × N → R is a utility function with R(s, i) =
−R(s,−i), for any s ∈ F ;
• The transition function T : S × Ai × A−i → S de-

termines the sucessor state given a state s and the set of
joint player actions taken at s.

We denote the set of unit actions asM, which includes ac-
tions for moving up, left, right and down, waiting, and attack-
ing an enemy unit. Also, every unit u ∈ U has x and y coor-
dinates, given by x(u) and y(u), attack range r(u), attack
damage d(u), unit action duration, which depends on the
unit and action being performed, current hit points hp(u),
maximum hit points hpm(u), and weapon cool-down time
(i.e., the time the unit has to wait before repeating an attack
action). We assume Euclidean distance whenever referring to
the distance between units.

A decision point of player i is a state s in which i has
ready units and i has to decide on which action to take. A
strategy σi : S → Ai for player i maps a state s to a player
action a. One way of deriving good strategies for RTS games
is by simplifying the problem’s state space through the script
assignment scheme introduced by Churchill and Buro [2013].

4 Scripts
A script σ̄ : S×U →M is a function mapping a state s and a
unit u in s to an actionm for u. A script σ̄ allows one to define
a strategy σ by applying σ̄ to every ready unit in the state.
We write σ̄ instead of σ̄(s, u) whenever s and u are clear
from the context. At every decision point s, strategy selection
algorithms assign a script σ̄ from Σ to every ready unit u in
s. Unit u then performs the action returned by σ̄(s, u).

The success of strategy selection algorithms depends on the
quality of the set of scripts Σ available. We use two scripts
introduced by Churchill and Buro [2013] which they named
No-Overkill-Attack-Value (NOKAV) and Kiter. NOKAV as-
signs actions to units so that the units do not cause more dam-
age than the required to reduce an enemy’s unit hp to zero.
Kiter allows a unit to attack and then move away from the
target; see Churchill and Buro [2013] for details.

In addition to NOKAV and Kiter, we use a third script
called Cluster.1 Cluster computes the average x and y co-
ordinates, denoted (x̄, ȳ), of all ally units Ui. Then, it assigns

1The Cluster script was invented by David Churchill and is avail-
able in the SparCraft codebase [Churchill and Buro, 2013].

Algorithm 1 Stratified Strategy Selection

Require: scripts Σ, default script σ̄d, time limit e, evaluation
function Ψ, type system T for the set of units Ui.

Ensure: action a for player i, boolean c indicating if the al-
gorithm finished a complete iteration over all types in T

1: bi ← {σ̄d, · · · , σ̄d} // vector with |Ui| elements
2: b−i ← {σ̄d, · · · , σ̄d} // vector with |U−i| elements
3: c← false
4: while time elapsed is not larger than e do
5: for each t ∈ T do
6: for each σ̄ ∈ Σ do
7: b′i ← bi with the script of all

units of type t replaced by σ̄
8: if Ψ(b′i, b−i) > Ψ(bi, b−i) then
9: bi ← b′i

10: if time elapsed is larger than e then
11: return action computed from bi and boolean c
12: c← true // iterated over all types
13: return action computed from bi and boolean c

to unit u an action that will take it closer to (x̄, ȳ); Cluster
assigns the wait move if the unit is already at (x̄, ȳ).

The Cluster script allows us to expose a weakness in PGS’s
evaluation function while dealing with non-offensive scripts.
In contrast with NOKAV and Kiter, which include attack ac-
tions in their rules, Cluster never assigns an attack action to
a unit. We explain why PGS’s evaluation function is unable
to properly evaluate non-offensive strategies in Section 5.2.
Also, we show empirically that the effective use of the Cluster
script altogether with NOKAV and Kiter can result in strong
gameplay strategies.

5 Stratified Strategy Selection (SSS)
SSS uses a partition of units, which we call a type system,
and assigns the same script to units of the same type. For
example, all units with low hp-value (type) move away from
the battle so that they can survive longer (strategy encoded in
a script). A type system is defined as follows.

Definition 1 (Type System) Let Ui be the set of player i’s
units. T = {t1, . . . , tk} is a type system for Ui if it is a par-
titioning of Ui. If u ∈ Ui and t ∈ T with u ∈ t, we write
T (u) = t.

We describe our type systems in Section 5.1.
Algorithm 1 shows the pseudocode of SSS, which is in-

voked for deciding player i’s action in their decision points
throughout the game. SSS performs a hill-climbing search
similar to PGS’s search (see Churchill and Buro [2013] for
details). However, in contrast with PGS, SSS searches in the
space of script assignments induced by a type system.

SSS receives as input a set of scripts Σ, a default script
σ̄d ∈ Σ, a time limit e, an evaluation function Ψ, and a type
system for the units Ui at state s. SSS returns a player action
for i (i.e., a vector containing one unit action for each ready
unit in s) and a boolean value c indicating whether SSS was
able to complete one iteration over the set of types in T . The
boolean value c is used by SSS+, as explained in Section 5.3.

SSS starts by initializing vectors bi and b−i with the default
script σ̄d; bi and b−i store one script for each ready unit con-
trolled by players i and −i, respectively (in the pseudocode
we assume all units in Ui and U−i to be ready). We also as-
sume an arbitrary ordering of the units in Ui and U−i so that
the script stored in the first position of bi (resp. b−i), denoted
bi[0] (resp. b−i[0]), corresponds to the script of Ui’s (resp.
U−i) first unit. Vector bi unambiguously define a player ac-
tion for i. The player action is computed from bi by using
bi[0] to compute the unit action of the first unit in Ui, bi[1] to
compute the unit action of the second unit and so on.

SSS performs a greedy search to iteratively improve the
script assignment of bi (lines 4–9). Namely, SSS evaluates
all possible assignments of scripts from Σ to units of a given
type t while the script of units with types other than t are
fixed. SSS keeps in bi the assignment with largest Ψ-value
encountered during search (lines 8 and 9).

The evaluation function Ψ receives bi and b−i as input and
estimates the end-game utility assuming player i has taken
the action computed from bi and player −i the action com-
puted from b−i. We discuss different evaluation functions in
Section 5.2. SSS returns the player action computed from bi
once it reaches the time limit e (lines 11 and 13).

Note that vector b−i does not change during search and
SSS is effectively searching for a best response to b−i. In
theory, players following strategies derived by SSS can be ex-
ploited as −i might be able to anticipate that i is computing a
best response to b−i and thus compute a best response to i’s
action. However, due to the problem’s size and real-time con-
straints, it is currently impractical to guess a player’s strategy
and compute a best response to it. Also, in theory, even if
SSS had unlimited time to compute a strategy, an opponent
that considers all legal actions during search might be able
to exploit player i, as SSS is constrained to the unit actions
returned by the scripts. In practice, however, as Churchill
and Buro [2013] have shown, one is only able to derive good
strategies while accounting for all legal actions in scenarios
with very few combat units.

5.1 Type Systems
Since SSS assigns the same script to all units of a given type,
it is important that the type system captures important strate-
gic information regarding the game state at hand.

Intuitively, the units’ attack range (r), damage (d), and hit
points (hp) encode important strategic information. For ex-
ample, the Kiter script tends to be more effective if employed
by units with a large attack range, as it allows the unit to at-
tack and retreat without being hit by the enemy. Similarly, by
assigning a less offensive script to units with lower hp-values
one might be able to preserve the units longer in the match.
We define the canonical type system Tc as follows.

Tc,l(u) =
(
r(u), d(u), hp(u, l)

)
,

where l is an integer used for mapping u’s hp-value into “lev-
els”,

hp(u, l) =

⌊
hp(u)

bhpm(u)
l c

⌋
.

We do not use similar mappings for r and d because they are
fixed (and thus less diverse) throughout the match.

Also, we define Tc,0(u) =
(
r(u), d(u)

)
.

Example 1 Let u1, u2, and u3 be three units with r = 20,
d = 5, hpm = 60, and with hp-values of 10, 15, and 30,
respectively. For l = 3, Tc,3(u1) = Tc,3(u2) =

(
20, 5, 0

)
,

but u3 has a different type as Tc,3(u3) =
(
20, 5, 1

)
.

The parameter l of Tc allows one to create type systems
with different granularities. By increasing the value of l one
creates larger type systems, thus allowing SSS to find “finer
strategies” at the cost of increasing the running time for com-
pleting one iteration of SSS’s while loop (see Algorithm 1).
The granularity of type systems is defined as follows.

Definition 2 (Type Systems Granularity) Let T1, T2 be
type systems for Ui. Also, let |T1| and |T2| be the maximum
number of types T1 and T2 might have during a match. T1 is
finer than T2, denoted T1 � T2, if |T1| ≥ |T2|.

For example, since the maximum number of different types
Tc,3 might have is larger than the maximum number of differ-
ent types Tc,2 might have in a given match, we say that Tc,3
is finer than Tc,2, or Tc,3 � Tc,2.

5.2 Evaluation Functions
In this section we discuss different evaluation functions Ψ.
The first evaluation we discuss is LTD2, a function introduced
by Kovarsky and Buro [2005] that accounts for the unit’s hp
and how much damage each unit can cause per frame of the
game (dpf). The LTD2 of a state s with units U = Ui ∪ U−i
is written as follows,

∑
u∈Ui

√
hp(u) · dpf(u)−

∑
u∈U−i

√
hp(u) · dpf(u) .

Churchill et al. [2012] introduced a playout-based evalua-
tion that outperforms LTD2. Instead of evaluating the state s
directly, their scheme simulates the game from s to a terminal
state sf while following a fixed set of scripts for player i, bi,
and for player−i, b−i (all player actions in the simulation are
computed according to bi and b−i); the LTD2-value of sf is
computed and returned as an estimated end-game value of s.
PGS uses Churchill et al.’s evaluation function. The draw-
back of this evaluation scheme is that it incorrectly evaluates
actions computed from vectors bi containing non-offensive
scripts such as Cluster. This is because the evaluation func-
tion assumes that the units will follow the scripts defined in
bi in every decision point to the end of the match. This means
that one assumes that units following the Cluster script will
not attack for the rest of the match, which is unreasonable.

A secondary contribution of this paper is the use of a differ-
ent evaluation function with PGS. Namely, we use a playout-
based evaluation in which the first joint player action in the
simulation is computed from bi and b−i and all the others,
to the end of the simulation, are computed according to the
NOKAV script. We call PGS with this evaluation function
PGS+. SSS and SSS+ also use PGS+’s evaluation scheme.
We note that POE’s evaluation function is similar to PGS+’s;
see Wang et al. [2016] for details.

5.3 SSS with Adaptive Type Systems (SSS+)
Depending on the number and on the diversity of units (e.g.,
units with different attack ranges) present in the match, SSS
might be unable to iterate through all types in T before reach-
ing time limit e. This is because a large diversity of units
result in more types being considered during search. Also,
the running time of Ψ tends to increase as one increases the
number of units in the match as the simulation takes longer.

If SSS is unable to iterate through all types, then it returns
moves computed from the default script σ̄d for units u whose
type T (u) was not accounted for during search. The assign-
ment of σ̄d might lead to a poor overall strategy as there could
be better scripts that were not verified by the algorithm due to
the lack of time. Aiming at preventing SSS from not iterating
at least once over all types, we developed a meta-reasoning
system to adjust the granularity of the type system used. This
adjustment occurs in between searches and is based on the es-
timated running time of a SSS iteration. We call the resulting
algorithm SSS+.

Instead of receiving one type system T , SSS+ receives a
set of type systems Y = {T1, T2, · · · , TN} with T1 � T2 �
· · · � TN . SSS+ starts with T1, the finest type system in Y .
If the search returns false while using T1 (see variable c in
Algorithm 1), SSS+ replaces T1 by T2 for its next search. If
the search returns true while using T2 and the meta-reasoning
system estimates that SSS+ will be able to complete an itera-
tion of the algorithm with T1, then it replaces T2 by T1.

In general, let Tj be the type system in Y used in SSS+’s
last search. SSS+’s meta-reasoning defines the type system T
to be used in its next search as follows.

T =


Tj+1, if condition C1 is satisfied ,
Tj−1, if condition C2 is satisfied ,
Tj , otherwise .

Here, conditions C1 and C2 are defined as,

C1 = ¬c ∧ (j < N) ,

C2 = c ∧ (j > 1) ∧ (t̃× |̃Tj−1| × |Σ| ≤ e) .

Here, t̃ is an estimate of Ψ’s running time and |̃Tj−1| is an
estimate of the number of types in Tj−1. As mentioned be-
fore, Ψ’s running time varies during the match as the number
of units in the game state changes. Thus, t̃ is estimated as
the average running time of the multiple Ψ runs performed in
SSS+’s last search. Whenever the meta-reasoning approach
changes the type system employed from Tj−1 to a coarser
type system Tj we store in memory the number of types of

Tj−1 encountered during search, which we use as |̃Tj−1|.
Condition C1 is satisfied when SSS+ is unable to iterate

through all types (¬c) and the current type system being em-
ployed is not the coarsest in Y (j < N). Condition C2 is
satisfied when SSS+ is able to iterate through all types (c),
the current type system being employed is not the finest in
Y (j > 1), and the meta-reasoning approach estimates that
SSS+ will be able to iterate through all types if using a type
system that is finer than the last used (t̃× |̃Tj−1| × |Σ| ≤ e).

(Zea 4)
PGS POE PGS+ SSS SSS+

PGS - 0.04 0.08 0.06 0.06
POE 0.96 - 0.44 0.39 0.32
PGS+ 0.92 0.56 - 0.41 0.42
SSS 0.94 0.61 0.59 - 0.50
SSS+ 0.94 0.68 0.58 0.50 -

(Zea 16)
PGS POE PGS+ SSS SSS+

PGS - 0.01 0.03 0.00 0.00
POE 0.99 - 0.29 0.04 0.04
PGS+ 0.97 0.71 - 0.12 0.12
SSS 1.00 0.96 0.88 - 0.50
SSS+ 1.00 0.96 0.88 0.50 -

(Zea 40)
PGS POE PGS+ SSS SSS+

PGS - 0.00 0.00 0.00 0.00
POE 1.00 - 0.02 0.00 0.00
PGS+ 1.00 0.98 - 0.12 0.14
SSS 1.00 1.00 0.88 - 0.50
SSS+ 1.00 1.00 0.86 0.50 -

(Zea 56)
PGS POE PGS+ SSS SSS+

PGS - 0.01 0.00 0.00 0.00
POE 0.99 - 0.00 0.00 0.00
PGS+ 1.00 1.00 - 0.15 0.14
SSS 1.00 1.00 0.84 - 0.52
SSS+ 1.00 1.00 0.86 0.48 -

(Zea 2, Dra 2)
PGS POE PGS+ SSS SSS+

PGS - 0.24 0.24 0.23 0.23
POE 0.76 - 0.33 0.37 0.28
PGS+ 0.76 0.67 - 0.44 0.44
SSS 0.77 0.63 0.56 - 0.50
SSS+ 0.77 0.72 0.56 0.50 -

(Zea 8, Dra 8)
PGS POE PGS+ SSS SSS+

PGS - 0.07 0.28 0.09 0.09
POE 0.93 - 0.44 0.08 0.07
PGS+ 0.72 0.56 - 0.19 0.19
SSS 0.91 0.92 0.81 - 0.49
SSS+ 0.91 0.93 0.81 0.51 -

(Zea 20, Dra 20)
PGS POE PGS+ SSS SSS+

PGS - 0.00 0.08 0.01 0.01
POE 1.00 - 0.47 0.07 0.05
PGS+ 0.92 0.53 - 0.30 0.23
SSS 0.99 0.93 0.70 - 0.39
SSS+ 0.99 0.95 0.77 0.61 -

(Zea 28, Dra 28)
PGS POE PGS+ SSS SSS+

PGS - 0.00 0.03 0.01 0.01
POE 1.00 - 0.32 0.03 0.04
PGS+ 0.97 0.68 - 0.32 0.36
SSS 0.99 0.97 0.68 - 0.54
SSS+ 0.99 0.96 0.64 0.46 -

(Zea 2, Dra 2, Ling 2)
PGS POE PGS+ SSS SSS+

PGS - 0.44 0.26 0.22 0.22
POE 0.56 - 0.21 0.24 0.14
PGS+ 0.74 0.79 - 0.41 0.41
SSS 0.78 0.76 0.59 - 0.50
SSS+ 0.78 0.86 0.59 0.50 -

(Zea 6, Dra 6, Ling 6)
PGS POE PGS+ SSS SSS+

PGS - 0.18 0.13 0.04 0.02
POE 0.82 - 0.12 0.03 0.03
PGS+ 0.87 0.88 - 0.18 0.18
SSS 0.96 0.97 0.82 - 0.50
SSS+ 0.98 0.97 0.82 0.50 -

(Zea 14, Dra 14, Ling 14)
PGS POE PGS+ SSS SSS+

PGS - 0.01 0.01 0.00 0.00
POE 0.99 - 0.12 0.02 0.01
PGS+ 0.99 0.88 - 0.09 0.06
SSS 1.00 0.98 0.92 - 0.37
SSS+ 1.00 0.99 0.94 0.63 -

(Zea 18, Dra 18, Ling 18)
PGS POE PGS+ SSS SSS+

PGS - 0.01 0.01 0.00 0.00
POE 0.99 - 0.08 0.01 0.01
PGS+ 0.99 0.92 - 0.10 0.06
SSS 1.00 0.99 0.90 - 0.42
SSS+ 1.00 0.99 0.94 0.58 -

(Zea 2, Dra 2, Ling 2, Mar 2)
PGS POE PGS+ SSS SSS+

PGS - 0.41 0.15 0.25 0.25
POE 0.59 - 0.06 0.14 0.12
PGS+ 0.85 0.94 - 0.57 0.57
SSS 0.75 0.86 0.43 - 0.50
SSS+ 0.75 0.88 0.43 0.50 -

(Zea 4, Dra 4, Ling 4, Mar 4)
PGS POE PGS+ SSS SSS+

PGS - 0.30 0.19 0.18 0.17
POE 0.70 - 0.10 0.16 0.13
PGS+ 0.81 0.90 - 0.33 0.26
SSS 0.81 0.84 0.67 - 0.46
SSS+ 0.83 0.87 0.74 0.54 -

(Zea 10, Dra 10, Ling 10, Mar 10)
PGS POE PGS+ SSS SSS+

PGS - 0.05 0.11 0.09 0.05
POE 0.95 - 0.18 0.26 0.09
PGS+ 0.89 0.82 - 0.26 0.04
SSS 0.91 0.74 0.74 - 0.25
SSS+ 0.95 0.91 0.96 0.75 -

(Zea 14, Dra 14, Ling 14, Mar 14)
PGS POE PGS+ SSS SSS+

PGS - 0.02 0.03 0.10 0.01
POE 0.98 - 0.10 0.54 0.04
PGS+ 0.97 0.90 - 0.84 0.05
SSS 0.90 0.46 0.16 - 0.07
SSS+ 0.99 0.96 0.95 0.93 -

Table 1: Winning rate of the row player against the column player for various combat scenarios. The numbers are rounded to two decimal
places. Orange-colored cells show scenarios in which the row player won more than 50% of the 1,000 matches tested; black-colored cells
show the results in which SSS and SSS+ differ the most.

6 Empirical Results
We use as our testbed a simulation environment of Blizzard’s
StarCraft called SparCraft.2 The unit properties such as hit
points, cool-down time, and damage are exactly the same as
the original game. However, SparCraft does not implement
fog of war, collisions, and unit acceleration (all units move
at constant speed) [Churchill and Buro, 2013]. We use Spar-
Craft because, in contrast with the original game, it offers an
efficient forward model of the game. All experiments are run
on 2.66 GHz machines.

6.1 Combat Scenarios
We experiment with units with different hp, d, and r-values.
We use ↑ to denote large and ↓ to denote small hp and d-
values. Also, we call u a melee unit if u’s attack range equals
zero (r = 0), and we call u a ranged unit if u is able to
attack from far (r > 0). Namely, we use the following unit
kinds: Zealots (Zea, ↑hp, ↑d, melee), Dragoons (Dra, ↑hp,
↑d, ranged), Zerglings (Ling, ↓hp, ↓d, melee), Marines (Mar,
↓hp, ↓d, ranged). We consider the combat scenarios where
each player controls units of the following kinds: (i) Zea; (ii)
Zea and Dra; (iii) Zea, Dra, and Ling; and (iv) Zea, Dra, Ling,
and Mar. We experiment with matches with as few as 4 units
and as many as 56 units on each side. The largest number of
units controlled by a player in a typical StarCraft combat is
around 50 [Churchill and Buro, 2013].

The units are placed in a walled arena with no obstacles of
size 1280 × 780 pixels; the largest unit is approximately 40
× 50 pixels large. The walls ensure finite matches by pre-
venting units from indefinitely moving away from enemies.
For each combat scenario we generate 1,000 start states as

2github.com/davechurchill/ualbertabot/tree/master/SparCraft

explained by Churchill and Buro [2013]. Namely, player i’s
units are placed at a random coordinate to the right of the cen-
ter of the arena, which we define to be the coordinate (0, 0).
Player −i’s units are placed at a symmetric position to the
left of (0, 0). The coordinates are chosen so that the units are
at a distance in between 0 and 128 pixels from (0, 0). Then,
to ensure that no unit starts within the attack range of an en-
emy unit, we add 220 pixels to the x-coordinate of player i’s
units, and subtract 220 pixels from the x-coordinate of player
−i’s units, thus increasing the distance between enemy units
by 440 pixels. We present the winning rate over the 1,000
matches for each combat scenario and algorithm tested.

6.2 Configurations of Algorithms Tested
We test PGS [Churchill and Buro, 2013], PGS+ (PGS with
our Ψ), POE [Wang et al., 2016], and SSS and SSS+. We
also experimented with ABCD [Churchill et al., 2012] and
UCTCD [Churchill and Buro, 2013], but both algorithms per-
formed much worse than the others and we omit their results
for clarity. All algorithms use the same set Σ = {NOKAV,
Kiter, Cluster} of scripts, and have a time limit of 40 millisec-
onds for each decision point.

PGS and PGS+: Instead of limiting PGS and PGS+ to a
fixed number of iterations (the number of times they try to im-
prove their script assignments), as Churchill and Buro [2013]
did, we let PGS and PGS+ improve the assignments while
there is time available. Also, as suggested by Churchill and
Buro, we set PGS’s and PGS+’s improvement response pa-
rameter to 0; see Churchill and Buro [2013] for details.

POE: We have implemented POE in SparCraft’s codebase
and tested several configurations of its parameters, including
the values suggested by Wang et al. [2016]. The best con-
figuration we found is the following: population size of 36,

with the 6 fittest individuals being selected for generating 5
offsprings each. Also, POE uses a playout-based evaluation
function that is limited to 25 decision points; see Wang et
al. [2016] for details.

SSS and SSS+: For SSS we use Tc,3 and for SSS+ we use
Y = {Tc,3, Tc,2, Tc,1, Tc,0, TRGD}, where TRGD is a type
system that assigns the same type to two units if they are
either both melee or both ranged. Clearly, Tc,3 � Tc,2 �
Tc,1 � Tc,0 � TRGD. We also tested SSS with Tc,2, Tc,1,
Tc,0, and TRGD (results are omitted for lack of space); the
best overall results for SSS were obtained with Tc,3.

6.3 Discussion
Table 1 shows the winning rate of the row player against the
column player for various combat scenarios. For example, for
the combat scenario in which each player controls 8 Zealots
and 8 Dragoons (Zea 8, Dra 8) SSS wins 92% of the matches
against POE. The orange-colored cells in Table 1 show sce-
narios in which the row player won more than 50% of the
1,000 matches tested; black-colored cells show the results in
which SSS and SSS+ differ the most.

POE substantially outperforms PGS in all scenarios tested.
Note, however, that PGS+ outperforms both PGS and POE.
This is because the evaluation function used with PGS as-
sumes that the script chosen at a given decision point will be
used throughout the match. As a result, PGS does not se-
lect the non-offensive Cluster script. By contrast, our results
suggest that PGS+ is able to effectively select non-offensive
strategies and gain strategic advantage over its opponents.

SSS and SSS+’s winning rates are smaller for scenarios
with fewer units, e.g., (Zea 4), (Zea 2, Dra 2), (Zea 2, Dra
2, Ling 2), and (Zea 2, Dra 2, Ling 2, Mar 2), but almost al-
ways above 50%, with the exception of (Zea 2, Dra 2, Ling
2, Mar 2), where PGS+ won 57% of the matches against
both SSS and SSS+. PGS+ is able to outperform SSS and
SSS+ because it might be able to evaluate all possible script
assignments in scenarios with fewer units, while SSS and
SSS+ consider only a subset of the assignments considered
by PGS+. Nevertheless, SSS and SSS+ have winning rates
usually above 80% in scenarios with more units. Our results
show that one is able to find stronger strategies than com-
peting schemes by searching in the space induced by a type
system. This suggests that the type system effectively prunes
a potentially large and unpromising portion of the game tree
by reducing the number of script assignments considered.

SSS and SSS+ present similar results for matches with one,
two, and three kinds of units. However, major differences are
observed between the two algorithms in scenarios with four
kinds of units; these differences are highlighted by the dark
cells in Table 1. In such scenarios, due to the large number
of types and units, SSS might be unable to iterate through all
types within the time limit. As a result, most units follow the
default NOKAV script. As the match progresses and units are
removed from the game state, the running time of Ψ reduces,
which allows SSS to iterate through all types within the time
limit. However, by then, the enemy has likely gained an irre-
versible strategic advantage over SSS.

Figure 1 shows the running time of Ψ throughout the first
150 decision points of player i in a representative (Zea 14,

Figure 1: Ψ’s running time throughout a match. Darker colors in the
background mean the use of coarser type systems.

Dra 14, Ling 14, Mar 14) match. The background color
shows the type system being used at a given decision point.
Here, the darkest color indicates the use of the coarsest TRGD

type system, while the lightest color indicates the use of the
finest Tc,3. SSS+ quickly switches to the coarsest TRGD type
system (depicted by the dark region on the left-hand side of
the figure). As the match progresses and the running time
of Ψ decreases, the coarsest type system is replaced by finer
ones, allowing SSS+ to search in a richer space of possibili-
ties, until it eventually converges to the Tc,3 type system.

SSS+’s automatic type system selection results in major
improvements in the (Zea 14, Dra 14, Ling 14, Mar 14) con-
figuration: SSS+ wins 96% and 95% of its matches against
POE and PGS+, respectively, while SSS wins only 46% and
16% of the matches against the same opponents. Moreover,
in this scenario, SSS+ wins 93% of the matches against SSS.

7 Conclusions and Future Works
In this paper we introduced SSS, a search algorithm for RTS
combat scenarios that is guided by a type system. We also
introduced SSS+, a SSS variant that uses a meta-reasoning
approach to automatically choose its type system. Experi-
ments on SparCraft showed that both SSS and SSS+ are able
to substantially outperform state-of-the-art algorithms. Also,
our results showed that in combat scenarios with a large and
diversified number of units SSS+ can outperform SSS.

As future research, we intend to test SSS and SSS+ in
games with unit acceleration and collision. Also, Churchill
and Buro [2015] showed that a variant of PGS is used in a
comercial card game. SSS could also be used to enhance the
game’s AI so that it might challenge the more skilled players.

Acknowledgements
The author gratefully thank Rubens de O. Moraes Filho, Rob
Holte, Anderson Tavares and the anonymous referees of this
paper for great suggestions, and David Churchill, Chen Wang
and Julian Togelius for kindly answering questions about
SparCraft, PGS, and POE. Financial support for this research
was provided by Brazil’s CAPES CsF, FAPEMIG, and CNPq.

References
[Balla and Fern, 2009] R-K. Balla and A. Fern. Uct for tac-

tical assault planning in real-time strategy games. In Inter-
national Joint Conference on Artificial Intelligence, pages
40–45, 2009.

[Betzalel et al., 2015] O. Betzalel, A. Felner, and S. E. Shi-
mony. Type system based rational lazy IDA. In Symposium
on Combinatorial Search, pages 151–155, 2015.

[Chen, 1992] P.-C. Chen. Heuristic sampling: A method
for predicting the performance of tree searching programs.
SIAM Journal on Computing, 21:295–315, 1992.

[Chung et al., 2005] M. Chung, M. Buro, and J. Schaeffer.
Monte Carlo planning in RTS games. In IEEE Symposium
on Computational Intelligence and Games, 2005.

[Churchill and Buro, 2013] D. Churchill and M. Buro. Port-
folio greedy search and simulation for large-scale combat
in StarCraft. In Conference on Computational Intelligence
in Games, pages 1–8. IEEE, 2013.

[Churchill and Buro, 2015] D. Churchill and M. Buro. Hier-
archical portfolio search: Prismata’s robust AI architecture
for games with large search spaces. In AAAI Conference
on Artificial Intelligence and Interactive Digital Entertain-
ment, pages 16–22, 2015.

[Churchill et al., 2012] D. Churchill, A. Saffidine, and
M. Buro. Fast heuristic search for RTS game combat sce-
narios. In AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, 2012.

[Justesen et al., 2014] N. Justesen, B. Tillman, J. Togelius,
and S. Risi. Script- and cluster-based UCT for StarCraft.
In IEEE Conference on Computational Intelligence and
Games, pages 1–8, 2014.

[Knuth and Moore, 1975] D. E. Knuth and R. W. Moore.
An analysis of alpha-beta pruning. Artificial Intelligence,
6(4):293–326, 1975.

[Kocsis and Szepesvári, 2006] L. Kocsis and C. Szepesvári.
Bandit based monte-Carlo planning. In European Con-
ference on Machine Learning, pages 282–293. Springer-
Verlag, 2006.

[Korf et al., 2001] R. E. Korf, M. Reid, and S. Edelkamp.
Time complexity of Iterative-Deepening-A∗. Artificial In-
telligence, 129(1-2):199–218, 2001.

[Kovarsky and Buro, 2005] A. Kovarsky and M. Buro.
Heuristic search applied to abstract combat games. In Ad-
vances in Artificial Intelligence: Conference of the Cana-
dian Society for Computational Studies of Intelligence,
pages 66–78. Springer, 2005.

[Lelis et al., 2013a] L. H. S. Lelis, L. Otten, and R. Dechter.
Predicting the size of depth-first branch and bound search
trees. In International Joint Conference on Artificial Intel-
ligence, pages 594 – 600, 2013.

[Lelis et al., 2013b] L. H. S. Lelis, S. Zilles, and R. C. Holte.
Predicting the Size of IDA*’s Search Tree. Artificial Intel-
ligence, pages 53–76, 2013.

[Lelis et al., 2013c] L. H. S. Lelis, S. Zilles, and R. C. Holte.
Stratified Tree Search: a novel suboptimal heuristic search
algorithm. In Conference on Autonomous Agents and Mul-
tiagent Systems, pages 555–562, 2013.

[Lelis et al., 2016] L. H. S. Lelis, R. Stern, S. Zilles, A. Fel-
ner, and R. C. Holte. Predicting optimal solution costs with
bidirectional stratified sampling in regular search spaces.
Artificial Intelligence, pages 51–73, 2016.

[Liu et al., 2016] S. Liu, S. J. Louis, and C. A. Ballinger.
Evolving effective microbehaviors in real-time strategy
games. IEEE Transactions on Computational Intelligence
and AI in Games, 8(4):351–362, 2016.

[Ontañón and Buro, 2015] S. Ontañón and M. Buro. Adver-
sarial hierarchical-task network planning for complex real-
time games. In International Joint Conference on Artificial
Intelligence, pages 1652–1658, 2015.

[Ontañón et al., 2013] S. Ontañón, G. Synnaeve, A. Uriarte,
F. Richoux, D. Churchill, and M. Preuss. A survey of real-
time strategy game AI research and competition in Star-
Craft. IEEE Transactions on Computational Intelligence
and AI in Games, 5(4):293–311, 2013.

[Ontañón, 2013] S. Ontañón. The combinatorial multi-
armed bandit problem and its application to real-time strat-
egy games. In AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, pages 58–64, 2013.

[Preuss et al., 2013] M. Preuss, D. Kozakowski, J. Hagelbck,
and H. Trautmann. Reactive strategy choice in starcraft by
means of fuzzy control. In Conference on Computational
Intelligence in Games, pages 1–8. IEEE, 2013.

[Sailer et al., 2007] F. Sailer, M. Buro, and M. Lanctot. Ad-
versarial planning through strategy simulation. In IEEE
Symposium on Computational Intelligence and Games,
pages 80–87, 2007.

[Tavares et al., 2016] A. Tavares, H. Azpúrua, A. Santos,
and L. Chaimowicz. Rock, paper, starcraft: Strategy se-
lection in real-time strategy games. In AAAI Conference
on Artificial Intelligence and Interactive Digital Entertain-
ment, pages 93–99, 2016.

[Usunier et al., 2016] N. Usunier, G. Synnaeve, Z. Lin, and
S. Chintala. Episodic exploration for deep deterministic
policies: An application to StarCraft micromanagement
tasks. CoRR, abs/1609.02993, 2016.

[Wang et al., 2016] C. Wang, P. Chen, Y. Li, C. Holmgård,
and J. Togelius. Portfolio online evolution in StarCraft. In
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, pages 114–120, 2016.

[Xie et al., 2014] F. Xie, M. Müller, R. Holte, and T. Imai.
Type-based exploration with multiple search queues for
satisficing planning. In AAAI Conference on Artificial In-
telligence, pages 2395–2402, 2014.

[Zahavi et al., 2010] U. Zahavi, A. Felner, N. Burch, and
R. C. Holte. Predicting the performance of IDA* using
conditional distributions. Journal of Artificial Intelligence
Research, 37:41–83, 2010.

