
On Creating Complementary Pattern Databases

Santiago Franco1∗, Álvaro Torralba2, Levi H. S. Lelis3, Mike Barley4

1 School of Computing and Engineering, University of Huddersfield, UK
2 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

3 Departamento de Informática, Universidade Federal de Viçosa, Brazil
4 Computer Science Department, Auckland University, New Zealand

s.franco@hud.ac.uk, torralba@cs.uni-saarland.de, levi.lelis@ufv.br, barley@cs.auckland.ac.nz

Abstract
A pattern database (PDB) for a planning task is
a heuristic function in the form of a lookup table
that contains optimal solution costs of a simpli-
fied version of the task. In this paper we introduce
a method that sequentially creates multiple PDBs
which are later combined into a single heuristic
function. At a given iteration, our method uses es-
timates of the A∗ running time to create a PDB that
complements the strengths of the PDBs created in
previous iterations. We evaluate our algorithm us-
ing explicit and symbolic PDBs. Our results show
that the heuristics produced by our approach are
able to outperform existing schemes, and that our
method is able to create PDBs that complement the
strengths of other existing heuristics such as a sym-
bolic perimeter heuristic.

1 Introduction
Pattern databases (PDBs) map the state space of a classical
planning task onto a smaller abstract state space by consid-
ering only a subset of the task’s variables, which is called
a pattern [Culberson and Schaeffer, 1998; Edelkamp, 2001].
The optimal distance from every abstract state to an abstract
goal state is precomputed and stored in a lookup table. The
values in the table are used as a heuristic function to guide
search algorithms such as A∗ [Hart et al., 1968] while solv-
ing planning tasks. Since a PDB heuristic is uniquely defined
from a pattern, we also use the word pattern to refer to a PDB.

The combination of several PDBs can result in better cost-
to-go estimates than the estimates provided by each PDB
alone. One might combine multiple PDBs by taking the
maximum [Holte et al., 2006; Barley et al., 2014] or the
sum [Felner et al., 2004] of the PDBs’ estimates. In this
paper we consider the canonical heuristic function, which
takes the maximum estimate over all additive PDB sub-
sets [Haslum et al., 2007]. The challenge is to generate a pat-
tern collection from which an effective heuristic is derived.
Multiple approaches have been suggested to select good
pattern collections [Haslum et al., 2007; Edelkamp, 2006;

∗This work was carried out while S. Franco was a postdoctoral
fellow at Universidade Federal de Viçosa, Brazil.

Kissmann and Edelkamp, 2011]. Recent work showed that
using a genetic algorithm [Edelkamp, 2006] to generate a
large collection of PDBs and greedily selecting a subset of
them can be effective in practice [Lelis et al., 2016]. How-
ever, while generating a PDB heuristic, Lelis et al.’s approach
is blind to the fact that other PDBs will be considered in the
selection process. Our proposed method, which we call Com-
plementary PDBs Creation (CPC), adjusts its PDB generation
process to account for the PDBs already generated as well as
for other heuristics optionally provided as input.

CPC sequentially creates a set of pattern collections Psel

for a given planning task ∇. CPC starts with an empty Psel

set and iteratively adds a pattern collection P to Psel if it pre-
dicts that P will be complementary to Psel . We say that P
complements Psel if A∗ using a heuristic built from P ∪Psel

solves∇ quicker than when using a heuristic built from Psel .
CPC uses estimates of A∗’s running time to guide a local
search in the space of pattern collections. After Psel has been
constructed, all the corresponding PDBs are combined with
the canonical heuristic function [Haslum et al., 2007].

We evaluate our pattern selection scheme in different set-
tings, including explicit and symbolic PDBs. Our results
show that the heuristics produced by our approach are able
to outperform existing methods, and that CPC is able to cre-
ate complementary PDBs to other existing heuristics.

2 Background
An SAS+ planning task [Bäckström and Nebel, 1995] is a 4-
tuple ∇ = 〈V,O, I,G〉. V is a set of state variables. Each
variable v ∈ V has a finite domainDv . O is a set of operators,
where each operator o ∈ O is a triple 〈preo, posto, costo〉
specifying the preconditions, postconditions (effects), and
non-negative cost of o. preo and posto are assignments of
values to subsets of variables, Vpreo and Vposto , respectively.
Operator o is applicable to state s if s and preo agree on the
assignment of values to variables in Vpreo . The result of ap-
plying o to a state s is a new generated state s′ that agrees
with posto on the assignment of values to variables in Vposto
and with s in the remaining variables. We call the children of
state s the states generated by applying the effects of each ap-
plicable operator of s, denoted as children(s). G is the goal
condition, an assignment of values to a subset of variables,
VG. A state is a goal state if it agrees on the assignment of
values to the variables in VG. I is the initial state, and the



task is to find an optimal (least-cost) sequence of operators
from I to a goal state.

We use A∗ with an admissible heuristic to search for opti-
mal solutions for ∇; h is admissible if it never overestimates
the cost-to-go of states in the problem’s space. A∗ expands a
search tree while guided by the function f(s) = g(s) + h(s),
where g(s) is the cost of the path from I to s, and h(s) is an
estimated cost-to-go from s to the goal.

A node n in a search tree is a data-structure containing a
state s, a path from I to s, and the path’s cost g(n). When
we refer to a node as a state we mean the state the node rep-
resents. An A∗ search tree is defined as the set of nodes gen-
erated by A∗ while solving ∇. Also, we call a b-bounded
search tree S(I, b) = (N,E) the set of all paths from I to a
node n with f(n) ≤ b. Here, N is the set of nodes and E the
set of operators where (n1, n2) ∈ E if n2 ∈ children(n1).
S(I, b) might contain multiple nodes representing the same
state, i.e., duplicates. By contrast, the A∗ search tree does not
contain duplicates as the algorithm eliminates them.

Pattern databases (PDBs) project the state space onto a sub-
set of variables, called pattern P ⊆ V [Culberson and Schaef-
fer, 1998; Edelkamp, 2001]. The optimal distance from every
abstract state to an abstract goal state is computed prior to the
search and stored in a lookup table. This computation is done
by performing a backward search in the abstract state space.
A PDB size is defined as the cross product of its variable’s
domains,

∏
v∈P Dv .

Symbolic PDBs use symbolic search [McMillan, 1993;
Edelkamp, 2002] to perform the backward search. Symbolic
backward search uses efficient data-structures such as Binary
Decision Diagrams (BDDs) [Bryant, 1986] to succinctly rep-
resent sets of states with the same distance to the goal. Con-
trary to the lookup table of explicit PDBs, the size of the
BDDs representing the heuristic does not directly depend on
the size of the abstract state space, allowing us to consider
larger patterns. To avoid consuming all resources generating
a single PDB, the PDB construction can be interrupted if a
time or a memory limit are exceeded [Anderson et al., 2007].

A pattern collection P is a set of patterns which can be
combined in order to obtain stronger heuristic functions. Tak-
ing the maximum of the h-values of each individual PDB is
always guaranteed to be an admissible heuristic, but stronger
estimates can be obtained by computing the sum of the h-
values. The values of multiple PDBs are additive if no op-
erator affects two of them, where an operator o affects a
PDB with pattern P if it has an effect on any of its vari-
ables Vposto ∩ P 6= ∅. A common method to combine mul-
tiple PDBs is the canonical heuristic function, which takes
the maximum out of all additive combinations of the col-
lection [Haslum et al., 2007]. This idea can be general-
ized to a cost-partitioning where the cost of each operator is
split among the PDBs [Katz and Domshlak, 2008]. We use
a restricted form of cost partitioning, called zero-one cost-
partitioning [Haslum et al., 2015; Edelkamp, 2006], in which
the cost of each operator is only accounted by one PDB. This
method creates the PDBs in a pattern collection, ordered from
the PDB with most variables to the PDB with the least, set-
ting the cost of an operator to zero in a PDB if it affects any
of the previously generated PDBs.

3 Problem Definition
We are interested in finding a set of pattern collections Psel

that minimizes the running time of A∗ using the heuristic
function obtained from Psel , denoted hPsel

. We approximate
the running time of A∗ guided by hPsel

while solving a task
∇, denoted T (Psel ,∇), as introduced by Lelis et al. [2016].

T (Psel ,∇) = J(Psel ,∇)× (thPsel
+ tgen) .

Here, J(Psel ,∇) is the number of nodes A∗ employing hPsel

generates while solving ∇, thPsel
is hPsel

’s average time for
computing the heuristic value of a single node, and tgen
is the node generation time. Although the exact value of
T (Psel ,∇) is only known once A∗ finishes its search, one
is able to compute an approximation, denoted T̂ (Psel ,∇).
The value of T̂ (Psel ,∇) is computed by using approxima-
tions of thPsel

and tgen, which are obtained while computing
an estimate for J(Psel ,∇), denoted Ĵ(Psel ,∇). Ĵ(Psel ,∇)
is obtained by running Stratified Sampling [Chen, 1992]. We
write Ĵ instead of Ĵ(Psel ,∇) whenever Psel and ∇ are clear
from the context.

4 Stratified Sampling Evaluation
Stratified Sampling (SS) estimates numerical properties (e.g.,
tree size) of search trees by sampling. Lelis et al. [2014]
showed that SS is unable to detect duplicates in the search
tree in its sampling procedure. Instead, we use SS to estimate
the size of the search tree S(I, b), for some value b, and use
this estimate as an approximation Ĵ for the nodes generated
by A∗. SS uses a stratification of the nodes in the search tree
rooted at I through a type system to guide its sampling.
Definition 1 (Type System). Let S(I, b) = (N,E) be a b-
bounded search tree. T = {t1, . . . , ty} is a type system for
S(I, b) if it is a partitioning of N . For every s ∈ N , T (s)
denotes the unique t ∈ T with s ∈ t.

The type system we use accounts for a heuristic h as fol-
lows. Two nodes n1 and n2 in S(I, b) have the same type if
f(n1) = f(n2) and if n1 and n2 occur at the same level of S.

SS samples S and returns a set A of representative-weight
pairs, with one such pair for every unique type seen during
sampling. In the pair 〈n,w〉 in A for type t ∈ T , n is the
unique node of type t that was expanded during search and w
is an estimate of the number of nodes of type t in S. Since SS
is non-deterministic, every run of the algorithm can generate
a different set A. We call each run of SS a probe. We refer
the reader to SS’s original paper [Chen, 1992] for details.

In our pattern selection algorithm we run multiple
SS probes to generate a collection of vectors C =
{A1, A2, · · · , Am}. A vector AU is created from C by com-
bining all representative-weight pairs in C. For each unique
type t encountered in C we add to AU a representative pair
〈n, w̄〉 where n is selected at random from all nodes in C of
type t, and w̄ is the average w-value of all nodes in C of type
t. Each entry in AU represents SS’s prediction for the number
of nodes of a given type in the search tree.

We run SS with a time limit of 20 seconds and a space limit
of 20,000 entries in the AU structure. SS performs 1,000



probes with b = h(I), where h is CPC’s current heuristic
function. If SS completes all 1,000 probes without violating
the time and space limits, we increase b by 20% and run an-
other 1,000 probes. The process is repeated until reaching
either the time or the space limits. The AU structure is built
from the A vectors collected in all probes.

Since our pattern selection approach needs to test multiple
heuristics, we run SS once using a type system T defined by
CPC’s current heuristic and store AU in memory. Then, Ĵ is
computed for a newly created heuristic h′ by iterating over
all representative node-weights 〈n, w̄〉 in AU and summing
the w̄-values for which h′(n) + g(n) ≤ b, where b is the
largest value used for probing with SS while building the AU

structure; this sum is our Ĵ for h′. Also, as mentioned in
Section 3, the approximations for thPsel

and tgen are obtained
by measuring them during SS’s probes.

5 Adaptable Pattern Collection Generation
Algorithm 1 is a high-level overview of the search CPC per-
forms in the pattern collection space. CPC receives as input a
planning task∇, a base heuristic hbase (which could be the h0

heuristic, i.e., a heuristic that returns zero to all states in the
state space), time and memory limits, t and m, respectively,
that specify when to stop running CPC. CPC also receives
another time limit, tstag , for deciding when the parameters
of CPC’s search must be readjusted. Smin and Smax specify
the minimum and maximum sizes of the PDBs constructed.
We use zero-one cost partitioning on each pattern collection
P so that its PDBs are additive. Once CPC returns a set of
pattern collections Psel , we use the canonical heuristic func-
tion [Haslum et al., 2007] to combine all the patterns in Psel

into a heuristic function.
CPC creates pattern collections through calls of the func-

tion BINPACKINGUCB (see line 5), which we explain in Sec-
tion 5.1. Once a pattern collection P is created, CPC evalu-
ates its quality with SS (see line 8), which estimates the run-
ning time of A∗ using a heuristic composed of the patterns
already selected by CPC, Psel , added to the new P . If SS es-
timates that A∗ solves ∇ faster with a heuristic created from
the set of pattern collections Psel ∪ P than with a heuristic
created fromPsel , CPC addsP toPsel (see line 9). Whenever
CPC adds a pattern collection P to Psel , it performs a local
search by applying a mutation operator to P (see line 7), try-
ing to create other similar and helpful pattern collections (the
mutation operator is explained in Section 5.2). If SS estimates
that P does not help reducing A∗’s running time, then CPC
creates a new P through another BINPACKINGUCB function
call in its next iteration.

The first time EVALUATE-SS is called, CPC runs SS using
hbase as its type system to create a vector AU that is used to
produce estimates of the A∗ running time. Whenever a call
to EVALUATE-SS returns true, meaning that P helps reduc-
ing A∗’s running time, CPC discards AU and runs SS again
with the heuristic constructed from Psel ∪ P as its type sys-
tem to generate a new AU . The intuition behind re-running
SS whenever a complementary pattern collection is found is
to allow SS to explore parts of the search tree that were not
explored in previous runs. Initially, the heuristic used in SS’s

Algorithm 1 Complementary PDBs Creation

Require: Planning task ∇, base heuristic hbase, time and
memory limits t and m respectively, stagnation time
tstag , minimum/maximum PDB size Smin , Smax .

Ensure: Selected set of pattern collections Psel

1: Psel ← ∅ // Psel is a set of pattern collections
2: P ← ∅ // P is a pattern collection
3: while time t or memory m limits are not exceeded do
4: if P = ∅ then
5: P ← BINPACKINGUCB(∇,Smin ,Smax )
6: else
7: P ← MUTATION(P)
8: if EVALUATE-SS(Psel ∪ P) then
9: Psel ← Psel ∪ P

10: else
11: P ← ∅
12: if (time since a P is added to Psel ) > Tstag then
13: adjust Smin ,Smax

14: return Psel

sampling tend to be weak, and many of the states in the AU

vector SS produces will not be expanded by A∗ after the new
P is added to Psel . By running SS whenever a better heuris-
tic is constructed, one allows SS to also prune such nodes and
focus its sampling on nodes that the current heuristic is not
able to prune.

5.1 Bin-Packing Algorithms
In this section we describe the methods we consider for gen-
erating candidate pattern collections.

Regular Bin-Packing (RBP)
We adapt the genetic algorithm method introduced by
Edelkamp [2006] for selecting a collection of patterns.
Edelkamp’s method, which we call Regular Bin-Packing
(RBP), generates an initial pattern collection P as follows.
RBP iteratively selects a unique and random variable v from
V and adds it to a subset B of variables, called “bin”, that
is initially empty. Once a PDB constructed from the subset
of variables in B exceeds a size limit M , RBP starts adding
the randomly selected variables to another bin. This process
continues until all variables from V have been added to a bin.
Note that since RBP selects unique variables, the bins repre-
sent a collection of disjoint patterns.

Once the pattern collection P is generated, RBP iterates
through each pattern p in P and removes from p any variable
not causally related to other variables in p [Helmert, 2004].

Causal Bin-Packing (CBP)
Our CBP approach differs from RBP only in the way it selects
the variables to be added to the bins. Instead of choosing
them randomly as is done in RBP, CBP selects only the first
variable of each bin randomly and then only adds to a bin B
variables which are causally related to the variables already
in B. In case there are multiple causally related variables to
be added, CBP chooses one at random.

We observed empirically that RBP tends to generate pat-
tern collections that result in PDBs of similar sizes, and that



RBP CBP 50/50 UCB1

Explicit 908 864 923 936
Symbolic 973 909 1,000 1,009

Table 1: Planner’s coverage while using different bin packing ap-
proaches.

CBP tends to generate pattern collections that result in PDBs
of various sizes. This is because RBP removes causally un-
related variables after the variable selection is done. By con-
trast, CBP greedily selects causally related variables as the
patterns are created. As a result, usually the first pattern cre-
ated by CBP will have more variables than all the other pat-
terns created.

Combination of Bin-Packing Approaches with UCB1
We performed a systematic experiment on the optimal
STRIPS benchmark suite distributed with the Fast Downward
Planning System [Helmert, 2006], which has 1,667 planning
tasks, to test CPC with RBP and CBP. That is achieved by re-
placing the BINPACKINGUCB call in line 5 by RBP and by
CBP. The coverage results for the two approaches are pre-
sented in Table 1.1 Although RBP solves more instances
than CBP, an inspection of the per-domain coverage results
showed that CBP is able to solve many instances that are not
solved by RBP, specially in domains with many variables and
complex causal graph interactions such as Pipesworld, Tetris,
Tidybot, TPP, and Woodworking.

We introduce two approaches for automatically selecting
which bin-packing algorithm should be used to create the next
pattern collection in CPC. The first is a simple baseline in
which every time CPC needs to create a new pattern collec-
tion, it randomly chooses between RBP and CBP with equal
chance; this method is presented as 50/50 in the table of re-
sults. We model the problem of deciding which bin-packing
algorithm to use as a multi-armed bandit problem where each
algorithm represents an arm. A bin-packing algorithm re-
ceives a reward of +1 if it provides a P that is able to reduce
the T̂ -value as estimated by SS; the reward is 0 otherwise. We
used the UCB1 formula [Auer, 2002], x̄j +

√
2 lnn
nj

, to decide
which arm (algorithm) to use next. Here, x̄j is the average
reward received by algorithm j, n is the total number of tri-
als made (i.e., calls to a bin-packing algorithm), and nj is the
number of times algorithm j was called. We artificially ini-
tialize x̄j to 10 for all j to ensure that all algorithms are tested
a few times before UCB1 can express a strong commitment
to a particular option. This helps to reduce the chances of
UCB1’s selection being unduly influenced by the stochastic
nature of the bin-packing approaches.

The coverage results of this approach are shown under
UCB1 in Table 1. The baseline 50/50 already outperforms
RBP and CBP in terms of coverage. However, the overall
best results are obtained by UCB1. This is because UCB1 is

1All experiments testing individual elements of our proposed
technique only differ on the element being tested from our final CPC.
We use h0 as base heuristic in all our experiments unless stated oth-
erwise.

able to learn which algorithm works best for a particular prob-
lem instance and it allocates more time to the best-performing
approach. We use UCB1 in all other CPC experiments in this
paper.

5.2 Mutation Operator
CPC performs mutations on a given pattern collection P
whenever P is deemed as promising by SS. That is, if SS esti-
mates that P will not reduce the A∗ running time, CPC sets P
to ∅, and in the next iteration of CPC’s while loop another P
is created with our UCB approach. On the other hand, if SS
predicts that P is able to reduce A∗’s running time, then CPC
adds P to Psel and, in the next iteration of its while loop, it
applies a mutation operator to P , trying to create another pat-
tern collection that might further reduce A∗’s running time.

The mutation on P works as follows. For each bin B (rep-
resenting a pattern in P), CPC iterates through each variable
v in V , and with some probability (mutation rate), if v is al-
ready in B, then v is removed from B, otherwise, v is added
to B. We use the mutations in pattern collections P as a way
of focusing our search in parts of the pattern selection space
that are deemed as promising according to SS. This is because
we only perform mutations in pattern collections that SS pre-
dicts to complement the pattern collections we have in Psel ,
i.e., the pattern collections that reduce the value of T̂ .

5.3 Dynamic Parameter Adjustment
Some of the instances benefit from a large number of small
PDBs, while others require a small number of large PDBs.
Thus, instead of fixing the PDB size throughout CPC’s pat-
tern selection search, we adjust the size of the PDBs, M , to
be constructed during search.

To be specific, if after tstag seconds we are unable to add
a new complementary pattern collection to Psel , we increase
the size M of the PDBs we generate. The intuition is that if
our search procedure does not find complementary patterns
for the current PDB size, M , then we assume that this partic-
ular planning problem might benefit from larger PDBs.

Optimizing the value of the PDB size M used in the
bin-packing algorithms can be difficult. In some cases,
there is not a single optimal M value for the planning task.
To increase the diversity of PDB sizes, we keep a range
[Smin ,Smax ] of values, from which M is drawn at random
according to a normal distribution. The initial value of Smin

is 10,000, and the initial value of Smax is the maximum prob-
lem size, i.e., the cross-product of all the variable’s domain
sizes.2 If the search for complementary patterns stagnates,
we progressively try larger PDBs. We increase the likelihood
of drawing larger M -values from the normal distribution by
dynamically increasing the value of Smin .

We also performed experiments to test our scheme for au-
tomatically adjusting the value of M . Table 2 shows the cov-
erage results when using fixed PDB sizes instead of CPC’s
scheme for the same 1,667 optimal STRIPS benchmark in-
stances used in the bin packing experiment. The first row
specifies the number of PDB entries allowed. The column

2We never create explicit PDBs with more than 90,000,000 en-
tries.



Adjustable 104 105 106 107 108

Explicit 936 891 923 930 918 316
Symbolic 1,009 884 910 919 924 940

Table 2: Planner’s coverage with our scheme to automatically adjust
the PDB size limit and with different fixed values of PDB size limit.

“Adjustable” shows the number of instances the planner is
able to solve while using CPC’s scheme. The coverage re-
sults suggest that the adaptable scheme tends to produce bet-
ter heuristics than when fixing the value of M . Interestingly,
explicit PDBs perform better than symbolic for the smaller
PDB sizes because their evaluation (lookup) is faster than
that of symbolic PDBs. However, once PDB sizes get large
enough, the generation time of symbolic PDBs is on average
much smaller than the generation time of explicit PDBs. The
performance of explicit PDBs collapses if the allowed size is
too large as the PDB quickly exceeds the available memory.

6 Experimental Results
We evaluate CPC on the STRIPS optimal benchmark
suite distributed with the Fast Downward Planning Sys-
tem [Helmert, 2006]. All experiments are run under Interna-
tional Planning Competition (IPC) rules for optimal classical
planning: 1,800 seconds and 4 GBs of RAM. We use 2.67
GHz Linux sandybridge Xeon CPUs, and all planners we use
are implemented within the Fast Downward planning system.
All configurations use a h2-based preprocessor to remove ir-
relevant actions [Alcázar and Torralba, 2015].

CPC produces explicit (CPC-E) and symbolic (CPC-S)
PDBs with a time limit t of 900 seconds and a memory limit
m of 2 GB. We assume that both CPC-E and CPC-S re-
ceive the h0 heuristic as hbase. To evaluate the ability of
CPC to create a complementary heuristic to an informative
base heuristic, we include CPC-S-P, which is a version of
CPC-S seeded with a symbolic perimeter as base heuristic
(hbase = P ). The perimeter is built with time and memory
limits of 250 seconds and 1GB of RAM. Once the perimeter
is constructed, the remaining time (out of the 900 seconds al-
lowed) is used to find symbolic PDBs which complement the
perimeter heuristic.

We compare the coverage of an A∗-based planner guided
by the heuristics CPC generates with the same planner guided
by heuristics generated by alternative methods. Namely, we
compare CPC against iPDB [Haslum et al., 2007], GHS com-
bining multiple gaPDBs (denoted as GHS-GA), and GHS
combining iPDB, LM-Cut, and gaPDBs (denoted as GHS-
ALL) [Lelis et al., 2016]. We also compare CPC with A∗
guided by symbolic PDBs. We call P the method that builds a
perimeter-based heuristic with symbolic search. We also ex-
periment with the Gamer technique for symbolic PDBs [Kiss-
mann and Edelkamp, 2011]. We use Sievers et al.’s [2012]
implementation of explicit PDBs. All symbolic PDBs use
the search enhancements proposed by Torralba et al. [2017].
SymBA refers to the winner of the 2014 IPC’s optimal
track [Torralba et al., 2014; 2016], which uses symbolic bidi-
rectional search with perimeter abstraction heuristics.

Domain CPC iPDB GHS SymPDB SymBAE S S-P GA ALL P Gamer
Airport 29 28 27 31 30 32 27 26 27
Barman 10 11 11 4 9 6 11 10 17

Blocksworld 26 27 30 28 26 28 30 30 31
ChildSnack 0 1 2 0 0 0 0 2 4

Depot 8 7 8 9 7 9 7 7 7
Driverlog 14 15 14 13 14 14 12 13 12
Elevators 44 43 43 43 44 44 41 37 44
Floortile 31 34 34 16 18 26 34 34 34
Freecell 21 37 33 20 21 20 25 42 22

GED 20 19 20 15 19 19 20 19 20
Grid 3 3 3 3 3 3 2 4 2

Gripper 8 13 20 8 8 8 20 13 20
Hiking 19 20 20 15 19 18 14 13 15

Logistics 29 28 28 25 28 28 20 26 24
Miconic 70 92 106 55 67 140 105 107 113

Movie 29 30 30 30 29 30 30 30 30
MPrime 23 25 24 23 23 24 21 18 23
Mystery 16 15 16 18 16 17 15 18 15

NoMystery 20 20 20 16 20 20 14 16 14
Openstacks 49 53 74 49 49 49 75 71 90
ParcPrinter 44 42 41 36 33 40 37 40 39

Parking 1 1 4 13 1 13 5 0 5
Path noneg 4 5 5 4 4 5 4 4 5

Pegsol 48 48 48 46 48 48 48 47 48
PipesworldNT 25 25 24 21 19 20 17 26 15

PipesworldT 17 18 18 18 15 17 14 19 15
PSR-small 50 50 50 50 49 50 50 50 50

Rovers 9 13 13 8 8 8 12 13 14
Satellite 7 10 10 6 7 7 10 9 10

Scanalyzer 23 22 21 23 21 31 21 21 21
Sokoban 50 50 49 50 48 50 48 49 48
Storage 15 15 15 16 15 16 15 16 15

Tetris 13 13 13 12 9 11 11 13 10
Tidybot 23 30 30 25 23 25 25 35 19

TPP 12 15 15 6 7 7 8 8 8
Transport 39 35 33 29 38 38 31 34 32

Trucks 10 11 11 9 9 10 10 15 12
VisitAll 33 33 33 28 33 33 18 28 18

Woodworking 31 39 46 25 32 39 46 48 48
Zenotravel 13 13 13 11 13 13 9 11 10

Total 936 1,009 1,055 857 882 1,016 962 1,022 1,006

Table 3: Coverage of CPC using explicit (CPC-E) and symbolic
PDBs (CPC-S), optionally seeded with a perimeter (CPC-S-P). We
compare with explicit PDBs (iPDB and GHS), symbolic PDBs (P
and Gamer) methods, and SymBA.

6.1 Overall Results
Table 3 shows the coverage results per domain. CPC-S-P
solves 1,055 instances and is the best performing system.
Comparing the results against the perimeter alone (P), which
solves 962 instances, highlights the ability of our method to
find complementary PDBs in several domains. The two scat-
ter plots on the left-hand side of Figure 1 further compares
CPC-S-P with P. Each point represents one of the 1,667 in-
stances used in our experiment. The x-axis of the first plot
represents the number of nodes A∗ expands while using P,
and the y-axis represents the number of nodes A∗ expands
while using CPC-S-P. A∗ expands substantially fewer nodes
when using CPC-S-P. The second scatter plot compares the
search time of the A∗-based planner using P and CPC-S-P.
Again we observe that the planner tends to solve the problem
instances more quickly when using CPC-S-P.

Gamer is the second best planner tested, it solves 32 fewer
instances than CPC-S-P. CPC-S-P solves more instances than
Gamer in 18 domains, the same number of instances in 13 and
fewer instances in 9 domains. The symbolic version of CPC
that uses hbase = h0 (CPC-S) solves 42 fewer instances than
Gamer. On the other hand, CPC-S solves more instances than



100 101 102 103 104 105 106 107 108

100

102

104

106

108

Expansions of Symbolic Perimeter

E
xp

an
si

on
s

of
C

PC
-S

-P

10−2 10−1 100 101 102 103 104

10−2

10−1

100

101

102

103

104

Search Time (s) of Symbolic Perimeter

Se
ar

ch
Ti

m
e

(s
)o

fC
PC

-S
-P

100 101 102 103 104 105 106 107 108

100

102

104

106

108

Expansions of GHS-GA

E
xp

an
si

on
s

of
C

PC
-E

10−2 10−1 100 101 102 103 104

10−2

10−1

100

101

102

103

104

Search Time (s) of GHS-GA

Se
ar

ch
Ti

m
e

(s
)o

fC
PC

-E

Figure 1: Search time and expanded nodes until last f -layer for CPC-E vs. GHS-GA and CPC-S-P vs. P.

Explicit Symbolic
AVG RS SS AVG RS SS

872 891 936 895 1,009 1,009

Table 4: Coverage of alternative sampling methods.

Gamer in 19 domains, fewer instances in 14 domains and the
same number of instances in 7 domains.

Among the methods that only use explicit PDBs, CPC-E
outperforms both iPDB and GHS-GA. The comparison with
GHS-GA is specially relevant because both methods use a ge-
netic algorithm approach to construct PDBs and SS as evalu-
ation function. The main difference between CPC and GHS-
GA is that CPC searches for pattern collections while ac-
counting for the pattern collections that were already selected.
This allows CPC to focus its search on parts of the pattern se-
lection space that are deemed as promising by SS for finding
complementary pattern collections. By contrast, GHS gen-
erates a large number of pattern collections and then tries to
select complementary patterns.

The two scatter plots on the right-hand side of Figure 1
compare the number of nodes A∗ expands as well as the
A∗ search time when using heuristics created by CPC versus
those created by GHS with GHS-GA. Although CPC does
not substantially reduce the number of node expansions per-
formed by A∗, it still reduces the overall search time. This
is because the heuristic produced by CPC tends to use fewer
pattern collections than the heuristic produced by GHS-GA.
Since CPC’s heuristic uses fewer pattern collections, its com-
putation will be faster than the heuristic created by GHS-GA,
which results in a reduction in the overall search time. The
reduction in the overall search time results in more instances
being solved. While CPC-E solves 936 instances, GHS-GA
solves only 882. GHS-ALL solves more instances than both
CPC-E and GHS-GA, and that is mainly due to the use of
LM-Cut and its great performance in Miconic.

6.2 Alternative Sampling Methods
Table 4 compares alternative approaches as evaluation func-
tions for guiding the CPC search for pattern collections.
Namely, we compare the use of SS with random sampling
(RS) and average h-value sampling (AVG). These meth-
ods are employed by other PDB generation algorithms:
gaPDB [Edelkamp, 2006] uses AVG and iPDB [Haslum et
al., 2007] uses RS.

CPC-S P max(P, CPC-S) CPC-S-P

1,009 962 1,014 1,055

Table 5: Coverage of CPC complementing a perimeter heuristic vs.
maximum of regular CPC and the same heuristic.

The results in Table 4 suggest that SS is either always bet-
ter or at least as good as the best sampling method guiding
CPC’s search through the pattern selection space. When do-
ing explicit PDBs the heuristic CPC produces while guided
by SS, A∗ is able to solve more instances than when guided
by the two alternative approaches. For symbolic PDBs, our
planner solves the same number of tasks if using either RS
or SS. This is because the symbolic PDBs CPC creates tend
to be orders of magnitude larger than its explicit PDBs. As
a result, the number of symbolic PDBs needed to reduce the
size of the search tree A* generates is substantially smaller
than the number of explicit PDBs needed to yield similar
tree size reduction. Hence, for the symbolic approach, it is
more likely that the PDB combination that prunes more nodes
during search is also the PDB combination with the fastest
lookup time. That is why for symbolic PDBs one is able to
obtain similar results while minimizing A*’s search tree size
(as is done by RS) and while minimizing the A*’s running
time (as is done by SS). Finally, we noticed in this experiment
that in some instances A∗ runs out of memory while using the
heuristic created by CPC while guided by SS, and it is able to
solve the instances with the alternative approaches. This hap-
pens because SS tries to minimize the overall running time
of the A∗ search. By contrast, the alternative approaches are
trying to minimize the number of nodes A∗ expands, which
directly correlates to A∗’s memory usage.

6.3 Complementarity of CPC
Table 5 shows how our heuristic complements the base
heuristic hbase. As base heuristic we use the same symbolic
perimeter heuristic we use to seed CPC-S-P in Table 3. The
first column shows coverage of the symbolic PDB heuristic
CPC generates, CPC-S. The second column shows the cov-
erage of the planner using the symbolic perimeter, P, on its
own. The third column shows the coverage results of the
planner while using a heuristic that takes the maximum of
P and CPC-S. The last column shows the coverage results of
the planner while guided by a symbolic heuristic created by
CPC when hbase = P .

Table 5 suggests that CPC is able to create a heuristic



Algorithm iPDB gaPDB Gamer CPC
Evaluation Random walk Avg-h Avg-h SS
Candidate HC/HC-VNS GA HC GA’

PDB Size Limit Fixed Fixed — Dynamic
Aggregation hC 0/1P — 0/1P + hC

Table 6: Comparison of PC generation algorithms.

that complements the strengths of P. If we use CPC to cre-
ate a heuristic CPC-S ignoring that it will be later combined
with P (using the maximum), one can solve 1,014 instances.
However, if we provide P as CPC’s hbase, then the resulting
heuristic, CPC-S-P, allows one to solve 1,055 instances.

7 Related Work
There are a number of approaches to generate pattern col-
lections P . iPDB [Haslum et al., 2007] performs a hill
climbing search (HC) on the space of possible P . It starts
with a P containing a pattern for each goal variable and, at
each step, adds a new pattern formed by adding one more
variable v to an existing pattern p ∈ P . To decide which
new pattern to generate, it evaluates all valid combinations
and selects the one whose PDB has higher h-value in a pre-
determined sample set of states. iPDB avoids the evalu-
ation of redundant combinations p ∪ {v} that cannot pos-
sibly improve the heuristic value of pattern p according to
the causal-graph of the planning task [Haslum et al., 2007;
Pommerening et al., 2013]. Finally, Scherrer et al. [2015]
proposed an extension of iPDB that performs a variable
neighborhood search (VNS) [Mladenovic and Hansen, 1997]
to escape local minima in the hill climbing search.

GA-PDB [Edelkamp, 2006] starts with initial collections
generated by a bin-packing algorithm that distributes the vari-
ables among different patterns in each collection. Then, it
runs a genetic algorithm (GA) by randomly modifying the
existing collection in order to improve it. During search, GA-
PDB prefers pattern collections P with the highest average
h-value.

The Gamer planner adapted iPDB’s method for symbolic
PDBs [Kissmann and Edelkamp, 2011], where there is no
limit on the PDB size. Contrary to the other two methods,
Gamer generates a single PDB, instead of a collection. To do
so, it runs a HC search starting with the PDB that contains all
goal variables. At each step it considers adding a new vari-
able, choosing the one that increases the average h-value the
most. If several variables increase the average h-value by the
same amount, all of them are added to the pattern.

Table 6 summarizes the main characteristics of the pre-
vious methods and the alternatives proposed in this paper.
We differ on our evaluation function based on SS to select
complementary PDBs, on adapting the candidate generation
method of gaPDB to increase the quality of the candidates,
and on auto-adapting the parameters to dynamically choose
the PDB size.

There are multiple ways to combine heuristic estimates
that trade off accuracy and computational cost. In this work,
we have focused on the PDB generation side, sticking to a
relatively simple way of combining the heuristics, i.e., the
canonical heuristic function to combine PDBs constructed

with a greedy 0-1 operator cost partitioning. There are
stronger alternatives that achieve more informative estimates
based on more general notions of cost-partitioning [Katz and
Domshlak, 2010; Pommerening et al., 2015]. Optimal cost-
partitioning for a given state s can be computed in time
polynomial in the size of the abstract state spaces [Katz and
Domshlak, 2010], though it is often computationally too ex-
pensive to pay off in practice. Other practical alternatives
that could possibly improve our method exist, such as the
post-hoc optimization heuristic [Pommerening et al., 2013]
and saturated cost-partitioning [Seipp and Helmert, 2014;
Keller et al., 2016; Seipp et al., 2017b]. For more informa-
tion about cost-partitioning methods, we refer the reader to
the recent in-depth analysis by Seipp et al. [2017a].

8 Concluding Remarks
In this paper we presented CPC, a new PDB-based heuris-
tic that selects pattern collections with PDBs that are com-
plementary to each other and to other heuristics provided as
input. As previous methods, we perform an optimization
search on the space of possible pattern collections. Our eval-
uation function is based on Stratified Sampling, which takes
into account previously selected PDBs to guide the search to-
wards complementary patterns. Our experiments show that
this guidance often leads to better pattern collections than al-
ternative methods in the literature, such as a method that per-
forms random walk sampling and a method that maximizes
the PDBs’ average heuristic value.

We also explored different ways to generate candidate pat-
terns during this search. Our best configuration combines two
methods, using UCB1 to dynamically learn which method is
best for the current task. Similarly, instead of choosing a fixed
PDB size limit, we automatically adjust this parameter during
the CPC search.

We tested CPC with both explicit and symbolic PDBs. Our
results show that CPC compares well against other pattern se-
lection methods. Overall, our best configuration uses CPC to
complement a symbolic perimeter heuristic. With this con-
figuration, CPC outperformed all alternative methods tested.

Acknowledgments
Á. Torralba was supported by the German Federal Min-
istry of Education and Research (BMBF), CISPA grant no.
16KIS0656. S. Franco and L. Lelis were supported by
Brazil’s CAPES (Science Without Borders) and FAPEMIG.
M. Barley was supported by the Air Force Office of Scientific
Research, Asian Office of Aerospace Research and Devel-
opment (AOARD) under award number FA2386-15-1-4069.
Thanks to Dr. Pat Riddle for her editorial support.

References
[Alcázar and Torralba, 2015] Vidal Alcázar and Álvaro Torralba. A

reminder about the importance of computing and exploiting in-
variants in planning. In Proc. ICAPS, 2015.

[Anderson et al., 2007] Kenneth Anderson, Robert Holte, and
Jonathan Schaeffer. Partial pattern databases. In Proc. SARA,
pages 20–34, 2007.



[Auer, 2002] P. Auer. Using confidence bounds for exploitation-
exploration trade-offs. Journal of Machine Learning Research,
3:397–422, 2002.

[Bäckström and Nebel, 1995] C. Bäckström and B. Nebel. Com-
plexity results for SAS+ planning. Computational Intelligence,
11:625–656, 1995.

[Barley et al., 2014] Michael W. Barley, Santiago Franco, and Pa-
tricia J. Riddle. Overcoming the utility problem in heuristic gen-
eration: Why time matters. In Proc. ICAPS, 2014.

[Bryant, 1986] Randal E. Bryant. Graph-based algorithms for
boolean function manipulation. IEEE Transactions on Comput-
ers, 35(8):677–691, 1986.

[Chen, 1992] P.-C. Chen. Heuristic sampling: A method for pre-
dicting the performance of tree searching programs. SIAM Jour-
nal on Computing, 21:295–315, 1992.

[Culberson and Schaeffer, 1998] Joseph C. Culberson and Jonathan
Schaeffer. Pattern databases. Computational Intelligence,
14(3):318–334, 1998.

[Edelkamp, 2001] Stefan Edelkamp. Planning with pattern
databases. In Proc. ECP, pages 13–24, 2001.

[Edelkamp, 2002] Stefan Edelkamp. Symbolic pattern databases in
heuristic search planning. In Proc. AIPS, pages 274–283, 2002.

[Edelkamp, 2006] Stefan Edelkamp. Automated creation of pattern
database search heuristics. In Proc. MOCHART, pages 35–50,
2006.

[Felner et al., 2004] Ariel Felner, Richard E. Korf, and Sarit Hanan.
Additive pattern database heuristics. Journal of Artificial Intelli-
gence Research, 22:279–318, 2004.

[Hart et al., 1968] Peter E. Hart, Nils J. Nilsson, and Bertram
Raphael. A formal basis for the heuristic determination of min-
imum cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

[Haslum et al., 2007] Patrik Haslum, Adi Botea, Malte Helmert,
Blai Bonet, and Sven Koenig. Domain-independent construction
of pattern database heuristics for cost-optimal planning. In Proc.
AAAI, pages 1007–1012, 2007.

[Haslum et al., 2015] Patrik Haslum, Blai Bonet, and Héctor
Geffner. New admissible heuristics for domain-independent plan-
ning. In Proc. AAAI, pages 1163–1168, 2015.

[Helmert, 2004] Malte Helmert. A planning heuristic based on
causal graph analysis. In Proc. ICAPS, pages 161–170, 2004.

[Helmert, 2006] Malte Helmert. The Fast Downward planning sys-
tem. Journal of Artificial Intelligence Research, 26:191–246,
2006.

[Holte et al., 2006] R. C. Holte, A. Felner, J. Newton, R. Meshu-
lam, and D. Furcy. Maximizing over multiple pattern databases
speeds up heuristic search. Artificial Intelligence, 170(16–
17):1123–1136, 2006.

[Katz and Domshlak, 2008] Michael Katz and Carmel Domshlak.
Optimal additive composition of abstraction-based admissible
heuristics. In Proc. ICAPS, pages 174–181, 2008.

[Katz and Domshlak, 2010] Michael Katz and Carmel Domshlak.
Optimal admissible composition of abstraction heuristics. Artifi-
cial Intelligence, 174(12–13):767–798, 2010.

[Keller et al., 2016] Thomas Keller, Florian Pommerening, Jendrik
Seipp, Florian Geißer, and Robert Mattmüller. State-dependent
cost partitionings for cartesian abstractions in classical planning.
In Proc. IJCAI, pages 3161–3169, 2016.

[Kissmann and Edelkamp, 2011] Peter Kissmann and Stefan
Edelkamp. Improving cost-optimal domain-independent
symbolic planning. In Proc. AAAI, pages 992–997, 2011.

[Lelis et al., 2014] Levi H. S. Lelis, Roni Stern, and Nathan R.
Sturtevant. Estimating search tree size with duplicate detection.
In Proc. SOCS, pages 114–122, 2014.

[Lelis et al., 2016] Levi H. S. Lelis, Santiago Franco, Marvin Abis-
rror, Mike Barley, Sandra Zilles, and Robert C. Holte. Heuris-
tic subset selection in classical planning. In Proc. IJCAI, pages
3185–3191, 2016.

[McMillan, 1993] Kenneth L. McMillan. Symbolic Model Check-
ing. Kluwer Academic Publishers, 1993.

[Mladenovic and Hansen, 1997] Nenad Mladenovic and Pierre
Hansen. Variable neighborhood search. Computers & OR,
24(11):1097–1100, 1997.

[Pommerening et al., 2013] Florian Pommerening, Gabriele Röger,
and Malte Helmert. Getting the most out of pattern databases for
classical planning. In Proc. IJCAI, 2013.

[Pommerening et al., 2015] Florian Pommerening, Malte Helmert,
Gabriele Röger, and Jendrik Seipp. From non-negative to gen-
eral operator cost partitioning. In Proc. AAAI, pages 3335–3341,
2015.

[Scherrer et al., 2015] Sascha Scherrer, Florian Pommerening, and
Martin Wehrle. Improved pattern selection for PDB heuristics
in classical planning (extended abstract). In Proc. SOCS, pages
216–217, 2015.

[Seipp and Helmert, 2014] Jendrik Seipp and Malte Helmert. Di-
verse and additive cartesian abstraction heuristics. In Proc.
ICAPS, pages 289–297, 2014.

[Seipp et al., 2017a] Jendrik Seipp, Thomas Keller, and Malte
Helmert. A comparison of cost partitioning algorithms for op-
timal classical planning. In Proc. ICAPS, 2017.

[Seipp et al., 2017b] Jendrik Seipp, Thomas Keller, and Malte
Helmert. Narrowing the gap between saturated and optimal cost
partitioning for classical planning. In Proc. AAAI, pages 3651–
3657, 2017.

[Sievers et al., 2012] Silvan Sievers, Manuela Ortlieb, and Malte
Helmert. Efficient implementation of pattern database heuristics
for classical planning. In Proc. SOCS, 2012.

[Torralba et al., 2014] Álvaro Torralba, Vidal Alcázar, Daniel Bor-
rajo, Peter Kissmann, and Stefan Edelkamp. SymBA*: A sym-
bolic bidirectional A* planner. In IPC 2014 planner abstracts,
pages 105–109, 2014.

[Torralba et al., 2016] Álvaro Torralba, Carlos Linares López, and
Daniel Borrajo. Abstraction heuristics for symbolic bidirectional
search. In Proc. IJCAI, 2016.

[Torralba et al., 2017] Álvaro Torralba, Vidal Alcázar, Peter Kiss-
mann, and Stefan Edelkamp. Efficient symbolic search for cost-
optimal planning. Artificial Intelligence, 242:52–79, 2017.


